
AN EXPERIMENTAL ANALYSIS OF THE POWER CONSUMPTION OF
CONVOLUTIONAL NEURAL NETWORKS FOR KEYWORD SPOTTING

Raphael Tang Weijie Wang Zhucheng Tu Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

{r33tang,w268wang,michael.tu,jimmylin}@uwaterloo.ca

ABSTRACT

Nearly all previous work on small-footprint keyword spotting
with neural networks quantify model footprint in terms of the
number of parameters and multiply operations for a feedfor-
ward inference pass. These values are, however, proxy mea-
sures since empirical performance in actual deployments is
determined by many factors. In this paper, we study the power
consumption of a family of convolutional neural networks for
keyword spotting on a Raspberry Pi. We find that both prox-
ies are good predictors of energy usage, although the number
of multiplies is more predictive than the number of model pa-
rameters. We also confirm that models with the highest accu-
racies are, unsurprisingly, the most power hungry.

Index Terms— keyword spotting, power consumption

1. INTRODUCTION

Conversational agents that offer speech-based interfaces are
increasingly part of our daily lives, both embodied in mo-
bile phones as well as standalone consumer devices for
the home. Prominent examples include Google’s Assis-
tant, Apple’s Siri, Amazon’s Alexa, and Microsoft’s Cortana.
Due to model complexity and computational requirements,
full speech recognition is typically performed in the cloud:
recorded audio is transferred to a datacenter for processing.
For both practical and privacy concerns, devices usually per-
form keyword spotting locally to detect a trigger phrase such
as “hey Siri”, which provides an explicit acknowledgment
that subsequent audio recordings of user utterances will be
sent to backend servers and thus may be logged and analyzed.
Beyond detecting these triggers, it makes sense to perform
recognition of simple commands such as “go” and “stop” as
well as common responses such as “yes” and “no” directly
on-device. Together, these represent instances of the keyword
spotting task on continuous speech input. Due to power con-
straints on mobile devices, it is desirable that such keyword
spotting models are “compact” and have a “small footprint”
(which we formally define below).

Over the past several years, neural networks have been
successfully applied to the keyword spotting task (see more

details in Section 2). When discussing the “footprint” of a
model, the literature usually refers to two easily quantifiable
values: the number of model parameters and the number of
multiplies for a feedforward inference pass. Model “com-
pactness” is thus measured in terms of these two quantities,
which are of course proxies at best. Ultimately, what matters
most is the energy consumption during inference.

To our knowledge, previous work in keyword spotting
stops short of actual energy measurements. Thus, the pri-
mary contribution of this paper is the deployment of a num-
ber of convolutional neural networks for keyword spotting on
a Raspberry Pi, where we are able to measure the energy us-
age of various models and relate these measurements back
to the proxies used in previous work. We find that the num-
ber of multiplies does indeed predict energy usage and model
latency, as does the number of parameters (albeit the relation-
ship is weaker). Therefore, in the absence of actual power
measurements, these proxies can be helpful in guiding model
development, although we advise caution in interpreting both
measures. Finally, as expected, we confirm that the most ac-
curate models are also the most power hungry, suggesting un-
avoidable tradeoffs with this family of CNN architectures.

2. RELATED WORK

The application of neural networks to keyword spotting, of
course, is not new. Chen et al. [1] introduced multi-layer per-
ceptrons as an alternative to HMM-based approaches. Sainath
and Parada [2] built on that work and achieved better results
using convolutional neural networks (CNNs). They specifi-
cally cited reduced model footprints (for low-power applica-
tions) as a major motivation in moving to CNNs.

Despite more recent work in applying recurrent neural
networks to the keyword spotting task [3, 4], we focus on
the family of CNN models for several reasons. CNNs to-
day remain the standard baseline for small-footprint keyword
spotting—they have a straightforward architecture, are rela-
tively easy to tune, and have implementations in multiple deep
learning frameworks.

In this paper, we do not propose any new models for

5479978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

⋮

MFCCs input Conv layer #1 Conv layer #2 Output

Fig. 1: Convolutional neural network architecture for key-
word spotting.

type m r n p q Par. Mult.
conv 20 8 64 1 3 10.2K 27.7M
conv 10 4 64 1 1 164K 95.7M

lin - - 32 - - 1.20M 1.20M
dnn - - 128 - - 4.1K 4.1K

softmax - - nlabels - - 1.54K 1.54K
Total - - - - - 1.37M 125M

Table 1: Structure of the cnn-trad-fpool3 model.

keyword spotting. Instead, we conducted a thorough experi-
mental analysis of the power consumption of CNNs proposed
by Sainath and Parada [2], using Google’s recently-released
Speech Commands Dataset [5] as the benchmark.

Canziani et al. [6] previously studied the relationship be-
tween power consumption, inference time, and accuracy us-
ing deep neural networks for computer vision tasks running
on an NVIDIA Jetson TX1 board. This work studies many of
these same relationships for keyword spotting, but on a more
wimpy device, the Raspberry Pi.

3. EXPERIMENTAL DESIGN

All experiments described in this paper were conducted with
Honk, our open-source PyTorch reimplementation of public
TensorFlow keyword spotting models, which are in turn based
on the work of Sainath and Parada [2]. We have confirmed
that our PyTorch implementation achieves the same accuracy
as the original TensorFlow references [7]. All our code is
available on GitHub1 for others to build upon.

3.1. Model Description

For feature extraction, we first apply a band-pass filter
of 20Hz/4kHz to the input audio to reduce noise. Forty-
dimensional Mel-Frequency Cepstrum Coefficient (MFCC)
frames are then constructed and stacked using a 30ms win-
dow and a 10ms frame shift. All frames are stacked across a
1s interval to form the two-dimensional input to our models.

The basic model architecture for keyword spotting, shown
in Figure 1, comprises one or more convolutional layers fol-
lowed by fully-connected hidden layers, ending with a soft-

1https://github.com/castorini/honk

type m r n p q Par. Mult.
conv 21 8 94 2 3 15.8K 42.2M
conv 6 4 94 1 1 212K 60.2M

lin - - 32 - - 854K 854K
dnn - - 128 - - 4.1K 4.1K

softmax - - nlabels - - 1.54K 1.54K
Total - - - - - 1.09M 103M

Table 2: Structure of the cnn-tpool2 model.

type m r n p q s v Par. Mult.
conv 101 8 186 1 1 1 1 150K 4.99M
dnn - - 128 - - - - 786K 786K
dnn - - 128 - - - - 16.4K 16.4K

softmax - - nlabels - - - - 1.54K 1.54K
Total - - - - - - - 954K 5.76M

Table 3: Structure of the cnn-one-stride1 model.

max output. More specifically, an input of MFCCs X ∈ Rt×f

is convolved with weights from the first convolutional layer,
W ∈ Rm×r×n, where t and f are the lengths in time and
frequency, m and r are the width and height of the convolu-
tion filter, and n is the number of feature maps. If desired,
the convolution can stride by s × v and max-pool in p × q,
parameters which also affect the compactness of the model.
Rectified linear units are used as the activation function for
each non-linear layer.

From this basic design, Sainath and Parada [2] proposed
a number of specific models. We evaluated the following:

• trad-fpool3: The base model, illustrated in Ta-
ble 1, comprises two convolution layers followed by a
linear layer, a hidden layer, and a final softmax layer.
All other variants are derived from this model.

• one-fstride{4,8}: Limiting the number of mul-
tiplies and parameters, these are compact variants that
stride in frequency and also use only one convolution
layer. Sainath and Parada found that one-fstride4
performs better than one-fstride8.

• tpool{2,3}: These are variants that pool in time.
Sainath and Parada found that, depending on the task,
tpool2 has performance equivalent to or better than
trad-fpool3. See Table 2 for the parameter break-
down of tpool2.

• trad-pool2: TensorFlow’s variant of the base model
trad-fpool3, with comparable accuracy, but using
fewer multiplies.

• one-stride1: TensorFlow’s compact variant of
one-fstride4 (detailed in Table 3). It uses a stan-
dard striding of 1×1 and thus has more parameters and
multiplies, but achieves better accuracy.

5480

Model Test Accuracy Par. Mult. Latency/q (ms) Energy/q (mJ) Peak Power (W)
one-fstride4 70.28% 220K 1.43M 40 28 0.99
one-fstride8 67.90% 337K 1.43M 42 29 1.02
one-stride1 77.06% 954K 5.76M 100 115 1.52
trad-pool2 87.51% 1.38M 98.8M 146 306 2.60
tpool2 91.97% 1.09M 103M 204 384 2.21
tpool3 91.23% 823K 73.7M 159 279 2.16
trad-fpool3 89.43% 1.37M 125M 227 431 2.20
Feature extraction only — — — 31 19 0.80

Table 4: Performance of CNN variants on the Raspberry Pi in terms of accuracy, footprint, latency, and power consumption.
The compact model is one-stride1 and the full model is trad-pool2. For reference, we also include a condition that
only performs feature extraction. Energy calculations and peak power exclude idle power draw of 1.9W.

3.2. Model Export and Inference

To run model inference on the Raspberry Pi, we exported
Honk models written and trained in PyTorch to Caffe2 using
ONNX,2 the Open Neural Network Exchange format used for
interchanging models between different deep learning frame-
works. While PyTorch is good for research and rapidly it-
erating on model architecture, it was not designed to serve
models in deployment settings, unlike Caffe2, which supports
running deep learning models on production servers as well
as mobile devices and Raspbian. This feature makes Caffe2
especially useful for evaluating keyword spotting models in
environments where they will actually be deployed. The prac-
tice of building and training models in one framework and
running inference in another has been used in production at
Facebook. We built Caffe2 from source for Raspbian, with
the -mfpu=neon flag, to specify the use of NEON (ARM’s
Advanced SIMD) optimizations. Our models use 32-bit float-
ing point operations and Caffe2 implements convolutions us-
ing the im2col approach.

Evaluation was performed on a Raspberry Pi 3 Model B
(ARM Cortex-A53) running Raspbian Stretch (4.9.41-v7+).
On the Raspberry Pi, we run a Caffe2 service which im-
ports an ONNX model and performs inference (as described
above). To capture power measurements, the Raspberry Pi
is plugged into a Watts Up Pro meter, which has a USB port
from which measurements can be programmatically read.
Power measurements are taken at a frequency of 1 Hz from
an external laptop connected to the meter. The length of
each experimental trial is sufficiently long (on the order of
minutes) that this resolution yields reasonably accurate mea-
surements. During each experimental trial, a script on the
Raspberry Pi iterates through all keyword classes for a fixed
model, calling an API served by the laptop to start and stop
measurements before and after the Caffe2 service call. Each
Caffe2 service call evaluates all test examples for a given
keyword class. There were a total of 2,567 test examples for
all keyword classes combined.

2http://onnx.ai/

4. EXPERIMENTAL RESULTS

We evaluated the convolutional neural networks described
in the previous section using Google’s Speech Commands
Dataset [5], which was released in August 2017 under a
Creative Commons license.3 The dataset contains 65,000
one-second long utterances of 30 short words by thousands
of different people, as well as such background noise samples
as pink noise, white noise, and human-made sounds.

The Google blog post also references the TensorFlow im-
plementation of Sainath and Parada’s models, which we have
ported to PyTorch and validated their correctness [7]. For
consistency, we evaluated our PyTorch implementations, but
otherwise followed exactly the same experimental setup as
Google’s reference. Specifically, our task is to classify a short
one-second utterance as “yes”, “no”, “up”, “down”, “left”,
“right”, “on”, “off”, “stop”, “go”, silence, or unknown. As
the focus of this paper is on model performance in terms of
energy usage and not on accuracy per se, we refer interested
readers to details in Tang and Lin [7]. Our evaluation met-
ric is accuracy, which is simply measured as the fraction of
classification decisions that are correct.

Our main results are shown in Table 4. For each model,
we show its accuracy on the test set and its model footprint
in terms of the number of model parameters and the number
of multiplies required for a feedforward inference pass. The
next columns show the average query latency for each model
on a test instance, the energy per query, and the peak power
draw during the experimental run. The energy calculations as
well as the peak power figures exclude energy consumed by
the Raspberry Pi in its idle state, which has a power draw of
1.9W. For reference, we also report a condition that performs
only feature extraction.

We found strong evidence of a positive linear relationship
between the number of multiply operations used in the mod-
els and the energy used per query (R2 = 0.9641, p = 0.0001)
in Figure 2 (left) and also between the number of multiplies
and latency per query (R2 = 0.8863, p = 0.0015) in Figure 2
(right). There is also strong evidence of a positive relation-

3https://research.googleblog.com/2017/08/

5481

Fig. 2: Energy (left) and latency (right) per query vs. number of multiplies, with the 95% confidence interval.

Fig. 3: Energy per query vs. number of parameters (95% CI).

ship between the number of parameters and the energy used
per query (R2 = 0.7498, p = 0.0118) in Figure 3 and be-
tween the number of parameters and latency per query (R2 =
0.7237, p = 0.0152), not shown. However, the strength of
correlations for the number of parameters is weaker.

These results suggest that the number of multiplies, and
to a lesser extent, the number of parameters, are useful proxy
measures when developing small-footprint keyword spotting
models that optimize for power consumption. Nevertheless,
we suggest that these metrics must still be interpreted with
caution. For example, we see that two models with similar
numbers of multiplies can still have very different energy pro-
files: tpool2 and trad-pool2 have comparable numbers
of multiplies but the former is 40% slower and consumes 25%
more energy per query. However, the latter has a higher peak
power draw.

Finally, we plot the relationship between energy usage
and model accuracy in Figure 4. The strong correlation ob-
served (R2 = 0.8919, p = 0.0014) suggests that “you get

Fig. 4: Energy per query vs. accuracy (95% CI).

what you pay for”, in the sense that at least for this family
of models, a designer must trade off accuracy for power con-
sumption, and the relationship is surprisingly linear.

5. CONCLUSIONS

In this paper, we close a gap in the literature on small-
footprint keyword spotting. Previous work adopts the number
of model parameters and multiplies in an inference pass
as optimization objectives, under the assumption that smaller
values translate into lower power consumption. To our knowl-
edge, this assumption has not actually been verified until now.
We do indeed find that both metrics are strong predictors of
energy usage, although the number of multiplies exhibits a
stronger correlation. While both are useful proxies during
model development, we noticed sufficient variations—for
example, models with similar multiplies but very different
performance profiles—that actual power measurements may
still be required for conclusive summative evaluations.

5482

6. REFERENCES

[1] Guoguo Chen, Carolina Parada, and Georg Heigold,
“Small-footprint keyword spotting using deep neural net-
works,” in ICASSP, 2014, pp. 4087–4091.

[2] Tara N. Sainath and Carolina Parada, “Convolutional
neural networks for small-footprint keyword spotting,” in
Interspeech, 2015, pp. 1478–1482.

[3] Sercan Ömer Arik, Markus Kliegl, Rewon Child, Joel
Hestness, Andrew Gibiansky, Christopher Fougner, Ryan
Prenger, and Adam Coates, “Convolutional recurrent
neural networks for small-footprint keyword spotting,”
arXiv:1703.05390v3, 2017.

[4] Ming Sun, Anirudh Raju, George Tucker, Sankaran
Panchapagesan, Gengshen Fu, Arindam Mandal, Spy-
ros Matsoukas, Nikko Strom, and Shiv Vitaladevuni,
“Max-pooling loss training of Long Short-Term Mem-
ory networks for small-footprint keyword spotting,”
arXiv:1705.02411v1, 2017.

[5] Pete Warden, “Launching the speech commands dataset,”
Google Research Blog, 2017.

[6] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello
“An analysis of deep neural network models for practical
applications,” arXiv:1605.07678, 2016.

[7] Raphael Tang and Jimmy Lin, “Honk: A PyTorch reim-
plementation of convolutional neural networks for key-
word spotting,” arXiv:1710.06554v2, 2017.

5483

