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Abstract

There has been limited success for dense re-
trieval models in multilingual retrieval, due
to uneven and scarce training data available
across multiple languages. Synthetic training
data generation is promising (e.g., InPars or
Promptagator), but has been investigated only
for English. Therefore, to study model ca-
pabilities across both cross-lingual and mono-
lingual retrieval tasks, we develop SWIM-
IR, a synthetic retrieval training dataset con-
taining 33 (high to very-low resource) lan-
guages for fine-tuning multilingual dense re-
trievers without requiring any human super-
vision. To construct SWIM-IR, we propose
SAP (summarize-then-ask prompting), where
the large language model (LLM) generates a
textual summary prior to the query genera-
tion step. SAP assists the LLM in generat-
ing informative queries in the target language.
Using SWIM-IR, we explore synthetic fine-
tuning of multilingual dense retrieval models
and evaluate them robustly on three retrieval
benchmarks: XOR-Retrieve (cross-lingual),
MIRACL (monolingual) and XTREME-UP
(cross-lingual). Our models, called SWIM-
X, are competitive with human-supervised
dense retrieval models, e.g., mContriever-X,
finding that SWIM-IR can cheaply substitute
for expensive human-labeled retrieval training
data. SWIM-IR dataset and SWIM-X mod-
els are available at: https://github.com/
google-research-datasets/SWIM-IR.

1 Introduction

Dense retrieval models have demonstrated impres-
sive performance in ad-hoc information retrieval
(IR) tasks, e.g., web search, outperforming tradi-
tional retrieval systems such as BM25 (Karpukhin
∗∗Work done while Nandan was a student researcher
at Google Research. †Correspondence to: Nandan
Thakur <nandan.thakur@uwaterloo.ca>, Jianmo Ni <jian-
mon@google.com>, Daniel Cer <cer@google.com>.

Dataset Q Gen. Cross. Mono. # L Domain # Train

NeuCLIR Human EN→L L→L 3 News (hc4) ×
MKQA Human L→EN × 26 Wikipedia 10K
mMARCO Translate × L→L 13 MS MARCO 533K
Mr.TyDI Human × L→L 11 Wikipedia 49K
MIRACL Human × L→L 18 Wikipedia 726K
JH-POLO GPT-3 EN→L × 3 News (hc4) 78K
SWIM-IR PaLM 2 L→EN L→L 33 Wikipedia 28M

Table 1: We construct SWIM-IR, a “synthetic”
multilingual dataset with 28 million PaLM 2 gen-
erated training pairs across 33 languages in our
work; (Q Gen.) denotes the query generation technique;
(Cross. and Mono.) denotes the retrieval task and
(query→document) language pair; (# L and # Train) de-
notes the language count and available training pairs.
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Figure 1: Summary of the quantitative results across
three multilingual retrieval benchmarks evaluated in
our work. SWIM-X is fine-tuned on SWIM-IR (PaLM
2 generated synthetic training data) without any human
supervision. All scores are macro-averaged.

et al., 2020; Lin et al., 2021; Ni et al., 2022; Nee-
lakantan et al., 2022, inter alia). A major rea-
son for its success lies in the availability of large-
scale supervised training datasets in English, such
as MS MARCO (Nguyen et al., 2016) or NQ
(Kwiatkowski et al., 2019), and coupled with ef-
fective training strategies, such as custom hard-
negative mining (Xiong et al., 2021; Lin et al.,
2023), or teacher distillation (Hofstätter et al.,
2021; Ren et al., 2021).

However, there is a limited exploration of dense
retrieval models in multilingual retrieval,1 due to

1Throughout the paper, we use “multilingual retrieval” to col-
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With about 850,000 residents, the Comoros is one 
of the least-populous countries in the world, but its 
population density is high, with an average of 275 
inhabitants per square kilometre (710/sq mi). In 2001, 
34% of the population was considered urban, but 
the urban population has since grown; in recent years 
rural population growth has been negative, while 
overall population growth is still relatively high.
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Figure 2: An illustration of SAP (Summarize-then-Ask Prompting) versus standard prompting for English query
generation on English Wikipedia. SAP assists the LLM in improving the query generation quality (orange box) by
identifying the relevant sections of the input passage (highlighted in red) via the extractive summarization (yellow
box) as an intermediate reasoning step.

uneven and low distribution of human-supervised
training data for other languages apart from En-
glish (Reimers and Gurevych, 2020; Feng et al.,
2022; Wieting et al., 2023). Collecting human an-
notations for training data generation is not scal-
able, as it is cumbersome to search and hire na-
tive speakers, check their language proficiency,
and teach them. Additionally, human annotators
are expensive, thereby requiring a large annotation
budget for generating a sufficient amount of train-
ing pairs (cf. Figure 6).

Multilingual query generation is a complex task
(Wang et al., 2021). It requires understanding
of semantic mappings of words across languages,
similar to machine translation (Forcada, 2002; Tan
et al., 2019; Zhu et al., 2023). Recently, utilizing
LLMs for query generation has been popular in
English (Bonifacio et al., 2022; Dai et al., 2023).
But as illustrated in Figure 2, standard prompt tem-
plates can lead the LLM to generate either extrac-
tive or uninformative2 queries across languages.

To improve the quality of the generated query,
we propose SAP (Summarize-then-Ask Prompt-
ing), where we optimize the prompt to break down
the query generation with LLM in two stages: (i)
summary extraction, which identifies the relevant
information from the long input passage and ex-
tracts the best representative sentences as the sum-
mary, and (ii) query generation, which generates a
multilingual query relevant for the input passage,
using the extracted summary (first stage) as the in-
termediate step. SAP highlights the relevant infor-
mation within the passage and produces difficult
(i.e., informative) queries in the target language.

In our work, we utilize PaLM 2 (Anil et al.,
2023), a recent multilingual LLM (successor of

lectively denote both cross-language, i.e., cross-lingual and
within language, i.e., monolingual retrieval tasks.

2Uninformative denotes a query that can be easily answered
using the first (or last) few words in the passage.

PaLM 540B (Chowdhery et al., 2023)) for query
generation. The generated query paired with the
original passage from Wikipedia is used to con-
struct the SWIM-IR dataset. SWIM-IR provides
synthetic training (query-passage) pairs for im-
proving dense retrieval models without requiring
any human supervision. The dataset spans across
33 diverse languages, including both high and
very-low resource languages and is one of the
largest multilingual synthetic training dataset with
28 million training pairs (cf. Table 1).

We develop synthetic multilingual (both mono-
lingual and cross-lingual) dense retrieval models
called SWIM-X, using mT5 (base) (Xue et al.,
2021) as the backbone and fine-tune on SWIM-IR.
We compare SWIM-X against models fine-tuned
with human supervision by changing only the
training dataset while keeping other, i.e., model
parameters and training settings unchanged. We
evaluate on three standard multilingual retrieval
benchmarks (two cross-lingual and one monolin-
gual). As shown in Figure 1, on XOR-Retrieve
(Asai et al., 2021a), SWIM-X outperforms the
best-supervised baseline (mContriever-X) by 7.1
points at Recall@5kt. On MIRACL (Zhang
et al., 2023b), a monolingual retrieval benchmark,
SWIM-X is inferior to mContriever-X by 9.0
points at nDCG@10, which shows room for fu-
ture improvement. On XTREME-UP (Ruder et al.,
2023), a challenging benchmark containing 20 un-
derrepresented Indo-European languages, SWIM-
X outperforms mContriever-X by 11.7 points at
MRR@10. We publicly open-source SWIM-IR
dataset and SWIM-X models at https://github.
com/google-research-datasets/SWIM-IR.

2 SWIM-IR Dataset Overview

In our dataset overview, we first describe the SAP
design formulation for multilingual query genera-
tion (§2.1), data construction details (§2.2), and fi-
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With about 850,000 residents, the Comoros
is one of the least-populous countries in the
world [ ... ] In 2001, 34% of the population
was considered urban, but the urban
population has since grown [ ... ]
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of the population was considered urban.
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Figure 3: An illustration of the cross-lingual SWIM-IR dataset construction procedure. Steps are as follows: (1)
Sample N passages from the English Wikipedia using stratified sampling for each language out of the L languages;
(2) Feed a sampled passage along with the few-shot exemplars to the LLM with SAP; (3 & 4) Parse the LLM
output to receive the synthetic query in the target language (above in Bengali); (5) Fine-tune a multilingual dense
retriever model (SWIM-X) with training pairs combined for all languages, i.e., N×L pairs.

nally discuss about human validation and content
filtration (§2.3).

2.1 SAP Design Formulation

Multilingual query generation is not a trivial task
as it requires a deep understanding of the passage
content and its own translations across different
languages (Wang et al., 2021). Also, passages can
often be lengthy and contain information on multi-
ple topics. Using the entire passage can potentially
cause hallucinations in models by generating non-
meaningful queries, which affects the retrieval per-
formance (Gospodinov et al., 2023).

To break down the task complexity of multilin-
gual query generation and improve the query qual-
ity, we implement summarize-then-ask prompting
(SAP). As shown above in Figure 2, we identify
the relevant information within a passage by ask-
ing the LLM to generate an extractive summary
and use it as an intermediate step for generating
informative queries (Wei et al., 2023). The proce-
dure is described in more detail below:

(i) Summary extraction. The LLM constructs
an extractive summary es of the input passage ps,
where s denotes the source language. The sum-
mary captures the highly relevant information con-
tained within the passage ps (which occasionally
may be long) acting as an useful intermediate sig-
nal for the LLM to generate a multilingual query
in the later stage. We denote the first stage as
es = LLM(ps; θ

1, · · · , θk), where (θ1, · · · , θk)
denotes the k few-shot prompt exemplars3 contain-
ing the passage, summary in the source language
s and the query in the target language t.4

(ii) Query generation. Next, the LLM combines

3Multilingual query generation requires few-shot prompt ex-
emplars. As our experiments show in (§4), zero-shot prompt-
ing often generates unparseable outputs with PaLM 2.

4In our work, we did not use abstractive summarization,
as LLMs have notoriously been shown to hallucinate and
generate factual inconsistencies in their output generations
(Maynez et al., 2020; Liu et al., 2023).

the summary es generated previously with the orig-
inal input passage ps, highlighting the relevant in-
formation required for composing the query qt in
the target language t. We denote this stage as
qt = LLM(es, ps; θ

1, · · · , θk), where extractive
summary es, input passage ps and k-shot exem-
plars all appear from the first stage.

2.2 SWIM-IR Dataset Construction
For constructing SWIM-IR, we only require an
unlabeled corpus of passages and few-shot exem-
plars. An overview of the cross-lingual generation
procedure is shown in Figure 3. Prompt examples
are provided in the Appendix (§C.3).

Cross-lingual. The goal is to generate a query
in the target language t using the input passage
in English (source language s). We use a strat-
ified sampling algorithm (for more details, refer
to §E.4 in the Appendix) to sample a maximum
of one million passages for each target language t
from the English Wikipedia corpus used in XOR-
Retrieve (Clark et al., 2020; Asai et al., 2021a) or
XTREME-UP (Ruder et al., 2023). Next, we con-
struct five prompt exemplars and manually con-
struct both the summary and query for the exem-
plar in English. Further, we use Google Translate5

to translate the exemplar queries across other lan-
guages. Finally, we construct the prompt, where
we explain our query generation task as an instruc-
tion, include the target language, and the 5-shot
exemplars as an input to the LLM with SAP.

Monolingual. The goal is to generate a query in
the same language as the input passage (s = t).
We follow the setting similar to the cross-lingual
task. We first sample one million passages (if
available) for each language-specific Wikipedia
corpus in MIRACL (Zhang et al., 2023b).6 Next,
we carefully select three training pairs as our
5Google Translate: translate.google.com
6For 16 out of the 18 languages, MIRACL contains a training
split except for two: German (de) and Yoruba (yo).

https://translate.google.com/


Benchmark Retrieval Evaluation Query → Passage # L ISO Languages Train Split Dev/Test Split
Task Metric # Q HNeg. # Q # Passages

XOR-Retrieve
(Asai et al., 2021a)

Cross-lingual Recall@5kt L → English 7 ar, bn, fi, ja, ko,
ru, te

Arabic, Bengali, Finnish, Japanese, Korean,
Russian, Telugu

15,250 Yes (1 each) 2,110 18,003,200

MIRACL (Zhang
et al., 2023b)

Monolingual nDCG@10 L → L 18 ar, bn, de, en, es,
fa, fi, fr, hi, id,
ja, ko, ru, sw, te,
th, yo, zh

Arabic, Bengali, German, English, Spanish,
Farsi, Finnish, French, Hindi, Indonesian,
Japanese, Korean, Russian, Swahili, Telugu,
Thai, Yoruba, Chinese

88,288 Yes (max 4) 13,495 106,332,152

XTREME-UP
(Ruder et al., 2023)

Cross-lingual MRR@10 L → English 20 as, bho, brx, gbm,
gom, gu, hi, hne,
kn, mai, ml, mni,
mr, mwr, or, pa, ps,
sa, ta, ur

Assamese, Bhojpuri, Boro, Garhwali,
Konkani, Gujarati, Hindi, Chhattisgarhi,
Kannada, Maithili, Malayalam, Manipuri,
Marathi, Marwari, Odia, Punjabi, Pashto,
Sanskrit, Tamil, Urdu

13,270 No 5,300 112,426

Table 2: Overview of the multilingual retrieval evaluation benchmarks used in our work: (i) XOR-Retrieve (Dev)
(Asai et al., 2021a), (ii) MIRACL (Dev) (Zhang et al., 2023b) and (iii) XTREME-UP (Test) (Ruder et al., 2023);
(HNeg.) denotes availability of hard negatives for fine-tuning; (# L) denotes the number of languages covered by
the benchmark; (# Q) denotes the number of queries in each dataset split.

Lang. (ISO) fluency (↑) adequacy (↑) language (↑)

Rating (→) 0 1 2 0 1 2 0 1 2

English (en) 2% 3% 95% 2% 13% 85% 0% 0% 100%
Spanish (es) 1% 10% 89% 14% 12% 74% 1% 0% 99%
Chinese (zh) 7% 19% 74% 7% 30% 63% 0% 0% 100%
Hindi (hi) 12% 5% 83% 6% 19% 75% 0% 0% 100%
Bengali (bn) 6% 4% 90% 10% 14% 76% 1% 0% 99%

Table 3: Human validation statistics on SWIM-IR. An-
notators evaluate the quality of the generated query on
a three-level rating scale (0/1/2) based on thee factors:
(i) fluency, (ii) adequacy and (iii) language.

prompt exemplars.7 For languages with no train-
ing split, we manually construct our prompt exem-
plars. Further, we use Google Bard8 to generate
exemplar summaries in the target language. Fi-
nally, we construct the prompt, where we explain
our query generation task as an instruction, and the
5-shot exemplars with SAP.

2.3 Human Validation & Content Filtration

Human validation. The goal of our query genera-
tion is to generate an adequate and fluent query ac-
cording to a given passage (Qiu and Xiong, 2019).
To evaluate the intrinsic query quality, we conduct
a validation study in SWIM-IR on a subset of five
languages.9 Within the five evaluated languages,
three are high-resource, one medium-resource and
one low-resource. For each language, we ran-
domly sample a fixed amount of query-passage
pairs resulting in a overall sum of 500 evaluation
pairs to be human validated across all languages.

We compute the query quality on a three-level
rating scheme (0/1/2) based on three evaluation cri-
teria: fluency, adequacy, and language. (i) fluency,

7As language-specific passages consume more tokens, e.g.,
Telugu, to save computational budget, we rely only on 3-
shot exemplars (instead of five) for the monolingual task.

8Google Bard: bard.google.com
9The authors in the paper are native speakers of the five
languages used for evaluation: English (en), Bengali (bn),
Spanish (es), Chinese (zh) and Hindi (hi).

measures the coherence of the generated query,
i.e., whether the query is understandable and read-
able by the user and contains no spelling or gram-
matical mistakes. (ii) adequacy, measures the rel-
evancy of the query with passage (used for query
generation) (iii) language, detects the language of
the generated query, or whether code-switching oc-
curs in the generated query.

Validation statistics. Table 3 reports the human
validation statistics. For fluency, major mistakes
are observed in Hindi (12%) and Chinese (7%),
where the passage sampled in MIRACL (Zhang
et al., 2023b) can be too short (only 2–3 words
long), this leads to the exact duplication of the ex-
act text in the query. For adequacy, we observe
that in Chinese (30%) of the queries are not rele-
vant to the passage. Similar to fluency, a low ad-
equacy is observed in cases when either query is
generated for a short passage or when the query
is about a related topic which is not directly ref-
erenced within the passage. Finally for language,
annotators achieve between 99–100% for all lan-
guages indicating PaLM 2 is likely to generate the
query in the correct language.

Content filtration. LLMs have been shown to
generate undesirable content, particularly under
conditions that prime the model with material tar-
geted at drawing out any negative patterns or as-
sociations in the training data (Gehman et al.,
2020; Bender et al., 2021). To avoid this, we
use the Google Cloud Natural Language con-
tent classification categories10 to filter out harm-
ful content present within the SWIM-IR train-
ing pairs. We discard samples with a high con-
tent classification of either /Adult or any of the
/Sensitive Subjects labels. For more details on
content filtration, refer to (§D) in the Appendix.
10cloud.google.com/natural-language/docs/categories

https://bard.google.com/
https://cloud.google.com/natural-language/docs/categories


Model PLM PT Finetune Recall@5kt
(Datasets) Avg. Ar Bn Fi Ja Ko Ru Te

Existing Supervised Baselines (Prior work)
Dr. DECR (Li et al., 2022) XLM-R WikiM NQ + XOR∗ 73.1 70.2 85.9 69.4 65.1 68.8 68.8 83.2
mDPR (Asai et al., 2021a) mBERT — XOR 50.2 48.9 60.2 59.2 34.9 49.8 43.0 55.5
mBERT + xQG (Zhuang et al., 2023) mBERT — XOR 53.5 42.4 54.9 54.1 33.6 52.3 33.8 52.5
Google MT + DPR (Asai et al., 2021a) BERT — NQ 69.6 69.6 82.2 62.4 64.7 68.8 60.8 79.0
OPUS MT + DPR (Asai et al., 2021a) BERT — NQ 50.6 52.4 62.8 61.8 48.1 58.6 37.8 32.4
Zero-shot baselines (English-only supervision)
mContriever mT5 mC4 — 38.9 35.9 33.9 43.6 34 35.1 45.1 44.5
mDPR-EN mT5 — MS MARCO 39.3 34.3 35.5 45.2 40.2 36.5 43.9 39.5
mContriever-EN mT5 mC4 MS MARCO 44.0 37.5 38.2 50.6 41.1 37.2 49.8 53.8
Supervised Baselines (Cross-lingual supervision)
mDPR-X mT5 — XOR 53.6 51.5 63.5 52.5 45.6 52.3 43.0 66.8
mContriever-X mT5 mC4 XOR 55.3 52.1 68.1 54.5 47.7 50.5 50.2 64.3
mDPR-X mT5 — MS MARCO + XOR 58.2 55.3 70.1 56.7 49.8 55.8 50.6 69.3
mContriever-X mT5 mC4 MS MARCO + XOR 59.6 54.7 73.4 57.0 53.1 56.5 51.5 71.0
Synthetic Baselines (Our work)
SWIM-X (500K) mT5 — SWIM-IR 59.0 54.0 67.4 59.2 52.7 55.1 54.4 70.2
SWIM-X (500K) mT5 mC4 SWIM-IR 63.0 57.0 71.1 61.8 56.8 60.7 63.3 70.2
SWIM-X (7M) mT5 — SWIM-IR 65.1 57.9 75.0 65.6 59.3 58.9 64.6 74.4
SWIM-X (7M) mT5 mC4 SWIM-IR 66.7 61.2 77.0 65.0 62.2 62.8 65.4 73.5

Table 4: Experimental results showing Recall@5kt for cross-lingual retrieval on XOR-Retrieve dev (Asai et al.,
2021a); (PLM) denotes the pre-trained language model; (PT) denotes the pre-training dataset; (∗) Dr.DECR is
fine-tuned in a complex training setup across more datasets (§3.3); WikiM denotes WikiMatrix (Schwenk et al.,
2021); XOR denotes XOR-Retrieve; SWIM-X (ours) is fine-tuned on 500K and 7M synthetic data.

3 Experiments

3.1 Datasets and Metrics

We evaluate on three multilingual retrieval bench-
marks: (i) XOR-Retrieve (Asai et al., 2021a),
(ii) MIRACL (Zhang et al., 2023b) and (iii)
XTREME-UP (Ruder et al., 2023). XOR-
Retrieve and XTREME-UP are cross-lingual and
MIRACL is monolingual. Following prior work,
we evaluate models at Recall@5kt on XOR-
Retrieve, nDCG@10 on MIRACL and MRR@10
on XTREME-UP. An overview of the evaluation
dataset statistics is available in Table 2. For addi-
tional details, refer to the Appendix (§F).

3.2 Experimental Methods

Baseline categories. Following common prac-
tice across all datasets, we evaluate three range
of baselines: (i) Zero-shot baselines: where the
model denoted by “EN” (model-EN) is fine-tuned
using supervised English-only training data such
as MS MARCO (Nguyen et al., 2016) or NQ
(Kwiatkowski et al., 2019). (ii) Supervised base-
lines: where the model denoted by “X” (model-X)
is fine-tuned on human-supervised, i.e., multilin-
gual training data. (iii) Synthetic baselines: where
the model denoted by “SWIM-X” is fine-tuned
without any supervision, relying purely on syn-
thetic multilingual training data. Additionally, we
report the amount of synthetic pairs, e.g., SWIM-
X (500K) is fine-tuned on 500K training pairs.

Model choices. For our dense retrieval mod-
els, we adapt DPR (Karpukhin et al., 2020) to
the multilingual setting with the mT5-base (Xue
et al., 2021) language model with 580M parame-
ters. Next, we include mContriever (Izacard et al.,
2022) which adopts an additional pre-training
stage with contrastive loss based on unsupervised
data prepared from pairwise sentence cropping in
mC4 (Xue et al., 2021). For query generation, we
use PaLM 2 (S) (Anil et al., 2023) for efficient gen-
eration due to its low-cost and inference latency.

Existing baselines. For XOR-Retrieve, we in-
clude Dr. DECR (Li et al., 2022), a cross-lingual
ColBERT (Khattab and Zaharia, 2020) fine-tuned
on a large amount of supervised data in a com-
putationally expensive setup involving knowledge
distillation with English ColBERTv2 (Santhanam
et al., 2022). xQG (Zhuang et al., 2023) involves
cross-language query generation and concatenat-
ing the queries along with the passage represen-
tation. We also include two-stage translation base-
lines, Google Translate and Opus-MT from Asai
et al. (2021a). For MIRACL, we include the offi-
cial BM25, mDPR and Hybrid (combining BM25,
mDPR and mColBERT) baselines (Zhang et al.,
2023b), and Cohere-API is used as a reranker with
top-100 BM25 results (Kamalloo et al., 2023).

3.3 Training Methodology
Zero-shot & supervised baselines. We replicate
mContriever and mDPR zero-shot baselines by ini-



Model Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

Existing Supervised Baselines (Prior work)
BM25 38.5 48.1 50.8 35.1 31.9 33.3 55.1 18.3 45.8 44.9 36.9 41.9 33.4 38.3 49.4 48.4 18.0 22.6 40.6
mDPR 41.8 49.9 44.3 39.4 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 49.0 39.6
Hybrid 56.6 67.3 65.4 54.9 64.1 59.4 67.2 52.3 61.6 44.3 57.6 60.9 53.2 44.6 60.2 59.9 52.6 56.5 37.4
Cohere-API 54.2 66.7 63.4 50.1 50.7 48.4 67.5 44.3 57.3 50.5 51.6 54.6 47.7 54.3 63.8 60.6 38.9 41.4 62.9
Zero-shot baselines (English-only supervision)
mDPR-EN 39.8 49.7 50.1 35.4 35.3 39.3 48.2 31.3 37.4 35.6 38.9 44.1 36.1 33.8 49.2 50.6 34.7 32.1 34.4
mContriever-EN 37.8 49.1 48.4 32.7 33.3 37.1 48.4 27.0 35.9 32.7 34.1 40.2 35.1 44.5 46.2 45.0 27.5 29.7 33.7
Supervised Baselines (Monolingual supervision)
mDPR-X 39.6 52.8 57.1 30.2 24.7 37.6 46.1 26.4 27.8 37.3 42.9 38.3 34.9 53.7 68.4 58.2 34.9 19.2 22.2
mContriever-X 55.4 66.4 68.4 44.2 42.8 48.9 65.2 46.2 45.0 45.8 56.8 58.8 51.2 67.7 79.0 70.7 49.4 42.3 48.4
Synthetic Baselines (Our work)
SWIM-X (180K) 46.4 60.2 57.1 34.7 33.4 36.3 40.6 64.3 33.0 39.5 40.8 43.3 49.7 40.0 55.9 56.3 63.3 50.2 36.5

Table 5: Experimental results for monolingual retrieval on MIRACL dev (Zhang et al., 2023b). All scores denote
nDCG@10; (Hyb.) denotes Hybrid retriever with ranked fusion of three retrievers: mDPR, mColBERT and BM25;
BM25, mDPR and Hybrid scores taken from (Zhang et al., 2023b); Cohere-API is used as a reranker on top of 100
BM25 results, taken from (Kamalloo et al., 2023). SWIM-X (ours) is fine-tuned on 180K synthetic training pairs.

tializing from an mT5-base checkpoint (Xue et al.,
2021) and further fine-tuning on MS MARCO, fol-
lowing a setup similar to Ni et al. (2022). Sim-
ilarly, mContriever-X and mDPR-X have been
additionally fine-tuned on training split available
for each dataset. For additional technical details
on supervised baselines, refer to the Appendix
(§E.2). As mContriever includes an additional pre-
training stage, we set the batch size to 8192, learn-
ing rate to 1e−3 and pre-train for 600K steps with
mC4 (Xue et al., 2021). For more details on pre-
training, refer to the Appendix (§E.1).

Synthetic baselines. For SWIM-X, we pre-train
the mT5-base checkpoint on mC4 (Xue et al.,
2021) for 600K steps using a contrastive loss func-
tion objective, similar to Contriever (Izacard et al.,
2022). Next, we fine-tune the pre-trained mT5-
base model on SWIM-IR with in-batch negatives
and a contrastive loss function (van den Oord et al.,
2018). During fine-tuning, we set the batch size to
4096, learning rate to 1e−3 and fine-tune between
5K to 50K training steps, depending upon the size
of the training dataset. For technical details on syn-
thetic baselines, refer to the Appendix (§E.3).

3.4 Experimental Results

XOR-Retrieve. Table 4 shows that SWIM-X
(7M), fine-tuned on 7M synthetic pairs (max. of
1M per language) outperforms the best super-
vised baseline, mContriever-X, by 7.1 points Re-
call@5kt. Without mC4 pre-training, SWIM-X
(7M) performance drops by only 1.6 points. We
also evaluate SWIM-X (500K), a limited-budget
baseline fine-tuned on 500K training pairs, which
outperforms mContriever-X by 3.6 points. Few
existing baselines outperform SWIM-X, however,
the comparison is not fair. For instance, Dr. DECR

is a multilingual ColBERT (Khattab and Zaharia,
2020) model, which is computationally expen-
sive at inference (Thakur et al., 2021). Similarly,
Google MT + DPR relies on a Google Translate
system for the translation of queries to English.
MIRACL. Table 5 shows that the SWIM-X
(180K) model is competitive on MIRACL. SWIM-
X (180K) outperforms the best zero-shot model by
6.6 points nDCG@10. However, SWIM-X under-
performs mContriever-X on MIRACL, fine-tuned
on 90K human-labeled training pairs with up to
four hard negatives available in MIRACL by 9.0
points nDCG@10. This highlights the difficulty
in the monolingual retrieval task, as models need
to rely on human-supervision for improvement.
Few existing baselines outperform SWIM-X, how-
ever the comparison is not fair. The Hybrid base-
line relies on information based on aggregation of
three models, and for Cohere-API, the underlying
model information is unknown.
XTREME-UP. Table 6 shows the results on
XTREME-UP. SWIM-X (120K) is fine-tuned
by randomly selecting 5 exemplars from the
XTREME-UP training dataset (human-labeled
queries) for all languages, whereas the MT vari-
ant reuses XOR-Retrieve prompt exemplars with
translated summaries and queries for 15 lan-
guages.11 SWIM-X (120K)MT outperforms the
best supervised baseline, mContriever-X♡ (fine-
tuned without MS MARCO) by a huge margin
of 12.6 points MRR@10, but performs minimally
worse than the MT version by 0.9 points. Interest-
11We were unable to translate our prompt exemplars for 5 lan-

guages due to language unavailability in Google Translate:
Boro (brx), Garhwali (gbm), Chattisgarhi (hne) and Mar-
wari (mwr). Manipuri (mni) is available in Google Translate
in “Meitei” script instead of the “Bengali-Assamese” script
present in the XTREME-UP dataset.



Model Avg. as bho brx gbm gom gu hi hne kn mai ml mni mr mwr or pa ps sa ta ur

Zero-shot baselines (English-only supervision)
mDPR-EN 6.3 2.6 6.4 0.4 7.2 1.3 8.6 13.3 5.2 10.4 6.4 12.3 0.2 8.9 5.8 0.4 6.0 5.6 5.2 10.2 10.0
mContriever-EN 7.9 7.9 3.2 7.8 0.3 9.7 2.2 11.1 15.2 8.2 10.6 8.6 15.6 0.4 10.7 8.5 1.1 10.3 3.3 5.7 12.9
Supervised Baselines (Cross-lingual supervision)
mDPR-X 8.4 6.7 9.9 4.8 10.0 8.7 8.8 9.1 9.4 9.0 10.0 10.5 4.8 7.8 9.6 6.9 8.6 7.4 8.5 8.1 9.1
mContriever-X 12.4 9.8 15.7 6.7 14.0 11.7 13.3 15.5 13.9 13.6 13.9 16.9 6.5 12.0 13.8 7.5 13.4 9.8 12.4 13.0 14.1
mContriever-X♡ 13.5 11.6 15.4 8.0 16.9 12.3 15.2 16.7 15.7 14.7 15.6 17.4 7.0 14.2 14.7 9.1 13.2 10.1 14.8 12.1 14.9
Synthetic Baselines (Our work)
SWIM-X (120K)MT 26.1 25.2 29.5 2.1 30.8 22.1 31.5 35.8 31.5 28.7 32.2 34.6 2.2 32.7 27.7 14.8 30.7 21.0 28.2 30.6 29.2
SWIM-X (120K) 25.2 24.4 27.7 4.3 28.3 25.4 29.4 32.4 28.8 30.1 31.8 34.4 5.1 30.7 25.7 15.8 29.6 20.6 26.1 27.9 26.1

Table 6: Experimental results for cross-lingual retrieval on XTREME-UP test (Ruder et al., 2023). (♡) denotes the
mContriever-X model fine-tuned without MS MARCO (Nguyen et al., 2016); Two variants of SWIM-X considered,
both fine-tuned on 120K synthetic data: (1) SWIM-X (120K)MT fine-tuned using Google Translate, i.e., translated
prompt exemplars for 15 languages, whereas (2) SWIM-X (120K) is fine-tuned using prompt exemplars sampled
from XTREME-UP training split for all languages.

ingly, none of the evaluated baselines perform well
on two extremely low-resource languages, Boro
(brx) and Manipuri (mni).

3.5 Effectiveness of Summarization in SAP
In our work, we utilize SAP, where we employ ex-
tractive summarization as a rationale for PaLM 2
to generate informative multilingual queries. To
evaluate the effectiveness of summarization, we as-
sess both models (i.e., contrasting with and with-
out summarization) on cross-lingual retrieval us-
ing Recall@5kt on XOR-Retrieve. We addition-
ally evaluate different PaLM 2 model sizes to ob-
serve a correlation between retrieval model perfor-
mance and changes in LLM size, i.e., model pa-
rameters. To ensure consistency, we adopt the ex-
perimental setup utilized in SWIM-X (500K) for
all models.

Our results are shown in Figure 4 (left). we infer
two insights: (i) an increase in the LLM size pro-
vides diminishing returns in terms of Recall@5kt
on XOR-Retrieve. (ii) SAP outperforms standard
prompting by at least 0.6 points consistently with
all various PaLM-2 generators on XOR-Retrieve,
with a maximum improvement of up to 3.2 points
Recall@5kt. We observe that PaLM 2 with large
sizes (sizes > S) are inherently able to generate
coherent queries, leading to diminishing improve-
ments in SAP versus standard prompting.

3.6 How much Synthetic Data to Generate?

We analyze the optimal amount of synthetic train-
ing data required for fine-tuning SWIM-X. Fig-
ure 6 depicts the relative improvement in Re-
call@5kt on XOR-Retrieve. SWIM-X perfor-
mance (gradually increasing) starts to saturate af-
ter 500K synthetic training pairs. The first obser-
vation is that with only 2K training pairs, SWIM-X
(2K) achieves 49.1 Recall@5kt on XOR-Retrieve,

already outperforming the best zero-shot (English-
only) baseline. The break-even point occurs at
200K pairs, where SWIM-X (250K) achieves 60.5,
outperforming mContriever-X, which achieves a
59.6 Recall@5kt on XOR-Retrieve.

3.7 Indo-European Language Transferability

We investigate the language transfer capabilities
of the available Indic split (Indo-European lan-
guage family) in SWIM-IR. We fine-tune individ-
ual SWIM-X models for eight selected languages
and evaluate them on XTREME-UP. From Fig-
ure 5, we observe that SWIM-X models fine-tuned
for Konkani (gom) or Hindi (hi) transfers best
on all languages in XTREME-UP (rows 3 and
4), whereas fine-tuning for Tamil (ta) transfers
worst overall (row 8). Assamese (as), Konkani
(gom), Odia (or), Pashto (pa) and Sanskrit (sa) ex-
hibit the lowest zero-shot capabilities with SWIM-
X, thereby highlighting the importance of in-
language synthetic data. Hindi (hi), Kannada (kn)
and Malayalam (ml) demonstrate good zero-shot
transfer capabilities with all Indic languages.

4 Ablation Studies
Optimal value of k-shot exemplars. We inves-
tigate the optimal value of few-shot exemplars re-
quired by PaLM 2 and the variation in the retrieval
performance on XOR-Retrieve.12 From Figure 4
(right), we observe a linear improvement in Re-
call@5kt with increase in K. Best Recall@5kt is
observed with K = 5. SAP is unable to perform
well zero-shot (i.e., K = 0) due to the complex
nature of the multilingual query generation task
which requires few-shot exemplars to understand
and generate a summary and a query.

12We limit K = 5 to fit within a context length of 4096 tokens.
For additional exemplars, PaLM 2 would need a longer con-
text length increasing the computational cost significantly.
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Figure 4: (Left) SAP (Summarize-then-Ask Prompting)
(green) versus standard prompting (red) for various
PaLM 2 model sizes. (Right) Varying K-shot prompt
exemplars. SWIM-X is fine-tuned on 500K SWIM-IR
training pairs and evaluated on XOR-Retrieve.

ByT5 tokenizer. We evaluate whether the poor
performance of SWIM-X on low-resource lan-
guages in XTREME-UP can be attributed to
low-quality language tokenization. We replicate
SWIM-X using a ByT5-base model as backbone,
which contains a language independent tokenizer
extension (Xue et al., 2022). From our results
in Table 7, ByT5 models underperform by up to
9.8 points MRR@10 on XTREME-UP, in contrast
to mT5-base. Additionally, the performance of
SWIM-X on both mni and brx does not improve
with ByT5. We leave it as future work to investi-
gate the low performance on mni and brx.

Training split query replacement. Next, we
evaluate the impact of human-generated versus
LLM-generated queries on retrieval performance
on XTREME-UP. We replace all human-generated
queries in the XTREME-UP training split with
only synthetic queries generated using PaLM 2 (S).
From Table 7, the performance drops by 2.0 points
at MRR@10. This confirms that human-generated
queries are of better quality, which correlates
with an improvement in MRR@10 on XTREME-
UP. However, SWIM-X can be fine-tuned effi-
ciently using few synthetic training pairs, by only
marginally dropping in retrieval performance.

5 Cost Comparison
Generating synthetic training data is relatively in-
expensive; however, it is not free. The cost is de-
pendent upon the length of the prompt, input, and
output generated from the LLM. The costs also lin-
early increase with each additional language pair.
At the time of writing, PaLM 2 and similar LLMs
cost about 0.0005 USD for 1000 characters in the
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Figure 5: Heatmap showing MRR@10 denot-
ing language-based transfer ability of SWIM-X
(120K) across Indo-European languages available in
XTREME-UP (Ruder et al., 2023). (ALL) denotes
SWIM-X fine-tuned on all XTREME-UP languages.

input and output text.13 Our prompts on average
contain about 8–9K characters in the prompt input
and generate about 1–2K characters in the output.
The relative performance improvement associated
with annotation cost in XOR-Retrieve is shown
in Figure 6. Generating 200K synthetic training
pairs in SWIM-IR will roughly cost $1K USD.
SWIM-X (200K) performs comparably to the best
supervised baseline (mContriever-X), trained on
15.2K human-annotated pairs, requiring roughly
14 times more, i.e., $14.1K USD to annotate, if
we pay an hourly rate of $18.50 USD per hour
for the annotator (local minimum wages is $11.50
USD/hr) following (Zhang et al., 2023b), assum-
ing an estimated annotation cost of 3.0 minutes per
example (Ruder et al., 2023).

6 Background and Related Work

The development of pre-trained multilingual LMs
has contributed toward recent progress in multilin-
gual retrieval (Asai et al., 2021a; Izacard et al.,
2022; Asai et al., 2021b; Li et al., 2022; Ruder
et al., 2023; Zhang et al., 2023b,a). Notable
baselines in this field include mDPR and mCon-
triever. mDPR (Asai et al., 2021a,b; Zhang et al.,
2023a) extends English DPR (Karpukhin et al.,
2020) to the multilingual setting, while mCon-
triever (Izacard et al., 2022) adopts an unsuper-
vised pre-training objective using the contrastive
loss function and data prepared from mC4 (Xue
et al., 2021), and is fine-tuned on MS MARCO.

Synthetic data generation. Traditionally,
docT5query (Nogueira and Lin, 2019) for query
generation has been prominent for generating syn-
thetic training data in English (Ma et al., 2021;
13PaLM 2 pricing: cloud.google.com/vertex-ai/pricing

https://cloud.google.com/vertex-ai/pricing#generative_ai_models


Model PLM Query Gen. brx mni MRR@10
1. Models with Byte-level (UTF-8) tokenizer
mContriever-X♡ ByT5 Human 1.8 1.0 2.1
SWIM-X (120K)MT ByT5 PaLM 2 2.1 4.9 13.3
SWIM-X (120K) ByT5 PaLM 2 5.1 5.8 15.4
2. Human-generated query replacement in XTREME-UP
mContriever-X♡ mT5 Human - - 13.5
SWIM-X (≈10K) mT5 PaLM 2 - - 11.5

Table 7: XTREME-UP ablation studies. First, we re-
place mT5 pre-trained model with ByT5 (Xue et al.,
2022). Next, we replace the human-generated queries
in the training dataset with PaLM-2 synthetic queries;
MRR@10 scores are macro-averaged for all 20 lan-
guages; brx denotes Boro and mni denotes Manipuri.

Thakur et al., 2021; Wang et al., 2022; Thakur
et al., 2022). Recently, using LLMs for query gen-
eration has gained interest. Bonifacio et al. (2022)
proposed InPars, where they few-shot prompt
GPT-3 (Brown et al., 2020) to generate synthetic
queries. Similarly, complementary works (Sachan
et al., 2022; Jeronymo et al., 2023; Boytsov et al.,
2024; Saad-Falcon et al., 2023; Dua et al., 2023)
all follow a similar setup as in Bonifacio et al.
(2022). Dai et al. (2023) proposed Promptaga-
tor, which studied task-dependent few-shot LLM
prompting and used the synthetic data for both re-
trieval and ranking models. Similarly, HyDE (Gao
et al., 2023) and GenRead (Yu et al., 2023) gener-
ate synthetic documents instead of queries. How-
ever, prior work has focused on English, with the
exception of HyDE. In our work, we robustly in-
vestigate how LLMs can be used for improving
multilingual retrieval systems.
Multilingual datasets. Prior work investigates
techniques to build multilingual datasets for bet-
ter fine-tuning or evaluation of dense retrieval
models. Datasets such as NeuCLIR (Lawrie
et al., 2023), MKQA (Longpre et al., 2021) have
been constructed using human annotators. Sim-
ilarly, mMARCO (Bonifacio et al., 2021) has
been generated using machine translation of MS
MARCO (Nguyen et al., 2016). However, as trans-
lated documents are not written by native speakers,
mMARCO and similar datasets suffer from arti-
facts such as “Translationese” (Clark et al., 2020).
A concurrent work, JH-POLO (Mayfield et al.,
2023), prompts GPT-3 to generate English queries
from language specific passages in NeuCLIR.

7 Discussion and Future Work

A large-scale construction of SWIM-IR is chal-
lenging. Conducting SAP-based LLM generation
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Figure 6: Recall@5kt improvement (in %) on XOR-
Retrieve versus annotation cost in USD ($) to construct
the training dataset. The amount of generated train-
ing pairs (human-generated marked in red and green;
LLM-generated marked in blue) is provided with each
marked data point in the graph.

at a large scale would require an efficient solution.
Currently, we support a total of 33 languages. Ex-
tending naively to 100 languages would lead to at
least 3 times the cost (fixed cost with every lan-
guage). Hence, naively increasing more languages
is not feasible. Instead, in the future, we can focus
on generating synthetic data for diverse languages
present within groups or clusters, based on linguis-
tic characteristics within a language family or sub-
family (Rijhwani et al., 2019) and rely on cross-
lingual transfer for the remaining languages.

8 Conclusion

In this work, we present SWIM-IR, a synthetic
multilingual retrieval training dataset with 28 mil-
lion training pairs across 33 diverse languages.
SWIM-IR allows synthetic fine-tuning of multilin-
gual dense retrieval models cheaply without hu-
man supervision. SWIM-IR is constructed us-
ing SAP, which stands for summarize-then-ask
prompting, assisting the LLM to identify the rel-
evant sections of the input passage, improving the
quality of the generated multilingual query.

Our rigorous evaluation across three multilin-
gual retrieval benchmarks assesses our dataset
quality. We find that SWIM-X, fine-tuned on
SWIM-IR (keeping model training parameters un-
changed) outperforms the best supervised cross-
lingual baseline by 7.1 points Recall@5kt on
XOR-Retrieve and 11.7 points MRR@10 on
XTREME-UP, while remaining competitive in
monolingual retrieval on MIRACL.



9 Limitations of SWIM-IR

SWIM-IR, like any other dataset, is not perfect and
has limitations. These limitations do not directly
affect the downstream multilingual retrieval task,
where dense retrieval models learn how to match
relevant passages to queries. The dataset has been
created for the “sole” purpose of training multilin-
gual retrieval models. We describe below a few
noted limitations:

1. Decontextualization. PaLM 2 captures the
salient information from the paragraph, but can
generate the query in a reduced context, which can-
not be answered without the Wikipedia paragraph.

2. Code-switching. PaLM 2 can occasionally
generate a code-switched query with words com-
bined from English and the target language. Code-
switching is more frequently observed for cross-
lingual generation in low-resource languages.

3. Passage quality and length. A good qual-
ity passage contains relevant information about a
topic, which PaLM 2 uses to generate a synthetic
query. However, if the passage is really short with
little or no information, or contains noisy informa-
tion, this can likely generate a subpar query.

4. Factual inconsistencies in LLM generation.
LLMs have been found to generate text lacking
sufficient grounding to knowledge sources (Dziri
et al., 2022; Ji et al., 2023), thereby posing risks
of misinformation and hallucination in their gener-
ated outputs (Maynez et al., 2020; Raunak et al.,
2021; Muller et al., 2023). Queries in SWIM-
IR are relevant for the input passage, but are not
human-verified, thereby queries may contain fac-
tual inconsistencies. We leave it as future work
to investigate techniques to improve factual con-
sistency of generated queries (Sun et al., 2021;
Huang et al., 2023).
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A Appendix

The following supplementary sections in SWIM-
IR are arranged as follows:

• Appendix B provides information on the
SWIM-IR dataset release.

• Appendix C provides the additional material
with SWIM-IR, including the data card, ex-
amples, and prompts.

• Appendix D provides details on SWIM-IR
content filtration.

• Appendix E provides information in detail on
hyperparameter tuning and training method-
ology for baseline models, including multilin-
gual pre-training, synthetic fine-tuning, and
passage sampling strategies.

• Appendix F provides statistics for three mul-
tilingual retrieval evaluation datasets: XOR-
Retrieve, MIRACL, and XTREME-UP.

• Appendix G contains additional experimental
results on XOR-Retrieve and MIRACL.

B Details on SWIM-IR Dataset Release

Dataset release format. The SWIM-IR dataset
will be released and available in multiple for-
mats. Officially, the dataset is released within
the Google Cloud Storage (GCS) cloud storage
bucket.14 Later, for longer term preservation,
the dataset will be maintained through a Tensor-
Flow Dataset (TFDS). To enable a wider audience
within the research community, we plan to release
an official copy of SWIM-IR as a Hugging Face
dataset (Lhoest et al., 2021).

High quality check. The SWIM-IR dataset has
undergone a high-quality check and a thorough
review internally at Google to avoid inaccurate
or misleading conclusions drawn from the dataset.
High-quality checks are integral to the scientific
process to enable researchers to address errors, in-
consistencies and identify potential sources of bias
within datasets (Pushkarna et al., 2022). This en-
ables a robust and trustworthy scientific analysis
within the community.

Long term preservation. SWIM-IR will be
available for a long time by continually updat-
ing the Tensorflow dataset (TFDS) and Hugging
Face dataset. The authors will be responsible for
maintaining the dataset and extending the work in
the future to support more languages (Joshi et al.,

14storage.googleapis.com/gresearch/swim-
ir/swim_ir_v1.tar.gz

2020). Another useful feature is (EN→L) cross-
language retrieval setting, i.e., English query re-
trieves language-specific passages within a corpus.

Licensing. The SWIM-IR corpora is based
on multilingual Wikipedia. Therefore for li-
censing SWIM-IR, we follow the same license
as Wikipedia: Creative Commons Attribution-
ShareAlike 4.0 Unported License (CC BY-SA
4.0).15 The license allows both researchers and in-
dustry alike to access the SWIM-IR dataset, copy,
and redistribute it for future work.

C SWIM-IR Extra Material

C.1 SWIM-IR Data Card

We release the data card associated with the
SWIM-IR. The data card was generated using
the template provided by the Data Cards Play-
book (Pushkarna et al., 2022). It has been for-
matted using Markdown.16 The SWIM-IR data
card is provided along with our dataset release
on the GitHub repository: https://github.com/
google-research-datasets/SWIM-IR.

C.2 SWIM-IR Dataset Statistics

The languages covered and the amount of train-
ing pairs available in SWIM-IR are provided in Ta-
ble 8. The majority of the training pairs (sampled
for a maximum of 1M per language pair) are pro-
vided for 18 languages in MIRACL, which overlap
with the 7 languages in XOR-Retrieve. An addi-
tional 100K training pairs come from the rest of
the 15 Indo-European languages from XTREME-
UP. Two examples from SWIM-IR for each task,
cross-lingual and monolingual retrieval, are pro-
vided in Figure 8. The cross-lingual example is
from Chinese (zh) and the monolingual is from
Spanish (es).

Each SWIM-IR training data point has six asso-
ciated text fields. We describe each field below: (i)
_id: denotes the unique identifier of the training
pair. (ii) title: denotes the title of the Wikipedia
article. (iii) text: denotes the passage extracted
from the Wikipedia article. (iv) query: denotes
the synthetic multilingual query generated using
PaLM 2 (Anil et al., 2023). (v) lang: denotes the
target language in which the query was generated.
(vi) code: denotes the ISO code of the generated
query language.
15https://creativecommons.org/licenses/by-sa/4.0
16The Markdown format and the template are available here:

https://github.com/pair-code/datacardsplaybook

http://storage.googleapis.com/gresearch/SWIM-IR/swim_ir_v1.tar.gz
http://storage.googleapis.com/gresearch/SWIM-IR/swim_ir_v1.tar.gz
https://github.com/google-research-datasets/SWIM-IR
https://github.com/google-research-datasets/SWIM-IR
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/pair-code/datacardsplaybook


C.3 SWIM-IR Prompts

All prompts and their templates (across all 33 lan-
guages) used to develop SWIM-IR are available in
the GitHub repository.17 We provide a few individ-
ual prompt examples for all three datasets in the
Appendix: (1) XOR-Retrieve (English passage;
synthetic Bengali query) in Figure 9, (2) MIRACL
(Chinese passage; synthetic Chinese query) in Fig-
ure 10, and (3) XTREME-UP (English passage;
synthetic Hindi query) in Figure 11.

D Content Filtration
LLMs have been shown to generate undesirable
content, particularly when primed with material
aimed at eliciting negative patterns or associa-
tions from the model’s training data (Gehman
et al., 2020; Bender et al., 2021). Initially, we ex-
pected that the sampled Wikipedia passages would
predominantly contain safe material suitable for
prompting LLMs. However, after examination,
we discovered that between 6–10% of the pairs
contained sensitive subjects and adult content (i.e.,
weapons; violence and abuse; accidents and disas-
ters; death and tragedy; war and conflict). To ad-
dress this issue, we used the Google Cloud Natu-
ral Language content classification categories18 to
identify and remove pairs where either the original
sampled passage or the resulting LLM generated
query has a content classification of either /Adult
or any of the /Sensitive Subjects labels.

E Additional Technical Details

E.1 mContriever Pre-training

In the original implementation of mContriever
(Izacard et al., 2022), the authors initialized the
model using the mBERT (Devlin et al., 2019) pre-
trained language model (PLM). Subsequently, the
model was jointly pre-trained on 29 languages cov-
ering the CCNet dataset (Wenzek et al., 2020) with
a contrastive pre-training objective.

In our adaptation of mContriever, we initialize
using the mT5-base model checkpoint (Xue et al.,
2021). Next, we jointly pre-train the model on 101
languages19 available in mC4 dataset (Xue et al.,
2021). For each mC4 document, we sample two
random non-overlapping texts with a maximum
text span size of 256 tokens. Similar to the mT5

17https://github.com/google-research-datasets/SWIM-IR
18cloud.google.com/natural-language/docs/categories
19The list of all 101 languages in mC4 can be found at:

www.tensorflow.org/datasets/catalog/c4

pre-training objective (Xue et al., 2021), examples
were not uniformly sampled over languages; in-
stead, the probability of selecting a training sam-
ple from a specific language is directly propor-
tional to the amount of training data available in
the mC4 dataset. We randomly sample a maxi-
mum of 20K samples per language and use them
as a validation subset.

We optimize our mContriever model with the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 1e−3, batch size of 8192,
and for 600K pre-training steps. During the first
500K pre-training steps, we use a language-mixed
training objective, where a single training batch
can contain examples across multiple languages.
For the subsequent 100K training steps, we use
a language-unmixed training objective, where a
single training batch contains all examples from
only a single language, i.e., no mixing of different
language pairs within a training batch. We inter-
nally conducted a brief evaluation of the mCon-
triever pre-trainining strategies using language-
mixing (500K) and with both language-mixing
and unmixing (600K) checkpoints. Notably on
XOR-Retrieve, we observed a significant perfor-
mance improvement with the additional language-
unmixed pre-training, resulting in an improvement
of 7.3 points Recall@5kt.

E.2 Supervised Baselines
XOR-Retrieve. For the zero-shot baseline model,
we fine-tune on the English-only MS MARCO
(Nguyen et al., 2016) dataset using our base initial-
ization model, mT5 (Xue et al., 2021). We use in-
batch negatives, AdamW optimizer (Loshchilov
and Hutter, 2019) and with a learning rate of 1e−3.
The query sequence length is set to a maximum se-
quence length of 64 tokens, whereas the document
is limited to a maximum sequence length of 256
tokens. On MS MARCO, models are fine-tuned
with a batch size of 4096 and for an additional 50K
training steps.

For our supervised baselines, we fine-tune
on the XOR-Retrieve training dataset containing
15,250 training pairs. Each training pair in XOR-
Retrieve is accompanied by one hard negative
(Asai et al., 2021a). We fine-tune our baseline
models on XOR-Retrieve using triplets containing
the query, relevant passage and a single hard neg-
ative. We use the AdamW optimizer (Loshchilov
and Hutter, 2019), a learning rate of 1e−3, a batch
size of 4096 and fine-tune the model for 15K train-

https://github.com/google-research-datasets/SWIM-IR
https://cloud.google.com/natural-language/docs/categories
https://www.tensorflow.org/datasets/catalog/c4#c4multilingual
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Figure 7: Training batch size ablation of SWIM-X
(500K) on XOR-Retrieve (Asai et al., 2021a). The best
Recall@5kt is achieved with 4096 training batch size.
To avoid overfitting, we fine-tune all SWIM-X variants
on 500K SWIM-IR training pairs with decreasing train-
ing steps of {40K, 40K, 30K, 30K, 20K, 20K, 15K} for
increasing batch sizes of {128, 256, 512, 1024, 2048,
4096, 8192} respectively.

ing steps.

MIRACL. For the zero-shot baseline model, we
first fine-tune on the MS MARCO (Nguyen et al.,
2016) dataset. We use the same fine-tuning setup
as described for XOR-Retrieve. For monolingual
supervised models, we use the MIRACL training
data. MIRACL authors provides between one to
nine hard negatives for each training query. We
randomly sample up to a maximum of four hard
negatives for each query and use the AdamW opti-
mizer (Loshchilov and Hutter, 2019), learning rate
of 1e−3, a batch size of 4096 and fine-tune the
model for 15K training steps.

XTREME-UP. For the zero-shot baseline model,
we fine-tune on the MS MARCO (Nguyen et al.,
2016) dataset. For the supervised baselines, we
use the XTREME-UP training data containing
13,270 training pairs and fine-tune with only in-
batch negatives (i.e., no hard negatives). We use
the AdamW optimizer (Loshchilov and Hutter,
2019), a learning rate of 1e−3, a batch size of 1024,
and fine-tune the model for 5K training steps.

E.3 Synthetic Baselines
We fine-tune all SWIM-X models using in-batch
negatives (no hard negatives), AdamW optimizer
(Loshchilov and Hutter, 2019) and with a learning
rate of 1e−3. The pre-trained language model for
SWIM-X is the mT5-base model with 580M pa-
rameters (Xue et al., 2021). The batch size and

the training steps varies for each dataset. An abla-
tion for batch size is provided in Figure 7. Train-
ing data is evenly distributed across all languages
present. For example, if there are 100K pairs
with 5 different languages, each language contains
around 20K training pairs.

XOR-Retrieve. SWIM-X is fine-tuned with a
batch size of 4096 and with a maximum of 50K
training steps on SWIM-IR cross-lingual pairs.
For the 500K training pairs, we fine-tune for 20K
steps, and for the maximum of 7M pairs, we fine-
tune for 50K training steps. The training pairs
within a single batch include language-mixing, i.e.,
one or more language-specific training pairs are
sampled within a single training batch.

MIRACL. SWIM-X is fine-tuned for a batch-
size of 4096 and for a maximum of 15K train-
ing steps on SWIM-IR monolingual pairs. As
shown in (Roy et al., 2020; Zhang et al., 2023a),
language-unmixed training setup is shown to work
well for monolingual retrieval. Following prior
work, SWIM-X training pairs include language un-
mixing, i.e., all pairs are from a single language.
The examples are uniformly sampled across all
languages, i.e., probability that a training sample
comes from a specific language is equal for all lan-
guages, unlike during mC4 pre-training.

XTREME-UP. SWIM-X is fine-tuned for a batch
size of 1024 and for a maximum of 15K train-
ing steps on SWIM-IR cross-lingual (Indic) pairs.
Similar to XOR-Retrieve, the training pairs in-
clude language-mixing within a single batch dur-
ing SWIM-X fine-tuning.

E.4 Stratified Sampling in SWIM-IR

In our work, we use a stratified sampling technique
to select a subset of passages from the Wikipedia
corpus, aiming for a relatively uniform distri-
bution of training samples across all languages.
Our Wikipedia corpus contains entities which are
sorted alphabetically (A-Z). We then compute in-
clusion threshold Ith, which is defined as Ith =
Dsample/Dtotal, where (Dsample) is number of
passages required to sample and (Dtotal) is the to-
tal numbers of passages in corpus. Next, for each
passage (pi) in the corpus, we randomly generate
an inclusion probability p̂i ∈ [0, 1]. We select the
passage (pi) if pi ≤ Ith. This approach ensures a
uniform sampling of passages with Wikipedia en-



tities between all letters (A-Z).20

F Evaluation Dataset Information

We evaluate on three multilingual retrieval bench-
marks: (i) XOR-Retrieve (Asai et al., 2021a),
(ii) MIRACL (Zhang et al., 2023b) and (iii)
XTREME-UP (Ruder et al., 2023). We excluded
NeuCLIR (Lawrie et al., 2023) from our evalua-
tion as it contained a fewer subset of languages
namely, Chinese (zh), Farsi (fa) and Russian (ru).
Although MKQA (Longpre et al., 2021) contained
a wider variety of languages, it is primarily used
for question-answering (QA) rather than multi-
lingual retrieval. All three selected evaluation
datasets contain a training split. Only XTREME-
UP has released their test split publicly, which we
use for evaluation in the paper. However, for both
XOR-Retrieve and MIRACL, we evaluate on the
development split.

XOR-Retrieve (Asai et al., 2021a) is a cross-
lingual open retrieval training and evaluation task
within TYDI-QA (Clark et al., 2020). XOR-
Retrieve contains 15K human annotated relevant
passage-query pairs in the training set with one
hard negative and 2K passage-answer pairs in the
dev set. The corpus C contains 18.2M passages
with a maximum of 100 word tokens from the En-
glish Wikipedia. The queries are multilingual and
cover seven languages. We evaluate our models
using recall at m kilo-tokens, i.e., Recall@mkt,
which computes the fraction of queries for which
the minimal answer is contained within the top m
thousand tokens of the retrieved passages. Follow-
ing prior work in Asai et al. (2021a), we evaluate
our models at Recall@5kt and Recall@2kt.

MIRACL (Zhang et al., 2023b) is a monolin-
gual open retrieval evaluation task containing 18
languages. MIRACL was developed on top of
Mr. TYDI (Zhang et al., 2021), and covers more
languages and provides denser judgments by hu-
man annotators. The test set is not publicly re-
leased, hence in this paper we evaluate using the
dev set. The training set contains 88,288 pairs,
with the exception of Yoruba (yo) and German
(de) which do not have any training data avail-
able. The authors also provide labeled hard nega-
tives for the training query-passage pairs. The dev
set contains around 13,495 query-passage pairs.
The corpus C in MIRACL are language-specific

20All Wikipedia entities starting with a non-alphabet are in-
cluded in the beginning of the Wikipedia corpus.

Wikipedia articles with various sizes starting from
smallest, Yoruba (yo) with 49K passages, till the
largest, English (en) with 39.2M passages. Fol-
lowing prior work in Zhang et al. (2023b) and Ka-
malloo et al. (2023), we evaluate our models at
nDCG@10 and Recall@100.

XTREME-UP Ruder et al. (2023) contains di-
verse information-access and user-centric tasks fo-
cused on under-represented languages. In our
work, we evaluate a cross-lingual retrieval task
containing 5,280 query-passage pairs in the train-
ing set. The corpus C contains 112,426 passages
sampled from TYDI-QA (Clark et al., 2020). The
test set contains 10,705 query-passage pairs for
evaluation. The cross-language retrieval for the
question-answering (QA) task contains 20 under-
represented Indic languages. Following prior work
in Ruder et al. (2023), we evaluate our models at
MRR@10.

G Additional Results

XOR-Retrieve. In Table 9, we report the Re-
call@2kt scores across all multilingual retrievers
on XOR-Retrieve. We find similar trends for im-
provement, SWIM-X (7M) outperforms the best
supervised model, mContriever-X, by 3.9 points
at Recall@2kt. The SWIM-X (7M) without mC4
pre-training is a strong baseline outperforming
SWIM-X (7M) with mC4 pre-training on 4 out of
the 7 languages evaluated in XOR-Retrieve.

MIRACL. In Table 10, we report the Recall@100
scores across all multilingual retrievers on MIR-
ACL. mContriever-X achieves the highest Re-
call@100 score of 86.5, SWIM-X on the other
hand achieves 78.9 at Recall@100, which is com-
petitive and outperforms both the zero-shot base-
lines, i.e., mDPR-EN and mContriever-EN. For
Yoruba, Our SWIM-X outperforms the supervised
mContriever-X which shows the importance of
synthetic training data for low-resource languages,
as the MIRACL supervised training dataset does
not contain training pairs in Yoruba (i.e., no
human-labeled training pairs).



Cross-Lingual (18) Monolingual (18) Cross-Lingual (15)
Q-P Lang. # Train Pairs Q-P Lang. # Train Pairs Q-P Lang. # Train Pairs

MIRACL (Zhang et al., 2023b) XTREME-UP (Ruder et al., 2023)
ar-en 901,363 ar-ar 890,389 as-en 5,899
bn-en 909,748 bn-bn 257,327 bho-en 5,763
de-en 909,145 de-de 943,546 gom-en 5,755
en-en - en-en 936,481 gu-en 5,870
es-en 905,771 es-es 947,340 kn-en 5,763
fa-en 910,295 fa-fa 973,409 mai-en 5,768
fi-en 906,429 fi-fi 967,139 ml-en 5,907
fr-en 911,694 fr-fr 977,900 mni-en 5,604
hi-en 919,729 hi-hi 466,272 mr-en 5,977
id-en 907,826 id-id 837,459 or-en 5,837
ja-en 906,862 ja-ja 893,520 pa-en 5,840
ko-en 905,669 ko-ko 941,459 ps-en 5,694
ru-en 904,933 ru-ru 915,693 sa-en 5,779
sw-en 905,242 sw-sw 123,099 ta-en 5,930
te-en 902,190 te-te 220,431 ur-en 5,816
th-en 914,610 th-th 451,540
yo-en 902,467 yo-yo 43,211
zh-en 921,701 zh-zh 946,757

Overall Training Pairs = 28,265,848

Table 8: Dataset Statistics of SWIM-IR across both cross-lingual and monolingual settings; (Q-P Lang.) denotes
the language code of the query-passage training pair in SWIM-IR; (# Train Pairs) denotes the count of the relevant
training pairs containing the synthetic query and original passage pair.

Title: Menlo Park, New Jersey
Text: Menlo Park is an unincorporated community located within Edison Township in Middlesex County, New Jersey,
United States. In 1876, Thomas Edison set up his home and research laboratory in Menlo Park, which at the time
was the site of an unsuccessful real estate development named after the town of Menlo Park, California. While
there, he earned the nickname "the Wizard of Menlo Park". The Menlo Park lab was significant in that it was one of
the first laboratories to pursue practical commercial applications of research. It was in his Menlo Park laboratory that
Thomas Edison invented the phonograph and developed it.

Passage (ID: 10770836) from English Wikipedia (en)

托马斯·爱迪生在哪里发明了留声机？

Translation: (Where did Thomas
Edison invent the phonograph?)

LLM-generated Query in Chinese (zh)

Title: En la tierra del Guarán
Text: Es considerada una de las primeras realizaciones sonoras de la región y uno de los primeros antecedentes
de cooperación entre dos países de la zona (Paraguay y Argentina) para la realización de un filme.

Translation: (In the land of Guarán: It is considered one of the first sound productions in the region and one of the
first precedents of cooperation between two countries in the area (Paraguay and Argentina) for the making of a film.)

¿Qué película es una de las primeras
realizaciones sonoras de la región?

Translation: (What film is one of the first
sound films in the region?)

LLM-generated Query in Spanish (es)

Passage (ID:spanish_5170543#3) from Spanish Wikipedia (es)

(a) Cross-lingual Training Pair in SWIM-IR

(b) Monolingual Training Pair in SWIM-IR

Figure 8: Dataset examples showing both (a) cross-lingual and (b) monolingual training pairs in the SWIM-IR
dataset. The passage is selected from English Wikipedia, and PaLM 2 generates the query. A detailed description
of all the dataset column headers are provided in Appendix (§C.2). All translations in the figure above have been
provided using Google Translate (translate.google.com) for illustration purposes.

https://translate.google.com/


Model PLM PT Finetune Recall@2kt
(Datasets) Avg. Ar Bn Fi Ja Ko Ru Te

Existing Supervised Baselines (Prior work)
Dr. DECR (Li et al., 2022) XLM-R WikiM NQ + XOR∗ 66.0 – – – – – – –
mDPR (Asai et al., 2021a) mBERT — XOR 40.5 38.8 48.4 52.5 26.6 44.2 33.3 39.9
mBERT + xQG (Zhuang et al., 2023) mBERT — XOR 46.2 42.4 54.9 54.1 33.6 52.3 33.8 52.5

Google MT + DPR (Asai et al., 2021a) BERT — NQ 62.2 62.5 74.7 57.3 55.6 60.0 52.7 72.3
OPUS MT + DPR (Asai et al., 2021a) BERT — NQ 42.7 43.4 53.9 55.1 40.2 50.5 30.8 20.2
Zero-shot baselines (English-only supervision)
mContriever mT5 mC4 — 29.9 27.2 23.0 35.0 27.0 27.7 35.0 34.0
mDPR-EN mT5 — MS MARCO 30.6 26.2 26.0 37.9 32.8 24.6 34.6 32.4
mContriever-EN mT5 mC4 MS MARCO 33.8 27.8 24.3 42.4 29.9 31.2 40.5 40.3
Supervised Baselines (Cross-lingual supervision)
mDPR-X mT5 — XOR 43.6 43.7 50.0 44.6 36.1 41.1 35.9 54.2
mContriever-X mT5 mC4 XOR 46.6 40.1 62.5 47.1 38.2 44.2 38.4 55.5
mDPR-X mT5 — MS MARCO + XOR 49.5 46.0 63.8 49.0 39.0 48.4 43.9 56.3
mContriever-X mT5 mC4 MS MARCO + XOR 53.0 47.6 65.1 51.6 47.3 50.2 44.3 65.1
Synthetic Baselines (Our work)
SWIM-X (500K) mT5 — SWIM-IR 49.2 46.3 57.2 49.0 42.7 45.6 44.7 58.8
SWIM-X (500K) mT5 mC4 SWIM-IR 53.3 46.6 61.8 51.9 46.5 49.1 55.3 61.8
SWIM-X (7M) mT5 — SWIM-IR 56.6 50.8 65.1 56.1 48.1 54.0 55.7 66.4
SWIM-X (7M) mT5 mC4 SWIM-IR 56.9 53.4 67.8 55.1 49.4 52.6 55.3 64.7

Table 9: Experimental results showing Recall@2kt for cross-lingual retrieval on XOR-Retrieve dev (Asai et al.,
2021a); (PLM) denotes the pre-trained language model; (PT) denotes the pre-training dataset; (∗) Dr.DECR is
fine-tuned in a complex training setup across more datasets (§3.3); WikiM denotes WikiMatrix (Schwenk et al.,
2021); XOR denotes XOR-Retrieve; SWIM-X (ours) is fine-tuned on 500K and 7M synthetic data.

Model Avg. ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

Existing Supervised Baselines (Prior work)
BM25 77.2 88.9 90.9 81.9 70.2 73.1 89.1 65.3 86.8 90.4 80.5 78.3 66.1 70.1 83.1 88.7 56.0 57.2 73.3
mDPR 79.0 84.1 81.9 76.8 86.4 89.8 78.8 91.5 77.6 57.3 82.5 73.7 79.7 61.6 76.2 67.8 94.4 89.8 79.5
Hybrid 88.0 94.1 93.2 88.2 94.8 93.7 89.5 96.5 91.2 76.8 90.4 90.0 87.4 72.5 85.7 82.3 95.9 88.9 80.7
Cohere-API 76.9 85.4 85.6 74.6 71.7 77.1 80.9 81.6 72.4 68.3 81.6 77.1 76.7 66.6 89.8 86.9 76.9 72.5 57.6
Zero-shot baselines (English-only supervision)
mDPR-EN 76.9 85.5 85.9 72.4 66.8 79.7 86.0 71.4 74.2 67.0 80.1 77.1 77.4 80.2 91.9 84.8 68.5 70.9 58.6
mContriever-EN 76.6 73.5 80.8 52.1 49.5 61.7 66.0 51.8 50.3 63.5 65.6 56.3 58.9 73.5 85.9 76.6 58.2 36.3 30.2
Supervised Baselines (Monolingual supervision)
mDPR-X 60.6 73.5 80.8 52.1 49.5 61.7 66.0 51.8 50.3 63.5 65.6 56.3 58.9 73.5 85.9 76.6 58.2 36.3 30.2
mContriever-X 86.5 92.0 95.3 80.6 78.8 84.0 93.1 86.0 82.1 83.7 89.5 87.7 86.7 93.3 96.7 94.3 85.9 79.3 68.8
Synthetic Baselines (Our work)
SWIM-X (180K) 78.9 89.2 87.8 72.9 70.0 76.3 91.6 75.8 72.5 74.3 77.6 76.8 77.9 87.8 84.9 92.9 69.9 72.4 69.3

Table 10: Experimental results for monolingual retrieval on MIRACL dev (Zhang et al., 2023b). All scores denote
Recall@100; Hybrid denotes a hybrid retriever with ranked fusion of three retrievers: mDPR, mColBERT and
BM25; BM25, mDPR and Hybrid scores (Zhang et al., 2023b); Cohere-API is used as a reranker on top of 100
BM25 results (Kamalloo et al., 2023). SWIM-X is fine-tuned on 180K synthetic data.



Article: {Input Wikipedia Article in English}
Summary:

5-shot Summarize-then-Ask Prompting for XOR-Retrieve

Read the following article and write a factual summary. Your summary will act as a surrogate for asking a question
based on the article. Finally, translate the question to Bengali.

Article: Long Lost Family is a BAFTA award winning British television series that has aired on ITV since 21 April 2011.
The programme, which is presented by Davina McCall and Nicky Campbell, aims to reunite close relatives after years
of separation. It is made by the production company Wall to Wall. "Long Lost Family" is based on the Dutch series
"Spoorloos" (), airing on NPO 1 since February 1990 and it is made by KRO-NCRV. Presented by Davina McCall and
Nicky Campbell, the series offers a last chance for people who are desperate to find long lost relatives.
Summary:  Long Lost Family is a BAFTA award winning British television series aired since 2011. The series aim to
reunite close relatives after years of seperation which is presented by Davina McCall and Nicky Campbell.
Question [Bengali]:  ি��টশ �টিলিভশন িসিরজ লং ল� ফ�ািমিল �কান পুর�ার �জেতেছ?

Article: Muscular activity accounts for much of the body's energy consumption. All muscle cells produce adenosine
triphosphate (ATP) molecules which are used to power the movement of the myosin heads. Muscles have a short-term
store of energy in the form of creatine phosphate which is generated from ATP and can regenerate ATP when needed
with creatine kinase. Muscles also keep a storage form of glucose in the form of glycogen. Glycogen can be rapidly
converted to glucose when energy is required for sustained, powerful contractions. Within the voluntary skeletal
muscles, the glucose molecule can be metabolized anaerobically in a process.
Summary:  All muscle cells produce adenosine triphosphate (ATP) molecules for movement of myosin heads. A short
term store of energy is generated from ATP in the form of cratine phosphate and can regenerate ATP when needed
with creatine kinase.
Question [Bengali]: কীভােব �পশী �কাষ�িল মােয়ািসন মাথার নড়াচড়ার জন� শ��েক শ�� �দয়?

Article: Łęczna is a town in eastern Poland with 19,780 inhabitants (2014), situated in Lublin Voivodeship. It is the seat
of Łęczna County and the smaller administrative district of Gmina Łęczna. The town is located in northeastern corner
of historic province of Lesser Poland. Łęczna tops among the hills of the Lublin Upland, at the confluence of two rivers
—the Wieprz, and the Świnka. On December 31, 2010, the population of the town was 20,706. Łęczna does not have
a rail station, the town has been placed on a national Route 82 from Lublin to Włodawa. And shall be considered as a
Summary: Łęczna is a town in eastern Poland with 19,780 inhabitants. It is a hill located in the Lublin Upland, at the
confluence of two rivers - Wieprz and Świnka. It is a road hub, and has no rail station.
Question [Bengali]:  িলেচনা �পাল�াে�র �কান দু�ট নদীর স�ম�েল অবি�ত?

Article: The µ-law algorithm (sometimes written "mu-law", often approximated as "u-law") is a companding algorithm,
primarily used in 8-bit PCM digital telecommunication systems in North America and Japan. It is one of two versions of
the G.711 standard from ITU-T, the other version being the similar A-law, used in regions where digital
telecommunication signals are carried on E-1 circuits, e.g. Europe. Companding algorithms reduce the dynamic range
of an audio signal. In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission;
in the digital domain, it can reduce the quantization error (hence increasing signal to quantization noise ratio).
Summary: The µ-law algorithm is a companding algorithm, which is used to reduce the dynamic range of audio signals.
In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission.
Question [Bengali]: µ-আইন অ�ালগিরদম কীভােব অ�ানালগ িসে�েম সং�মণেক �ভািবত কের?

Article: The 1960s brought anime to television and in America. The first anime film to be broadcast was "Three Tales" in
1960. The following year saw the premiere of Japan's first animated television series, "Instant History", although it did
not consist entirely of animation. Osamu Tezuka's "Tetsuwan Atom" ("Astro Boy") is often miscredited as the first anime
television series, premiering on January 1, 1963. "Astro Boy" was highly influential to other anime in the 1960s, and
was followed by a large number of anime about robots or space.
Summary: First anime movie broadcast on TV was 'Three Tales' in 1960. First anime TV series was 'Instant History' in
1961. 'Astro Boy' first aired in 1963 was a highly influential anime about robots or space. 
Question [Bengali]:  ১৯৬০ সােল �টিভেত স�চািরত �থম অ�ািনেম ছিব �কান�ট?

Article: {Input Wikipedia Article in English}
Summary:

Figure 9: 5-shot SAP (Summarize-then-Ask Prompting) for XOR-Retrieve (Asai et al., 2021a) is shown for Bengali
(bn). There are five exemplars (5-shot) in our cross-lingual query generation task. The passages are randomly
selected from the XOR-Retrieve Wikipedia corpus. A summary and a query for all above exemplars is manually
written in English by the authors. Finally, the English written query is translated to Bengali (bn) for all above
exemplars using Google Translate (translate.google.com).

https://translate.google.com/


3-shot Summarize-then-Ask Prompting for MIRACL

Read the following article in Chinese and write a factual summary in Chinese. Your summary will act as a surrogate for
asking a question in Chinese based on the article.

Article: 四川各地小吃通常也被看作是川菜的组成部分。由于重庆地区小吃相对较少，除重庆麻辣小面外，川菜小吃主要以成都
小吃为主。 主要有担担面、川北凉粉、麻辣小面、酸辣麵、 酸辣粉、叶儿粑、酸辣豆花、三合泥、红油抄手等以及用创始人姓
氏命名的赖汤圆、龙抄手、钟水饺、吴抄手等。 甜品方面，以原产四川眉山的冰粉和四川宜宾长宁县的凉糕最有名。
Summary: 四川美食种类繁多，小吃也非常有名，主要有担担面、川北凉粉、麻辣小面、酸辣粉、叶儿粑、酸辣豆花、
三合泥、红油抄手、赖汤圆、龙抄手、钟水饺、吴抄手等。甜品方面，以原产四川眉山的冰粉和四川宜宾长宁县的凉糕
最有名。
Question [Chinese]: 四川美食有哪些？

Article: 獅子座流星雨 (Leonids[ˈli.əˌnɪdz] \"lee-uhnids\")是與周期大約33年的坦普爾·塔特爾彗星有關的一個流星雨。獅子座流
星雨的得名是因為這個流星雨輻射點的位置在獅子座。在2009年，這個流星雨的尖峰時間在11月17日（世界時），每小時的數
量可能高達500顆，尚不足以成為流星暴（每小時超過1,000顆流星的大流星雨）。
Summary:  上一次狮子座流星雨发生在2009年11月17日。狮子座流星雨是与周期大约33年的坦普尔·塔特尔彗星有关的
一个流星雨。狮子座流星雨的得名是因为这个流星雨辐射点的位置在狮子座。
Question [Chinese]: 上一次狮子座流星雨发生在什么时间？

Article: {Input Wikipedia Article in Chinese}
Summary:

Article: 清华大学（，縮寫：），简称清华，舊称清华学堂、游美肄业馆、清华学校、國立清華大學，是一所位于中华人民共和
国北京市海淀区清华园的公立大学。始建于1911年，因北京西北郊清华园而得名。初为清政府利用美国退还的部分庚子赔款所
建留美预备学校“遊美学务处”及附设“肄业馆”，於1925年始设大学部。抗日战争爆发后，清华与北大、南开南迁长沙，组建国立
长沙临时大学。1938年再迁昆明，易名国立西南联合大学。1946年迁回清华园复校，拥有文、法、理、工、农等5个学院。
1949年中华人民共和国成立后，国立清华大学归属中央人民政府教育部，更名“清华大学”；而原国立清华大学校长梅貽琦于
1955年在台湾新竹复校，仍沿用原名。
Summary: 清华大学始建于1911年，因北京西北郊清华园而得名。初为清政府利用美国退还的部分庚子赔款所建留美预
备学校“遊美学务处”及附设“肄业馆”。
Question [Chinese]:  清华大学什么时候成立的？

Figure 10: 3-shot SAP (Summarize-then-Ask Prompting) for MIRACL (Zhang et al., 2023b) is shown for Chinese
(zh). There are three exemplars (3-shot) in our monolingual query generation task. The query-passage pairs are
randomly selected from MIRACL training set. Finally, the summary for all above exemplars is automatically
generated in Chinese (zh) using Google Bard (bard.google.com).

https://bard.google.com/


Article: {Input Wikipedia Article in English}
Summary:

5-shot Summarize-then-Ask Prompting for XTREME-UP

Read the following article and write a factual summary. Your summary will act as a surrogate for asking a question
based on the article. Finally, translate the question to Hindi.

Article: Long Lost Family is a BAFTA award winning British television series that has aired on ITV since 21 April 2011.
The programme, which is presented by Davina McCall and Nicky Campbell, aims to reunite close relatives after years
of separation. It is made by the production company Wall to Wall. "Long Lost Family" is based on the Dutch series
"Spoorloos" (), airing on NPO 1 since February 1990 and it is made by KRO-NCRV. Presented by Davina McCall and
Nicky Campbell, the series offers a last chance for people who are desperate to find long lost relatives.
Summary:  Long Lost Family is a BAFTA award winning British television series aired since 2011. The series aim to
reunite close relatives after years of seperation which is presented by Davina McCall and Nicky Campbell.
Question [Hindi]:  ि�िटश टेलीिवजन लॉ�ग लॉ� फैिमली ने कौन सा पुर�ार जीता?

Article: Muscular activity accounts for much of the body's energy consumption. All muscle cells produce adenosine
triphosphate (ATP) molecules which are used to power the movement of the myosin heads. Muscles have a short-term
store of energy in the form of creatine phosphate which is generated from ATP and can regenerate ATP when needed
with creatine kinase. Muscles also keep a storage form of glucose in the form of glycogen. Glycogen can be rapidly
converted to glucose when energy is required for sustained, powerful contractions. Within the voluntary skeletal
muscles, the glucose molecule can be metabolized anaerobically in a process.
Summary:  All muscle cells produce adenosine triphosphate (ATP) molecules for movement of myosin heads. A short
term store of energy is generated from ATP in the form of cratine phosphate and can regenerate ATP when needed
with creatine kinase.
Question [Hindi]: मायोिसन हेड्स की गित के िलए मांसपेिशयो ंकी कोिशकाएं ऊजा� को कैसे श�� देती ह�?

Article: Łęczna is a town in eastern Poland with 19,780 inhabitants (2014), situated in Lublin Voivodeship. It is the seat
of Łęczna County and the smaller administrative district of Gmina Łęczna. The town is located in northeastern corner
of historic province of Lesser Poland. Łęczna tops among the hills of the Lublin Upland, at the confluence of two rivers
—the Wieprz, and the Świnka. On December 31, 2010, the population of the town was 20,706. Łęczna does not have
a rail station, the town has been placed on a national Route 82 from Lublin to Włodawa. And shall be considered as a
Summary: Łęczna is a town in eastern Poland with 19,780 inhabitants. It is a hill located in the Lublin Upland, at the
confluence of two rivers - Wieprz and Świnka. It is a road hub, and has no rail station.
Question [Hindi]:  ले�ज़ना पोल�ड म� िकन दो निदयो ंके संगम पर ��थत है?

Article: The µ-law algorithm (sometimes written "mu-law", often approximated as "u-law") is a companding algorithm,
primarily used in 8-bit PCM digital telecommunication systems in North America and Japan. It is one of two versions of
the G.711 standard from ITU-T, the other version being the similar A-law, used in regions where digital
telecommunication signals are carried on E-1 circuits, e.g. Europe. Companding algorithms reduce the dynamic range
of an audio signal. In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission;
in the digital domain, it can reduce the quantization error (hence increasing signal to quantization noise ratio).
Summary: The µ-law algorithm is a companding algorithm, which is used to reduce the dynamic range of audio signals.
In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission.
Question [Hindi]: कैसे µ-िनयम ए�ो�रथम एनालॉग िस�म म� संचरण को �भािवत करता है?

Article: The 1960s brought anime to television and in America. The first anime film to be broadcast was "Three Tales" in
1960. The following year saw the premiere of Japan's first animated television series, "Instant History", although it did
not consist entirely of animation. Osamu Tezuka's "Tetsuwan Atom" ("Astro Boy") is often miscredited as the first anime
television series, premiering on January 1, 1963. "Astro Boy" was highly influential to other anime in the 1960s, and
was followed by a large number of anime about robots or space.
Summary: First anime movie broadcast on TV was 'Three Tales' in 1960. First anime TV series was 'Instant History' in
1961. 'Astro Boy' first aired in 1963 was a highly influential anime about robots or space. 
Question [Hindi]:  १९६० म� टीवी पर �सा�रत होने वाली पहली एनीमे िफ� कौन सी थी?

Article: {Input Wikipedia Article in English}
Summary:

Figure 11: 5-shot SAP (Summarize-then-Ask Prompting with Machine Translation (MT) for XTREME-UP (Ruder
et al., 2023) is shown for Hindi (hi). There are five exemplars (5-shot) in our cross-lingual query generation. The
exemplars are re-used from XOR-Retrieve. A summary and a query for all above exemplars is manually written in
English by the authors. Finally, the English written query is translated to Hindi (hi) for all above exemplars using
Google Translate (translate.google.com).

https://translate.google.com/


Annotation Guidelines for SWIM-IR

Nandan Thakur

June 2nd 2023

● The goal of this task is to evaluate the quality of LLM-generated (PaLM 2-S) generated

questions.

● Every annotator will receive a set of annotations containing the wikipedia paragraph and

the question in the ${target_language}.

● Annotators should read each annotation carefully and provide feedback on the following:

○ The fluency of the question.

○ The adequacy of the question.

○ The language of the question.

● Annotators should be respectful and professional in their feedback.

● Annotators should complete all annotations within the allotted duration.

Here below we define the following terms:

Fluency

Rating Level Explanation

2 (Flawless) Perfect use of ${target_language} with no mistakes at all.

1 (Good) Few or minor spelling or grammar mistakes; the text is still mostly
understandable and readable.

0 (Poor) Many or serious spelling, grammar, or other mistakes, which make the
text difficult to understand or hard to read.

Adequacy

Rating Level Explanation

2 (Relevant) Highly related to the wiki passage. The question can be answered using
the wiki passage.



1 (Moderate) The question is somewhat related to the wiki paragraph, the question
cannot be answered using the passage.

0 (Not Relevant) The question is not at all related to the wiki passage.

Language

Rating Level Explanation

2 (Flawless) The whole question is perfectly in the ${target_language}.

1 (Good) Code-switching occurs with part of the question in the ${target_language}.

0 (Poor) The whole question is not at all in ${target_language}.

Thank you for your participation in this task!
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