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Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the
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prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?
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(iv) What are themajor challenges users face when process-
ing their graph data?

Our major findings are as follows:

• Variety Graphs in practice represent a very wide vari-
ety of entities, many of which are not naturally thought
of as vertices and edges. Most surprisingly, traditional
enterprise data comprised of products, orders, and trans-
actions, which are typically seen as the perfect fit for
relational systems, appear to be a very common form of
data represented in participants’ graphs.

• Ubiquity of very large graphsMany graphs in practice are
very large, often containing over a billion edges. These
large graphs represent a very wide range of entities and
belong to organizations at all scales from very small
enterprises to very large ones. This refutes the sometimes
heard assumption that large graphs are a problem for only
a few large organizations such as Google, Facebook, and
Twitter.

• Challenge of scalability Scalability is unequivocally the
most pressing challenge faced by participants. The ability
to process very large graphs efficiently seems to be the
biggest limitation of existing software.

• Visualization Visualization is a very popular and central
task in participants’ graph processing pipelines. After
scalability, participants indicated visualization as their
second most pressing challenge, tied with challenges in
graph query languages.

• Prevalence of RDBMSes Relational databases still play
an important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as
the prevalence of machine learning on graph data, e.g., for
clustering vertices, predicting links, and finding influential
vertices.

We further reviewed user feedback in themailing lists, bug
reports, and feature requests in the source code repositories
of 22 software products between January and September of
2017 with two goals: (i) to answer several new questions that
the participants’ responses raised and (ii) to identify more
specific challenges in different classes of graph technologies
than the ones we could identify in participants’ responses.
For some of the questions in our online survey, we also com-
pared the graph data, computations, and software used by
the participants with those studied in academic publications.
For this, we reviewed 252 papers from 3 different year’s pro-
ceedings of 7 conferences across different academic venues.

Different database technologies and research topics are
often motivated with a small set of common applications,
informally referred to as “killer” applications of the tech-
nology. For example, object-oriented database systems are
associated with computer-aided design and manufacturing,

and XML is associated with the Web. An often-asked ques-
tion in the context of graphs is: What is the killer application
of graph software products? The wide variety of graphs and
industry fields mentioned by our online survey participants
hinted that we cannot pinpoint a small set of such appli-
cations. To better understand the applications supported by
graphs, we reviewed the white papers posted on the Web
sites of 8 graph software products. We also interviewed 6
users and 2 developers of graph processing systems. Our
reviews and interviews corroborated our findings that graphs
have a very wide range of applications but also highlighted
several common applications, primarily in data integration,
recommendations, and fraud detection, aswell as several new
applications we had not identified in our online survey. Our
interviews also givemore details than our online survey about
the actual graphs used by enterprises and how they are used
in applications.

In addition to discussing the insights we gained through
our study, we discuss several directions about the future of
graph processing. We hope our study can inform research
about real use cases and important problems in graph pro-
cessing.

2 Methodology of online survey, mailing
lists, source repositories, and academic
publications

In this section, we first describe the format of our survey and
then how we recruited the participants. Next we describe the
demographic information of the participants, including the
organizations they come from and their roles in their orga-
nizations. Then we describe our methodology of reviewing
academic publications. Then we describe our methodology
for reviewing the user feedback in the mailing lists, bug
reports, and feature requests in the source code repositories of
the software products. We end this section with a discussion
of our methodology, which we believe other researchers can
easily reproduce to study the uses of other technology, and
some lessons we learned from our experience of performing
a user study. We review our methodology of reviewing white
papers and our interviews in Sects. 4.1 and 5.1, respectively.

2.1 Online survey format and participants

2.1.1 Format

The survey was in the format of an online form. All of
the questions were optional, and participants could skip any
number of questions. There were 2 types of questions:

(i) Multiple-choice There were 3 types of multiple-choice
questions: (a) yes–no questions; (b) questions that
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allowed only a single choice as a response; and (c) ques-
tions that allowed multiple choices as a response. The
participants could use an Other option when their
answers required further explanation or did not match
any of the provided choices. We randomized the order
of choices in questions about the computations partici-
pants run and the challenges they face.

(ii) Short-answer For these questions, the participants
entered their responses in a text box.

Therewere34questions grouped into six categories: (i) demo-
graphic questions; (ii) graph datasets; (iii) graph andmachine
learning computations; (iv) graph software; (v) major chal-
lenges; and (vi) workload breakdown.

2.1.2 Participant recruitment

We prepared a list of 22 popular software products for pro-
cessing graphs (see Table 1) that had public user mailing
lists covering 6 types of technologies: graph database sys-
tems, RDF engines, distributed graph processing systems
(DGPSes), graph libraries to run and compose graph algo-
rithms, visualization software, and graph query languages.1

Our goal was to be as comprehensive as possible in recruiting
participants from the users of different graph technologies.
However, we acknowledge that this list is incomplete and
does not cover all of the graph software used in practice.

We conducted the survey in April 2017, and used 4 meth-
ods to recruit participants from the users of these 22 software
products:

• Mailing lists We posted the survey to the user mailing
lists of the software in our list.

• Private emails Five mailing lists, (i) Neo4j; (ii) Ori-
entDB; (iii) ArangoDB; (iv) JanusGraph; and (v) Net-
workX, allowed us to send private emails to the users.
We sent private emails to 171 users who were active on
these mailing lists between February and April of 2017.

• Slack channels Two of the software products on our list,
Neo4j and Cayley, had Slack channels for their users. We
posted the survey to these channels.

• Twitter A week after posting our survey to the mailing
lists and Slack channels and sending private emails, we
posted a tweet with a link to our survey to 7 of the 22
software products that had an official Twitter account.
Only Neo4j retweeted our tweet.

Participants that we recruited through different methods
shared the same online link and we could not tell the num-

1 The linear algebra softwarewe considered, e.g., BLAS [17] andMAT-
LAB [63], either did not have a public mailing list or their lists were
inactive.

Table 1 Software products used for recruiting participants and the
count of active users in their mailing list in February–April 2017

Technology Software #Users

Graph database
system

ArangoDB [13] 40 238

Caley [20] 14

DGraph [26] 33

JanusGraph [49] 32

Neo4j [65] 69

OrientDB [73] 45

Sparksee [90] 5

RDF engine Apache Jena [52] 87 110

Virtuoso [96] 23

Distributed graph
processing engine

Apache Flink
(Gelly) [30]

24 39

Apache Giraph [34] 8

Apache Spark
(GraphX) [40]

7

Query language Gremlin [41] 82 82

Graph library Graph for Scala [35] 4 97

GraphStream [37] 8

Graphtool [38] 28

NetworKit [68] 10

NetworkX [69] 27

SNAP [84] 20

Graph visualization Cytoscape [25] 93 116

Elasticsearch
X-Pack Graph [29]

23

Graph representation Conceptual graphs
[23]

6 6

Last column is the total count for each technology

ber of participants recruited from each method. In particular,
we suspect that there were more users from graph database
systems mainly because their mailing lists contained more
active users, as given in Table 1. Moreover, 4 of the 5 mail-
ing lists that allowed us to send private emails and the Slack
and Twitter channels belonged to graph database systems.
We note that after posting the survey on Twitter, we received
12 responses.

In the end, there were 89 participants. Below, we give an
overview of the organizations these participants work in and
the role of the participants in their organizations.

Field of organizationsWe asked the participants which field
they work in. Participants could select multiple options.
Table 2 shows the 12 choices and participants’ responses.
In the table, “R” and “P” indicate researchers and practi-
tioners (defined momentarily), respectively. In addition to
the given choices, using the Other option, participants indi-
cated 5 other fields: education, energy market, games and
entertainment, investigations and audits, and grassland man-
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Table 2 Participants’ fields of work

Field Total R P

Information and technology 48 12 36

Research in academia 31 31 0

Finance 12 2 10

Research in industry laboratory 11 11 0

Government 7 3 4

Health care 5 3 2

Defense and space 4 3 1

Pharmaceutical 3 0 3

Retail and e-commerce 3 0 3

Transportation 2 0 2

Telecommunications 1 1 0

Insurance 0 0 0

Other 5 2 3

agement. In total, participants indicated 17 different fields,
demonstrating that graphs are being used in a wide variety
of fields. Throughout the survey, we group the participants
into 2 categories:

• Researchers are the 36 participants who indicated at least
one of their fields as research in academia or research in
an industry laboratory. Some of these participants further
selected other choices as their fields, the most popular
of which were information and technology, government,
defense and space, and health care.

• Practitioners are the remaining 53 participants who did
not select research in academia or an industry laboratory.
The top two fields of practitioners were information and
technology and finance, indicated by 36 and 10 people,
respectively.

In the remainder of this paper, we will explicitly indicate
when the responses of the researchers and practitioners to
our survey questions differ significantly. In the absence of an
explicit comparison, readers can assume that both groups’
responses were similar.

Size of organizations Table 3 shows the sizes of the organi-
zations that the participants work in, which ranged from very
small organizations with less than 10 employees to very large
ones with more than 10,000 employees.

Role at work We asked the participants their roles in
their organizations and gave them the following 4 choices:
(i) researcher; (ii) engineer; (iii) manager; and (iv) data ana-
lyst. Participants could select multiple options. The top 4
roles were engineers, selected by 54, researchers, selected
by 48, data analysts, selected by 18, and managers, selected

Table 3 Size of the
participants’ organizations

Size Total R P

1–10 27 17 10

10–100 23 6 17

100–1000 14 4 10

1000–10,000 6 4 2

> 10, 000 15 4 11

Table 4 Academic conferences and surveyed years

Conference Years reviewed

VLDB 2014 [48], 2017 [18], 2018 [8]

KDD 2015 [54], 2017 [55], 2018 [56]

SOCC 2015 [85], 2017 [86], 2018 [87]

OSDI/SOSP 2016 [57], 2017 [88], 2018 [12]

ICML 2016 [15], 2017 [75], 2018 [28]

SC 2016 [80], 2017 [81], 2018 [82]

by 16. The other roles participants indicated were architect,
devops, and student.

2.2 Review of academic publications

In order to compare the graph data, computations, and soft-
ware academics work on with those that our participants
indicated, we surveyed papers in the proceedings of 3 differ-
ent years of the 7 academic conferences shown in Table 4.2

Our goal in choosing these conferenceswas to select a variety
of venues where papers on graph processing are published.
Specifically, our list consists of venues in databases, datamin-
ing, machine learning, operating systems, high-performance
computing, and cloud computing. For each paper in these
proceedings, we first selected the ones that directly studied
a graph computation or were developing graph processing
software. We omitted papers that were not primarily focused
on graph processing, even if they used a graph algorithm as
a subroutine to solve a problem. For example, we omitted a
paper studying a string matching algorithm that uses a graph
algorithm as a subroutine. In the end, we selected 252 papers.

For each of the 252 papers, we identified: (i) the graph
datasets used in experiments; (ii) the graph and machine
learning computations that appeared in the paper; and (iii) the
graph software used in the paper. In our survey, we asked
users questions about which graph and machine learning
computations they perform. The choiceswe provided in these
questions came from the computations we identified in these

2 For each conference, we initially surveyed one year selected between
2014 and 2016 and later extended the survey to include the years 2017
and 2018. Note that OSDI and SOSP are held in alternating years.
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publications (see Sects. 3.2.1 and 3.2.2 and Appendices A
and B for details).

2.3 Review of emails and code repositories

To answer some questions that participants’ responses raised
and to identify more specific challenges users face than the
ones we identified from participants’ responses, we reviewed
emails in the mailing lists of the 22 software products
between January and September of 2017. In addition, 20
of these 22 software products had open-source code repos-
itories. We reviewed the bug reports and feature requests
(issues henceforth) in these repositories between January and
September of 2017. We also reviewed the repositories of 2
popular graph visualization tools: Gephi [33] and Graphviz
[39]. For emails and issues before January 2017, we per-
formed a targeted keyword search to find more instances of
the challenges we identified in the January–September 2017
review.

In total, we reviewed over 6000 emails and issues. The
overwhelming majority of the emails and issues were rou-
tine engineering tasks, such as users asking how to write a
query or developers asking for integration with another soft-
ware. The number of emails and issues that were useful for
identifying challengeswas 299 in total.We review these chal-
lenges in Sect. 3.4.2. Table 22 in “Appendix” shows the exact
number of emails and issues we reviewed for each product
and the number of commits in its code repository to give
readers a sense of how active these repositories are.

2.4 Note onmethodology

We end this section with two points about our methodology
and a brief summary of the lessons we learned from perform-
ing a user study.
Biases Performing a survey study brings up challenging
methodological questions, such as what is a principled way
of recruiting participants, picking a list of choices for graph
queries, or reviewing academic publications? Our guiding
principle when addressing these questions was to be as broad
as possible and to avoid ad hoc decisions. For example, the
initial 22 graph software products we found were the prod-
ucts that had open-source mailing lists of a much longer list
of all products we were aware of.

Similarly, when asking about the different graph queries
and computations, instead of an ad-host list of choices, we
gathered a list from academic publications. However, the
choices we made inevitably introduced biases.

We acknowledge these biases when we present our find-
ings in later sections. In particular, the numbers we report
should not be interpreted statistically. Our goal was not to
understand any statistical property, e.g., the average number
of edges, about the graphs used in practice, or users of graphs.

Despite these biases, we found overwhelming evidence for
some of our observations, whichwe believe give insights into
how graphs are used in practice.
Abundance of Public Information Having direct access
to actual users from industry is a known challenge for
researchers in academia. There is, however, an abundance
of public information in mailing lists, forums, vendor Web
sites, open-source code repositories, social media, question-
and-answer Web sites, and elsewhere, which can be used to
survey actual users and arrange in-person interviews. In this
paper, we essentially reviewed this public information and
used it to contact actual users. Our work is not the first but
the most extensive that we know of in terms of the public
sources it reviews. We believe our methodology can easily
be repeated by researchers in academia to study how other
types of data or technology is used in practice.
Lessons from the survey methodology We highlight three
lessons from our experience of applying our methodology.

• Lesson 1 Many users are willing to share information.
Especially for our online survey, we did not expect to
recruit 89 participants prior to sending the survey out.

• Lesson 2 Avoid making assumptions about participants’
answers in the survey. For instance, as we discuss in
Sect. 3.1.2, we assumed few users would have edge
graphs with more than 1 billion edges, so capped the
choices of a question about graph sizes at 1 billion. This
resulted in losing important information about howmuch
larger the graphs are beyond 1 B.

• Lesson 3 Users have different and often non-technical
languages than researchers to explain their technology.
For instance, our interviewwith a biologist using an RDF
engine heavily involved terms such as tissues, processes,
angiogenesis, molecules, and chemical reactions. This
required spending considerable time during the interview
on terminology,which put a hurdle on focusing on techni-
cal topics on graph processing. We learned to thoroughly
studyour interviewee’s products and application domains
prior to an interview.

3 Online survey

In this section, we describe the questions we asked in the
survey and report the responses of the participants. We also
report the results of our review of academic publications.
Throughout the section,wehighlight the results thatwe found
particularly interesting or surprising.

3.1 Graph datasets

In this section, we describe the properties of the graph
datasets that the participants work with.
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Table 5 Real-world entities represented by the participants’ graphs and studied in publications

Category Human RDF Scientific Non-human NH-P NH-B NH-W NH-G NH-D NH-I NH-K

Total 45 23 15 60 13 11 4 7 5 9 11

R 18 11 9 22 1 6 2 4 1 7 6

P 27 12 6 38 12 5 2 3 4 2 5

A 165 20 45 169 7 28 77 33 0 17 11

Legend for non-human entities: products (NH-P), business and financial data (NH-B),Web data (NH-W), geographic maps (NH-G), digital data
(NH-D), infrastructure networks (NH-I), knowledge and textual data (NH-K)

3.1.1 Real-world entities represented

We asked the participants about the real-world entities that
their graphs represent. We provided them with 4 choices and
the participants could select multiple of them.

(i) Humans: e.g., employees, customers, and their interac-
tions.

(ii) Non-humanentities: e.g., products, transactions, orWeb
pages.

(iii) RDF or Semantic Web.
(iv) Scientific: e.g., chemical molecules or biological pro-

teins.

For the participants who selected non-human entities, we
followed up with a short-answer question asking them to
describe what these are. Participants indicated 52 different
kinds of non-human entities, which we group into 7 broad
categories.3 We indicate the acronyms we use in our tables
for each category in parentheses:

(i) Products (NH-P): e.g., products, orders, and transac-
tions.

(ii) Business and Financial Data (NH-B): e.g., business
assets, funds, or bitcoin transfers.

(iii) World Wide Web Data (NH-W).
(iv) Geographic Maps (NH-G): e.g., roads, bicycle sharing

stations, or scenic spots.
(v) Digital Data (NH-D): e.g., files and folders or videos

and captions.
(vi) Infrastructure Networks (NH-I): e.g., oil wells and

pipes or wireless sensor networks.
(vii) Knowledge and Textual Data (NH-K): e.g., keywords,

lexicon terms, words, and definitions.

Table 5 shows the responses. In the table, the number of
academic publications that use each type of graph is listed in
the A row. We highlight two interesting observations:

3 Six entities that the participantsmentioneddid not fall under anyof our
7 categories, which we list for completeness: call records, computers,
cars, houses, time slots, and specialties.

• Variety Real graphs capture a very wide variety of enti-
ties. Readers may be familiar with entities such as social
connections, infrastructure networks, and geographic
maps. However, many other entities in the participants’
graphs may be less natural to think of as graphs. These
include malware samples and their relationships, videos
and captions, or scenic spots, among others. This lends
credence to the cliché that graphs are everywhere.

• Product graphs Products, orders, and transactions were
the most popular non-human entities represented in prac-
titioners’ graphs, indicated by 12 practitioners. This con-
trasts with their relative unpopularity among researchers
and academics. Only 1 researcher used product graphs,
and after digital data graphs, product graphs were the
second least popular graphs used in academic papers.
Such product–order–transaction data are traditionally the
classic example of enterprise data that perfectly fits the
relational datamodel. It is interesting that enterprises rep-
resent similar product data as graphs, possibly because
they find value in analyzing connections in such data.

We also note that we expected scientific graphs to be used
mainly by researchers. Surprisingly, scientific graphs are
prevalent among practitioners as well.

3.1.2 Size

We asked the participants the number of vertices, num-
ber of edges, and total uncompressed size of their graphs.
They could select multiple options. Table 6a–c shows the
responses. As shown in the tables, graphs of every size,
from very small ones with less than 10K edges to very large
ones with more than 1B edges, are prevalent across both
researchers and practitioners.Wemake one interesting obser-
vation:

• The ubiquity of very large graphsA significant number of
participants work with very large graphs. Specifically, 20
participants (8 researchers and 12 practitioners) indicated
using graphs with more than a billion edges. Moreover,
the 20 participantswith graphswithmore than one billion
edges are from organizations with different scales, rang-
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Table 6 Sizes of the participants’ graphs

Vertices Total R P

(a) Number of vertices

< 10K 22 11 11

10–100K 22 9 13

100K–1M 19 7 12

1–10M 17 6 11

10–100M 20 10 10

> 100M 27 10 17

Edges Total R P

(b) Number of edges

< 10K 23 11 12

10–100K 22 9 13

100K–1M 13 3 10

1–10M 9 5 4

10–100M 21 8 13

100M–1B 21 8 13

> 1B 20 8 12

Size Total R P

(c) Total uncompressed bytes

< 100MB 23 12 11

100MB–1GB 19 9 10

1–10GB 25 9 16

10–100GB 17 5 12

100GB–1TB 20 8 12

> 1TB 17 5 12

Table 7 Sizes of organization using graphs with > 1B edges

Size 1–10 10–100 100–1000 > 10, 000

# 4 4 7 4

ing from very small to very large, as shown in Table 7.
This refutes the common assumption that only very large
organizations—such as Google [62], Facebook [21], and
Twitter [83] that haveWeband social networkdata—have
very large graphs. Finally, we note that these large graphs
represent a variety of entities, including social, scientific,
RDF, product, and digital data,4 indicating that very large
graphs appear in a wide range of domains.

4 Some participants selected multiple graph sizes and multiple entities,
so we cannot perform a direct match of which graph size corresponds
to which entity. The entities we list here are taken from the participants
who selected a single graph size and entity, so we can directly match
the size of the graph to the entity.

Table 8 Topology and stored data types of the participants’ graphs

Topology Total R P

(a) Directed versus undirected

Only directed 63 23 40

Only undirected 11 6 5

Both 15 7 8

Topology Total R P

(b) Simple versus multigraphs

Only simple graphs 26 9 17

Only multigraphs 50 20 30

Both 13 7 6

Type Vertices Edges
Total R P Total R P

(c) Data types stored on vertices and edges

String 79 31 48 66 24 42

Numeric 63 23 40 59 23 36

Date/time stamp 56 19 37 49 18 31

Binary 15 8 7 8 4 4

One thing that is not clear from our survey is how much
larger the participants’ graphs are beyond the maximum lim-
its we inquired about (100 million vertices, 1 billion edges,
and 1TB uncompressed data). In order to answer this ques-
tion, we categorized the graph sizes mentioned in the user
emails we reviewed that were beyond these sizes. Focusing
on the number of edges, we found 42 users with 1–10B-
edge graphs, 17 with 10–100B-edge graphs, and 7 users
processing graphs over 100B edges. Two participants also
clarified through an email exchange that their graphs con-
tained 4B and 30B edges. As in our survey results, these
large graphs represented a wide range of entities, such as
product–order–transaction data, or entities from agriculture
and finance. Table 20 in “Appendix” shows the exact distribu-
tion of sizes we identified. Aswe discuss in Sect. 5, several of
the applications described in our applications also contained
graphs in the 10–100B-edge and over 100B-edge scale.

3.1.3 Other questions on graph datasets

Topology We asked the participants whether their graphs
were: (i) directed or undirected and (ii) simple graphs or
multigraphs. We clarified that multigraphs are those with
possibly multiple edges between two vertices, while simple
graphs do not allow multiple edges between two vertices.
Table 8a, b shows the responses.

Types of data stored on vertices and edgesWe asked the par-
ticipants whether they stored data on the vertices and edges
of their graphs. All participants except 3 indicated that they
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Table 9 Frequency of changes Frequency Total R P

Static 40 21 19

Dynamic 55 22 33

Streaming 18 9 9

do. We asked the types of data they store and gave them 4
choices: (i) string; (ii) numeric; (iii) date or time stamp; and
(iv) binary. Table 8c shows participants’ responses. Five par-
ticipants also indicated storing JSON, lists, and geographic
coordinates using the Other option.

DynamismWe asked the participants how frequently the ver-
tices and edges of their graphs change, i.e., are added, deleted,
or updated. We provided 3 choices with the following expla-
nations: (i) static: there are no or very infrequent changes;
(ii) dynamic: there are frequent changes, and all changes are
stored permanently; and (iii) streaming: there are very fre-
quent changes and the participants’ software discards some
of the graph after some time. Table 9 shows the responses.
Surprisingly 18 participants (9 researchers and 9 practition-
ers) indicated having streaming graphs.

3.2 Computations

In this section, we describe the computations that the partic-
ipants perform on their graphs.

3.2.1 Graph computations

Our goal in this question was to understand what types
of graph queries and computations, not including machine
learning computations, participants perform on their graphs.
We asked a multiple-choice question that contained as
choices a list of queries and computations followed by a

short-answer question that asked for computations that may
not have appeared in the first question as a choice. In the
multiple-choice question, instead of asking for a set of ad
hoc queries and computations, we selected a list of graph
queries and computations that appeared in the publications
of the 6 conferences we reviewed (recall Sect. 2.2), using
our best judgment to categorize similar computations under
the same name. We describe our detailed methodology in
“Appendix A.”

Table 10 shows the 13 choicesweprovided in themultiple-
choice question, the responses we got, and the number of
academic publications that use or study each computation.
As shown in the table, all of the 13 computations are used
by both researchers and practitioners. Except for two com-
putations, the popularity of these computations is similar
among participants’ responses and academic publications.
The exceptions are neighborhood and reachability queries,
which are, respectively, used by 51 and 27 participants,
but studied, respectively, in 10 and 8 publications. Finding
connected components appears to be a very popular and fun-
damental graph computation—it is the most popular graph
computation overall and also among practitioners. We sus-
pect it is a common preprocessing or cleaning step, e.g., to
remove singleton vertices, across many tasks.

A total of 13 participants answered our follow-up short-
answer question on other graph queries and computations
they run. Example answers include queries to create schemas
and graphs, custom bioinformatic algorithms, and finding k-
cores in a weighted graph.

3.2.2 Machine learning computations

We next asked participants what kind of machine learning
computations they perform on their graphs. Similar to the
previous question, these questions were formulated to iden-

Table 10 Graph computations
performed by the participants
and studied in publications

Computation Total R P A

Finding connected components 55 18 37 31

Neighborhood queries (e.g., finding 2-degree neighbors of a vertex) 51 19 32 9

Finding short/shortest paths 43 18 25 28

Subgraph matching (e.g., finding all diamond patterns, SPARQL) 33 14 19 52

Ranking and centrality scores (e.g., PageRank, Betweenness Centrality) 32 17 15 45

Aggregations (e.g., counting the number of triangles) 30 10 20 24

Reachability queries (e.g., checking if u is reachable from v) 27 7 20 8

Graph partitioning 25 13 12 12

Node similarity (e.g., SimRank) 18 7 11 11

Finding frequent or densest subgraphs 11 7 4 4

Computing minimum spanning tree 9 5 4 4

Graph coloring 7 3 4 8

Diameter estimation 5 2 3 2
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Table 11 Machine learning computations and problems performed by
the participants and studied in publications

Computation Total R P A

(a) Machine learning computations

Clustering 42 22 20 22

Classification 28 10 18 34

Regression (linear/logistic) 11 5 6 2

Graphical model inference 10 5 5 5

Collaborative filtering 9 4 5 5

Stochastic gradient descent 4 2 2 9

Alternating least squares 0 0 0 1

(b) Problems solved by machine learning algorithms

Community detection 31 15 16 15

Recommendation system 26 10 16 5

Link prediction 25 10 15 11

Influence maximization 14 5 9 6

tify the machine learning computations that appeared in the
academic publicationswe reviewed.Wedescribe our detailed
methodology in “Appendix B.” We asked the following 2
questions:

• Which machine learning computations do you run on
your graphs?The choiceswere: clustering, classification,
regression (linear or logistic), graphical model inference,
collaborative filtering, stochastic gradient descent, and
alternating least squares.

• Which problems that are commonly solved with machine
learning do you solve using graphs? The choices were:
community detection, recommendation system, link pre-
diction, and influence maximization.5

Table 11a and b shows the responses and the number of aca-
demic publications that use or study each computation. It is
clear that machine learning is used very widely in graph pro-
cessing. Specifically, 61participants indicated that they either
perform a machine learning computation or solve a problem
usingmachine learning on their graphs.Clustering is themost
popular computation performed, while community detection
is the most popular problem solved using machine learning.
None of the participants selected alternating least squares as
a computation they perform.

5 In the publications, link prediction referred to problems that predict
a missing edge in a graph or data on an existing edge. Influence max-
imization referred to finding influential vertices in a graph, e.g., those
that can bring more vertices to the graph. We did not provide detailed
explanations about the problems to the participants.

Table 12 Graph traversals performed by the participants

Traversal Total R P

Breadth-first search or variant 19 5 14

Depth-first search or variant 12 4 8

Both 22 8 14

Neither 20 11 9

3.2.3 Other questions on computations

Streaming Computations: We asked the participants if they
performed incremental or streaming computations on their
graphs: 32 participants (16 researchers and 16 practition-
ers) indicated that they do. We followed up with a question
asking them to describe the incremental or streaming compu-
tations that they perform. A total of 4 participants indicated
computing graph or vertex-level statistics and aggrega-
tions. A total of 3 participants indicated incremental or
streaming computation of the following algorithms: approx-
imate connected components, k-core, and hill climbing. For
completeness, we list the other computations participants
mentioned: computing node or community properties, cal-
culating approximate answers to simple queries, incremental
materialization, incremental enhancement of the knowledge
graph, and scheduling.

We note that the 22 software products in Table 1 have
limited or no support for incremental and streaming compu-
tations. We further note that we did not find any user in our
further reviews of other sources or interviews that performed
continuous computation on a very dynamic stream of edges
or nodes.

Traversals We asked the participants which fundamental
traversals, breadth-first search or depth-first search, they use
in their algorithms. Table 12 shows the responses. Partici-
pants commonly use both kinds of traversals.

3.3 Graph software

We next review the properties of the different graph software
that the participants use.

3.3.1 Software types

Software for Querying and Performing Computations We
asked the participants which types of graph software they
use to query and perform computations on their graphs. The
choices included 5 types of software from Table 1 as well
as distributed data processing systems (DDPSes), such as
Apache Hadoop and Spark, relational database management
systems (RDBMSes), and linear algebra libraries and soft-
ware, such as BLAS andMATLAB. Table 13 shows the exact
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Table 13 Software for graph
queries and computations

Software Total R P A

Graph database system (e.g., Neo4j, OrientDB, TitanDB) 59 20 39 6

Apache Hadoop, Spark, Pig, Hive 29 11 18 10

Apache Tinkerpop (Gremlin) 23 9 14 1

Relational database management system (e.g., MySQL, PostgreSQL) 21 6 15 7

RDF engine (e.g., Jena, Virtuoso) 16 8 8 12

Distributed graph processing systems (e.g., Giraph, GraphX) 14 8 6 36

Linear algebra library/software (e.g., MATLAB, Maple, BLAS) 8 6 2 6

In-memory graph processing library (e.g., SNAP, GraphStream) 7 5 2 4

choices and responses: 84 participants answered this question
and each selected 2 or more types of software. We highlight
3 interesting observations:

• Popularity ofGraphDatabaseSystems: Themost popular
choice was graph database systems. We suspect this is
partly due to their increasing popularity and partly due
to the inherent bias in the participants we recruited—as
explained in Sect. 2.1.2, more of them came from users of
graph database systems. We did not ask the participants
which specific graph database system they used.

• Popularity of RDBMSes: 21 participants (6 researchers
and 15 practitioners) chose RDBMSes. We consider this
number high given that we did not recruit participants
from themailing lists of anyRDBMS. Interestingly, 16 of
these 20 participants also indicated using graph database
systems. From our survey, we cannot answer what the
participants used RDBMSes for. It is possible that they
use an RDBMS as the main transactional storage and
a graph database system for graph-specific tasks such as
traversals. This was the case in the applications described
to us in our interviews (see Sect. 5).

• Unpopularity of DGPSes: Only 6 practitioners indicated
using a DGPS, such as Giraph, GraphX, and Gelly. This
contrasts with DGPSes’ popularity among academics,
where they are the most popular systems, studied by
36 publications. One can consider graph database sys-
tems as RDBMSes that are specialized for graphs and
DGPSes as DDPSes that are specialized for graphs. In
light of this analogy, we note that there is an opposite
trend in the usage of these groups of systems. While
more participants indicated using graph database systems
thanRDBMSes, significantlymore participants indicated
using DDPSes than DGPSes.

Software for non-querying tasks We asked the participants
which types of graph software, possibly an in-house one,
they use for tasks other than querying graphs. Table 14 shows
the choices and the responses. We highlight one interesting
observation:

Table 14 Software used for non-querying tasks

Software Total R P A

Graph visualization 55 22 33 15

Build/extract/transform 14 8 6 0

Graph cleaning 5 1 4 2

Synthetic graph generator 4 3 1 49

Specialized debugger 2 0 2 0

Table 15 Architectures of the software used by participants

Architecture Total R P

Single machine serial 31 17 14

Single machine parallel 35 21 14

Distributed 45 17 28

• Importance of Visualization: Visualization software is,
by a large margin, the most popular type of software par-
ticipants use among the 5 choices. This clearly shows that
graph visualization is a very common and important task.
As we discuss in Sect. 3.4, participants also indicated
visualization as one of their most important challenges
when processing graphs.

3.3.2 Other questions on software

Software Architectures: We asked the participants the archi-
tectures of the software products they use for processing
graphs. The choices were single machine serial, single
machine parallel, and distributed. Table 15 shows the
responses.Distributed productswere themost popular choice
and users’ selections highly correlatedwith the size of graphs
they have. For example, 29 of the 45 participants that selected
distributed architecture had graphs over 100 M edges.

Data Storage in Multiple Formats: We asked the participants
whether or not they store a single graph in multiple formats:
33 participants answered yes and the most popular multiple-
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Table 16 Graph processing challenges faced by participants

Challenge Total R P

Scalability (i.e., software that can process
larger graphs)

45 20 25

Visualization 39 17 22

Query languages/programming APIs 39 18 21

Faster graph or machine learning
algorithms

35 19 16

Usability (i.e., easier to configure and use) 25 10 15

Benchmarks 22 12 10

More general-purpose graph software
(e.g., that can process off-line, online,
and streaming computations)

20 9 11

Graph cleaning 17 7 10

Debugging and testing 10 2 8

format combination was a relational database format and a
graph database format. “Appendix C” provides the detailed
responses.

3.4 Practical challenges

In this section, we first discuss the challenges in graph
processing that the participants identified, followed by a
discussion of the challenges that we identified through our
review of user emails and code repositories of different types
of graph technologies.

3.4.1 Challenges identified from survey

We asked the participants 2 questions about the challenges
they face when processing their graphs. First, we asked
them to indicate their top 3 challenges out of 10 choices we
provided. Table 16 shows the choices and the participants’
responses. Second, we asked them to state their biggest chal-
lenge in a short-answer question. Three major challenges
stand out unequivocally from the responses:

• Scalability: The ability to process large graphs is the
most pressing challenge participants face. Scalabilitywas
the most popular choice in the first question for both
researchers and practitioners. Moreover, it was the most
popular answer in the second question where 13 partici-
pants reiterated that scalability is their biggest challenge.
The specific scalability challenges that the participants
mentioned include inefficiencies in loading, updating,
and performing computations, such as traversals, on large
graphs.

• Visualization: Perhaps more surprisingly, graph visual-
ization emerges as one of the top 3 graph processing
challenges, as indicated by 39 participants in the first

question and 1 participant in the short-answer question.
This is consistent with the participants indicating visual-
ization as the most popular non-query task they perform
on their graphs, as discussed in Sect. 3.3.1.

• Query Languages and APIs: Query languages and APIs
present another common graph processing challenge, as
indicated by 39 participants in the first question and
5 participants in the short-answer question. The spe-
cific challenges mentioned in the short-answer responses
include expressibility of query languages, compliance
with standards, and integration of APIs with existing sys-
tems. For instance, one participant found current graph
query languages to have poor support for debugging
queries and another participant indicated their difficulty
in finding software that complies fully with SPARQL
standards.

3.4.2 Challenges identified from review

To go beyond the survey and to understand more specific
challenges users face or new functionalities users want, we
studied the user emails and code repositories of different
classes of software. Below, we categorize the challenges
we found on visualization in graph database systems, RDF
engines, DGPSes, and graph libraries, separately under Visu-
alization. We also list the challenges we found in graph
database systems and RDF engines related to query lan-
guages separately underQuery Languages. The exact counts
of emails and issues we found for each challenge is in
Table 21 in “Appendix.”
Graph database systems and RDF engines

• High-Degree Vertices: Users want the ability to process
very high-degree vertices in a special way. One common
request is to skip finding paths that go over such vertices
either for efficient querying or because users do not find
such paths interesting.

• Hyperedges: Hyperedges are edges between more than 2
vertices, e.g., a family relationship between three individ-
uals. In graph database systems andRDF engines, there is
no native way to represent hyperedges. The user discus-
sions include suggestions to simulate hyperedges, such
as having a “hyperedge vertex” and linking the vertices
in the hyperedge to this mock vertex.

• Versioning and Historical Analysis: Users want the abil-
ity to store the history of the changes made to the vertices
and edges and query over the different versions of the
graph. These requests are made in systems that do not
support versioning and the discussions are on how to add
versioning support at the application layer.

• Schema and Constraints: Users want the ability to define
schemas over their graphs, analogous to DTD and XSD
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schemas for XML data [27], usually as a means to define
constraints over their data. Examples include enforcing
that the graph is acyclic or that some vertices always have
a certain property.

• Triggers: Users ask for trigger-like capabilities in their
graph database systems. Examples include automatically
adding a particular property to vertices during insertion or
creating a backup of a vertex or an edge in the filesystem
during updates. We note that some systems do support
limited trigger functionality, such as OrientDB’s hooks
or Neo4j’s TransactionEventHandler API.

Graph visualization software:

• Customizability: One common challenge is to have the
ability to customize the layout and design of the rendered
graph, such as the shape or color of the vertices and edges.

• Layout: Another common challenge is drawing graphs
with certain structures on the screen according to a
specific layout users had in mind. The most common
example is drawing hierarchical graphs, i.e., those in
which some vertices are drawn on top of other vertices in
an organizational hierarchy. Other examples include the
drawing of star graphs, planar graphs, or a specialized
tree layout, such as a phylogenetic tree [60].

• Dynamic Graph Visualization: Several users want sup-
port for or have challenges in animating the additions,
deletions, and updates in a dynamic graph that is chang-
ing over time.

Users also have challenges in rendering large graphs with
thousands or even millions of vertices and edges.
Query languagesOne of themost popular discussions in user
emails of graph database systems and RDF engines was writ-
ing different queries in the query language of the software.
In almost every case, there was a way of satisfying the users’
needs. Below we list 2 such types of queries that could be
interesting to researchers.

• Subqueries: Many users have challenges in the expres-
sion or performance of subqueries, i.e., using a query as
part of another query. The challenges vary across differ-
ent systems. Some users want the ability to embed SQL
as a subquery in SPARQL. Other users want the results
of a subquery to be a graph that can further be queried,6

or to use a subquery as a predicate in another query.
• Querying across Multiple Graphs: A common request in
graph database systems and RDF engines is to construct
queries that spanmultiple graphs, such as using the results
of a traversal in one graph to start traversals in another.

6 This feature is called composition and is supported in SPARQL but
not in the languages of some graph database systems.

This is analogous to querying over multiple tables by
joins in RDBMSes.7

Profiling and debugging slow queries and using indices cor-
rectly to speed up queries are other common topics among
users.
DGPSes and graph libraries

• Off-the-Shelf Algorithms: The most common request we
found in DGPSes and graph libraries is the addition
of a new algorithm that users could use off the shelf.
All of these software products provide lower-level pro-
gramming APIs using which users can compose graph
algorithms. A small number of users want enhance-
ments to these APIs as well. From our review, it appears
that users of these software products find more value in
directly using an already implemented algorithm than
implementing the algorithms themselves.

• GraphGenerators:All of theDGPSes and graph libraries
in our list have modules to generate synthetic graphs.
Our review revealed that users find these graph gen-
erators useful, e.g., for testing algorithms. A common
request was the ability to generate different kinds of syn-
thetic graphs, such as k-regular graphs or randomdirected
power-law graphs.

• GPU Support: Several users, both in DGPSes and in
graph libraries, want support for running graph algo-
rithms on GPUs.

In every DGPS we reviewed, a common challenge is users’
computations running out of cluster memory or having prob-
lems when using disk. We also note that except for Gelly,
every DGPS and every graph library either have a visualiza-
tion component or users have requests to add one, showing
the importance of visualization across users of a range of
different graph technologies.

3.5 Workload breakdown

We asked the participants how many hours per week they
spend on 6 graph processing tasks and provided them with 3
choices: (i) less than 5 hours; (ii) 5 to 10 hours; and (iii) more
than 10 hours. Table 17 shows the choices and ranks the tasks
in terms of the number of participants that selectedmore than
10 hours first, then 5 to 10 hours, and then less than 5 hours.
According to this ranking, the participants spend the most
time in analytics and testing and the least time on ETL and
cleaning.

7 This functionality is supported in RDF engines but not supported in
some graph database systems.
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Table 17 Time spent by the participants on different tasks

Task 0–5h 5–10h > 10h

Analytics 30 18 23

Testing 40 12 20

Debugging 37 18 15

Maintenance 46 14 13

ETL 44 14 10

Cleaning 52 10 6

4 Applications fromwhite papers

4.1 Methodology

In order to understand the popular application areas and fields
using graph software, we surveyed the white papers of soft-
ware vendors. White papers are documents that software
vendors provide, often for marketing purposes, to give infor-
mation about the use cases of their products. In our case, we
consider white papers to be any document found on a soft-
ware vendor’s official Web site categorized as a white paper,
a use case, a case study, or a scenario. From the initial soft-
ware products in Table 1, only four graph database systems,
specifically ArangoDB, Neo4j, OrientDB and Sparksee, had
white papers. To extend our review, we add the white papers
of four RDF engines that were not in our initial list: Allegro-
Graph [6], AnzoGraph [11], GraphDB by Ontotext [70], and
Stardog [91]. We note that we only found white papers for
graph database systems and RDF engines.

For each white paper, we selected the ones that describe
an application using the product, e.g., music recommenda-
tion ormoney laundering detection.We omitted white papers
that did not describe a specific application. For example, we
omitted white papers specific to the software architecture of
a product. In the end, we reviewed 89 white papers.

4.2 Applications

We labeled each white paper with a high-level application
category and the field of industry of the customer in the case
study. Table 18 shows the different applications, the fields of
industry in which the application was covered, and the num-
ber of white papers from graph databases and RDF systems
that discussed the project. We found a total of 12 applica-
tions described in the white papers of graph databases and 5
applications in the white papers of RDF systems. As seen in
the table, there is an overlap of the applications across both
types of systems.

The three most popular applications were as follows:

• Data Integration: 44 white papers discussed primarily
some data integration task that constructed a central,

highly heterogenous graph from multiple sources. Data
integration was also referred by some white papers as
master data management or knowledge graph creation.
This category does not contain the white papers that
described primarily another main business application
but performed data integration as an initial step.
Data integration white papers briefly mentioned a variety
of other applications that would be supported by the inte-
grated data, such as enterprise search. Many of these 44
white papers, as well asmanywhite papers that discussed
a data integration initial step, emphasized that customers
found data integration easier in the semi-structured graph
models than structured relational tables.

• Personalization andRecommendations: The secondmost
popular application was the use of a graph-based appli-
cation data to personalize user interactions and provide
better recommendations for the customers of a business.
For example, one white paper described an e-commerce
Web site that created a graph representation of the behav-
ior of online shoppers and the interactions between
customers and products to help make new product rec-
ommendations [14].Another examplewas a personalized
course curriculum service based on a hierarchical course
topic relationships, represented as a graph, and the indi-
vidual progress of each student [2].
Manywhite papers avoided technical terms, but the appli-
cations described seemed to read the neighborhoods of
users, represented as nodes in the underlying graph, to
retrieve useful signals to make a recommendation.

• Fraud and Threat Detection: The third most popular
application was the detection of fraud and threats in var-
ious businesses. For example, one white paper described
the use of graphs to detect financial fraud in banks
by looking for rings in the graph formed after linking
bank accounts, personal details, and financial transac-
tions [66]. Another application detected and prevented
cyber crimes by monitoring for anomalous patterns in
network traffic [1] represented as a graph.
As a key benefit of using graphs,white papers highlighted
that, compared to their equivalent SQL formulations,
fraud patterns were easier to express as subgraph queries.
Several white papers also mentioned that relational sys-
tems were not efficient enough to support these queries.

5 Applications from interviews

5.1 Methodology

White papers give an overview of the important applications
using different software but often contain very high-level
and non-technical marketing language. To understand some
of the applications using graphs inmore depth, we invited the
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Table 18 Application areas and example uses of graphs in various fields described in graph software white papers

Application Example Fields GDB RDF Total

Data integration Building an ontology by
integrating multiple
heterogeneous biomedical data
sources

Aerospace, art and culture and
heritage, education,
entertainment, finance, food and
cooking, government, health and
life sciences, intelligence and law
enforcement, IT, journalism,
marketing, retail, social media,
toys and figurines

23 21 44

Personalization and
recommendation

Recommending products on an
e-commerce platform

Entertainment, finance, health and
life sciences, hospitality and
travel, IT, manufacturing,
marketing, media, music, retail,
social media, telecommunication

19 5 24

Fraud and threat detection Detect cybercrime by searching for
anomalous patterns

Finance, government, insurance,
media, retail

9 1 10

Risk analysis and
compliance

Risk reporting by banks to comply
with government regulations

Finance, health and life sciences,
IT, supply chain and logistics

2 3 5

Identity and access
management

Monitor direct and indirect owners
of businesses for financial
analysis

Insurance, IT, telecommunication 4 0 4

Infrastructure management
and monitoring

Manage cascading failures by
tracking server interdependencies

Intelligence and law enforcement,
IT

3 0 3

Delivery and logistics Routing and tracking delivery
parcels

Retail, supply chain and logistics 2 0 2

Social network analysis Find the most viral users with
maximum reach to other users

Social media 2 0 2

Other applications Natural language question
answering, call graph analysis,
code analysis, drug discovery,
traffic route recommendation

IT, telecommunication, traffic
management

3 2 5

participants of our online survey for an in-person interview.
Thirty-three participants had provided us with their email
addresses and 4 of them agreed. To extend our interviews,
we reached out to several of our contacts in major software
companies and graph vendors. We did 4 additional in-person
interviews: 2 developers and 2 users of graph processing soft-
ware in major enterprises.

The occupations of our interviewees were as follows:

• Two IT consultants to several large enterprises on graph
technologies.

• A developer of graph processing systems at Alibaba.
• A developer of graph processing systems at Siemens.
• A principal scientist at Amazon working on knowledge
graphs.

• Engineers from a contact management company called
FullContact [32], an electric utility company called State
Grid [92], and a start-up called OpenBEL [71] that devel-
ops data publishing tools for biologists.

We lead the interviews with an open-ended question ask-
ing the interviewee to walk us through a concrete business

application that uses graph data. The developers explained
the applications of their customers.We asked questions about
the details of the graph data, the graph computations they run,
and the graph processing software they use in their appli-
cations. In addition, we asked three extra questions to each
interviewee: (i)Where doyouusegraphvisualization? (ii)Do
you do streaming computations on your graphs? (iii) Do you
have machine learning computations that use your graphs?

5.2 Overall observations

We make four observations:

• None of the applications that used graphs representing
transactional business data used a graph database or an
RDF store as the main system of record. In each case, a
relational system was the main system of record and the
transactional data were replicated to a graph software for
the application to use. This gives a sense of where graph
databases andRDF systems are in the IT ecosystemof our
interviewees’ enterprises. The developer from Alibaba
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mentioned data replication as an important challenge for
their internal customers.

• Intervieweesmentioned visualizing graphs in data explo-
ration, debugging, query formulation, and as a presenta-
tion tool within the enterprise, for example to show a
manager the benefits of modeling an application data as
a graph.

• Our interviewees were not aware of any continuous
streaming computation performed on their graphs. Sev-
eral interviewees mentioned processing highly dynamic
graphs and buffering awindowof several hours or days of
these graphs. However, the computations in those appli-
cations were batch computations. For example, in one
case, 3 days of business data would be copied over into
a graph software to search for subgraph patterns.

• The machine learning applications that the interviewees
discussed used graphs to extract features about nodes in
a graph that were representing a business entity, such as
a product or a customer. The feature extractions involved
aggregating data from several hop neighborhoods of
nodes and in one case through a recursive path query.
These features would be used in vector representations
of nodes and used by amachine learning application to do
a prediction. We describe such a use case in Sect. 5.3.2.

We next describe some of the applications from our inter-
views in detail. We discuss several other applications in
“Appendix E.” Overall there were similarities between the
applications described by our interviewees and those from
the white papers, but we also discovered some new applica-
tions. We cover one such new application called contingency
analysis in Sect. 5.6. Some interviewees modified or omit-
ted detailed information about their applications, datasets,
queries, software, or challenges. For example, they modified
what the vertices and edges actually are or gave the approx-
imate sizes of their graphs. We report the applications as
described by the interviewees.

5.3 Recommendations

5.3.1 Keyword recommendations on Alibaba’s E-commerce
Web site

When customers enter keywords to the search text box on
Alibaba’s e-commerce Web site, several keywords that are
related to the search are recommended. These recommended
keywords often aim to increase the diversity of products the
user sees on the site. Internally, these recommendations are
made by an application that uses a very large knowledge
graph and performs parallel traversals that find and rank paths
in this knowledge graph. There are two interesting aspects of
this application:

(i) Strict latency: The recommendation needs to be done in
several milliseconds. None of the other applications we
encountered during our interviews required such strict
latencies for the computations they had to perform.

(ii) Size and generation of the graph: The underlying graph
is primarily automatically generated from other data
sources and was one of the largest graphs we encoun-
tered during our interviews.

We describe the graph, the computation performed on the
graph, and the software that stores the graph and performs
the computation.

KnowledgeGraph:8 The graph contains three types of nodes:

(i) Products: A subset, approximately 10 million, of prod-
ucts sold on Alibaba.

(ii) ProductCategories: Includes categories such as “shoes,”
“winter jackets,” “TVs,” or “electronics.”
There are approximately 10 thousand of categories.

(iii) Concepts: This is an umbrella term to refer to a very
large number of concrete and abstract real-world enti-
ties. Examples include “football,” “sports,” “China,”
“young male,” or “born in 1980s.” A small part of the
concepts are manually curated inside Alibaba and some
are obtained from the Chinese edition of Wikipedia.
However, majority of them are previous search key-
words that users have used. These are extracted from
the search logs. As we describe momentarily, these are
also the keywords that the application recommends to
users. There are approximately 100 million of these.

There are two main edge types:

(i) Product–category edges: In most cases, each product
belongs to exactly one category. So there are approxi-
mately 10 million of these.

(ii) Concept–product and concept–category edges: There
are edges between concepts and products and between
concepts and categories, indicating a relation between a
concept and a product or a category. The edges are auto-
matically generated through several techniques, such as
an analysis of the logs that contain keywords used by
users, their clicks, and purchases or using natural lan-
guage processing on reviews. To each generated edge, a
weight is assigned to indicate the strength of the connec-

8 Note that the use of term “knowledge graph” vs other terms such as
“property graph” or simply “graph” is slightly arbitrary. We found our
interviewees referring to any data stored in RDF stores as knowledge
graphs.We also found that interviewees referred to graphs that represent
abstract things, e.g., keyword topics or concepts, also as knowledge
graphs even if they were not stored in an RDF system.
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tion between the concept and the product or category.
There are over 100 billion of these edges.

Recommendation Computation: The recommendation com-
putation happens as follows: Each user is tagged with a
subset of the concepts indicating their known properties,
such as “male” vs “female,” “IT professional” vs “accoun-
tant,” or “born in 1980s.” There are several dozen such
tagged concepts. From each tagged concept, a roughly 4-hop
breadth-first search traversal is performed to find new con-
cepts. Each path from a tagged concept to each newly found
concept c is given aweight, based on the weights of the edges
on the path, and aggregated to give a relevance weight to c.
All new concepts are finally ranked, and a subset of them are
returned to the users. This entire computation has to happen
in 4ms.

Software:The graph is stored in an in-house distributed graph
database. The database stores the structure and properties on
the nodes and edges in a distributed key-value store. So, both
the neighbors and weights are stored as key-value pairs and
the 4-hop neighborhoods of nodes often need to be fetched
from different machines. Part of the graph is kept in memory
and part is kept in SSDs. The database supports the Gremlin
language [41] and the property graph model. The traversals
are written in the Gremlin traversal API and resulting paths
are aggregated in custom code written outside of Gremlin.

5.3.2 Configuration recommendation: Siemens’
automation systems

The context of our next application, also described briefly
here [58], is the configuration of industrial automation sys-
tems, a project by Siemens. Such systems are comprised of
a combination of mechanical, hydraulic, and electric devices
with complex constraints between individual component and
a multitude of choices—for example, the number of input
and output ports, line voltage, budget vs. premium options,
etc. A user, which might be an end customer or a sales rep-
resentative, incrementally builds a plan that fulfills all the
required functionalities, selecting from a product catalog.
While some configuration information is explicitly captured
in terms of product features, there is also a large amount of
tacit or implicit knowledge. One solution that Siemens has
been exploring is the use of recommendation techniques to
aid in the selection of components.

The approach combines product information as well as
past user behavior, modeled as a knowledge graph and stored
in anRDF system. Product information comes from a domain
ontology and captures semantic relations such as “has line
voltage,” “is of type,” and “contains,” as well as product hier-
archies, e.g., “S7-1500” is a subtype of “S7,” which in turn
is a specialization of a “control system.” Information of past

behavior comes from historical solutions, i.e., automation
solutions that have been previously configured.

The novelty of this project comes from the combination
of these two sources of evidence. When asked as to why a
knowledge graph as opposed to relational tables for storing
and integrating these heterogeneous sources, our intervie-
wee responded with two main reasons: first, the flexibility of
the data model and second, a knowledge graph is closer to
how users conceptualize the data. Both of these points were
echoed by the white papers and other interviewees.

Although the graph database is an important component
of the overall solution, its role is little more than a repository
of features. The actual recommendation algorithm is based
on tensor factorization: the rows and columns correspond to
entities (tens of thousands), while each slice corresponds to
one relation, e.g., “contains.” Given the entities in a partial
solution, the system’s task is to recommend the most likely
item to complete the solution (using previously configured
solutions as ground truth). That is, the tensor is materialized
from the graph database and used to train a model (written in
TensorFlow in this case). Thus,while this is perhaps an exam-
ple of a machine learning application on graph databases in
a technical sense, the integration is rather shallow.

5.4 Fraud and threat detection

Four applications described in our interview with Alibaba
and one application described by one consultant to a large
financial institutionwere related to fraud and threat detection.
There were two commonalities between these applications:

(i) Searching a subgraph pattern: Each application was
based on finding some subgraph pattern, e.g., a bipar-
tite, star, or cycle, in a very large transaction graph.

(ii) Use of graph visualization: In each case, the detected
pattern was merely a signal of a potential fraud that
triggered an inspection by other systems or a human
for further investigation. Manual human investigations
involved using a graph visualization software and explor-
ing the neighborhoods of the emerged pattern. The
consultant also mentioned using visualization for dis-
covering the pattern to search for in the first place.

We briefly review some of these applications and when pos-
sible discuss the patterns searched.

5.4.1 Fake transactions on Alibaba.com

This application detects fake transactions initiated by busi-
nesses that sell products on Alibaba’s e-commerce platform
to increase their ranking on the platform. There are two broad
patterns the application searches for: (i) cycle patterns shown
in Fig. 1a and (ii) a near-complete bipartite clique shown
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(a) (b)

Fig. 1 Patterns for detecting fake transactions

in Fig. 1b. These patterns are detected by different applica-
tions on different graphs. We describe the patterns, the input
graphs on which the patterns are searched, the software that
searches the patterns, and several challenges our interviewee
mentioned.

Cycle patterns

Pattern: The top pattern in Fig. 1a is searching for an evi-
dence that there is a business owner P1 who is paying a fake
buyer P2 to buy products from P1. In particular, the pattern
searches for transaction where P1 transfers some amount
of money from her account A1 to an account A2, belong-
ing to the fake buyer, which transfers a similar amount of
money back to an account A3 that is also owned by P1. In
a slightly more advanced version of the pattern, also dis-
cussed in a recent publication [76], a friend of P1 sends
some amount of money to the fake buyer to initiate the fake
purchase. Our interviewee noted that these cycle patterns are
simplified versions of multiple other fraud patterns searched
by other internal and external customers of Alibaba on other
transaction graphs. Detecting such cyclic patterns in fraud-
related applications also appeared in 7 use cases in the white
papers.

InputGraph:These cyclic patterns are continuously searched
for in a graph that contains data about the financial accounts
of the businesses on Alibaba, as well some social connection
information, e.g., contact information of Alibaba customers
or other available social information.

Software: The current software stack is a bit complex, but
briefly involves the following steps: (i) a stream of financial
transaction edges are buffered for a period of time, roughly
10 seconds; (ii) the necessary neighborhood of those edges
are extracted from a distributed in-house graph database; and

(iii) the pattern is searched on the extracted graph in an single-
node special solution. The extracted graph is several millions
of edges and vertices. The applications latency is roughly 30
seconds.

Bipartite patterns

Pattern: Detecting fraud through cycle patterns is difficult
because often money transfers do not go through Alibaba’s
systems. A more effective way is to find near-complete (and
not necessarily fully complete) bipartite graph of products
and customers on a graph extracted from the actual transac-
tions on the Alibaba platform.

Such patterns are signals that a large number of fake cus-
tomers buy the same set of products, say owned by the same
business. This activity is similar to click farming [22] to
increase ad revenue of Web sites. Part of Alibaba’s fraud
detection system searches for multiple large instances of the
pattern, where the pattern can contain hundreds of products
and customers.

Input Graph: In a simplified form, the application runs on a
graph that contains businesses, products, and customers as
separate nodes and sells edges between businesses and
products, purchased edges between products and cus-
tomers. These patterns are very complex and detecting them
on a large window of purchase transactions is very challeng-
ing, so the application limits the window to several days of
transactions. This generates an input graph with a few hun-
dred million nodes, and several billion edges.

Software: The application runs off-line and uses a single-
node custom-built in-memory graph processing software.

Challenges: One challenge is to detect the nodes that are
part of a pattern without enumerating the instances of these
patterns. Enumeration of patterns that have a high degree
of symmetry is expensive because across two matches of
the pattern, there can be a large overlap of the nodes. As
a simple example, consider searching for a (10, 10) com-
plete bipartite pattern and the input graph contains a (20, 10)
complete bipartite pattern. There will be

(20
10

)
many instances

of the smaller pattern inside the larger pattern, even if there
are only 30 different nodes across these matches. A second
challenge is scalability. The application would like to search
the patterns ideally across hundreds of billions of edges, by
generating the graph from amuch larger time period of trans-
actions.

Other Patterns:We omit a detailed description, but the inter-
viewee described two other use cases:

• The first application detects gambling activity on Alipay,
which is an online payment platform. The input graph
contains customers’ Alipay accounts as nodes andAlipay
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groups, a service to allow groups of people to exchange
money among themselves. The edges are membership
edges between customers and groups. For each gambling
game, a set of gamblers start and join a new group. Sim-
ilar to the fake transactions application, the pattern in its
simplified form forms a near-complete bipartite graph of
accounts and groups.

• Another application monitors attacks and threats on
Alibaba’s cloud network and traffic graph, which con-
tains information about the hosts, e.g., IP addresses, ports,
domain names, and the traffic between the hosts. The
application searches a star pattern consisting of a single
node with several labeled edges, some with regex pat-
terns, tomatch address and host name patterns. The graph
is highly dynamic, and the application searches patterns
on a snapshot that contains only a few days’ data, which
contains over 100 billion edges.

5.4.2 Application at a large financial institution

Our consultant interviewee described a fraud detection appli-
cation for a large financial institution that had customer
accounts and different transactions between accounts. The
searched pattern was quite complex and was not described in
detail. Broadly it involves searching for connected accounts
over very long paths in the graph, where the nodes that are
close to the center of these paths have an unusually high
number of transactions, i.e., edges, and amounts of transac-
tions. Interestingly, when asked how they observed that this
pattern is a signal of fraud, the interviewee said that initially
he manually searched for fraudulent patterns. Specifically,
he visualized large chunks of the graph, sometimes contain-
ing several thousands of nodes, on a visualization software,
and eyeballed known fraudsters’ activities. He noticed this
pattern as part of this visualization activity.

5.5 Question answering with personal assistant
products of Alibaba and Amazon

Alibaba andAmazon both produce voice-controlled personal
assistant products, AliGenie [5] and Alexa [4], respectively,
that can be accessed from different devices, such as smart
speakers or mobile phones for several services. One of these
services is to answer factual questions asked by human
users through speech. Our interviewees from both companies
described similar applications that use a knowledge graph to
answer these questions.

The questions asked by users can be highly varied and
require knowledge from public information, corporate infor-
mation, or user-specific information, e.g., about the movies
the user has seen. Our interviewees both described similar
applications that use a knowledge graph to answer questions.

In both cases, the interviewees could not provide the
details of these graphs but briefly mentioned that the graph
used to answer these questions include many internal and
external sources. In Alibaba’s case, the Chinese edition of
Wikipedia, information from Alibaba Music, information
about the businesses that sell products on Alibaba were
mentioned. Both interviewees mentioned the challenges of
integrating such numerous and diverse internal and external
sources.

The high-level steps of both applicationswere very similar
and consisted of components that perform voice recognition
and natural language processing to understand the impor-
tant entities used in the query. For example, in the question
“What are the movies that Tom Hanks played in 2018?”,
“Tom Hanks” would be identified as the main entity. Then
all nodes that are referred to as TomHanks are identified from
the graph and a local search is made around these nodes to
find nodes that are of type movies and have date informa-
tion. The details of these searches were not described, but in
both cases many nodes will bematched, returned, and ranked
before an answer is produced. Both interviewees mentioned
doing semantic inference using ontologies, e.g., to infer that
the word “played” is semantically related to “acted in,” to
extend the search or rank the results.

Interviewees provided few details about the software on
which the knowledge graph is stored and the search is per-
formed. In the case of Amazon, the graph was stored in RDF
format and indexed in an in-house software (not an RDF
system). In the case of Alibaba, although each edge (or fact)
in the graph was extracted as an RDF triple, the graph was
then stored in an in-house graph database that supports the
property graph model.

5.6 Contingency analysis of power failures at State
Grid

Contingency analysis is a preemptive analysis done on an
electric power grid to check the severity of different possible
failures.

Our interviewee from StateGrid described a contingency
analysis system designed for the grid in one Chinese
province. In contrast to other applications which often used
one large graph, this application, logically, uses a very large
number of small graphs. Interestingly, these graphs are very
similar to each other and the application repeats the same
computation on each graph in parallel. We describe the input
graph, the computation, and the software used by the appli-
cation.

InputGraph:The application has abase graph that represents
the components of the power grid using the abstract bus–
branch standardized model [42]:
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• Vertices correspond to buses that represent electrical
nodes, which can include power system elements like
substations, loads, and generators. Operational param-
eters such as bus id, load power, voltage magnitude,
voltage angle, self-impedance, and power injection are
stored as vertex attributes. There are approximately 2.5K
vertices.

• Edges correspond to branches that represent electrical
paths for current flows, such as transmission lines and
transformers.Operational parameters such as power flow,
line impedance, and transformer turns ratio are stored as
edge attributes. There are approximately 3K edges.

This is a dynamic graph, and the attributes on the edges are
changing every few seconds and the topology changes, e.g.,
a new node is added or removed, every few minutes.

Computation: To determine how the failure of a component
affects the flow of power in the grid, the application gen-
erates a few thousand logical derived graphs from the base
graph. Each derived graph modifies the base graph slightly,
say by removing a single edge, to simulate a potential failure.
For each derived graph G ′, the application formulates some
power equations.We do not provide the details of these equa-
tions, but an overview can be found in reference [98]. In a
simplified form, readers can think of these as equations of the
form Ax = B, where A and B are power-related matrices,
each row of which represents information about the neigh-
borhood of a vertex in the derived graph. These equations
are solved in parallel using matrix factorization. We note
that there is a significant potential to reuse the computation
results across the derived graphs, as the graphs are very simi-
lar. The solution x’s are analyzed to assign severity values to
each derived graph and an alert is raised for abnormally high
severity values, indicating the system has found a potential
failure case, which could have severe outcomes.

Software used: The base graph is stored in TigerGraph [93].
Derived graphs are logical and not explicitly stored, but their
corresponding matrices A and B are read from TigerGraph
in parallel and moved to a custom code that solves the power
flow linear algebra equations. Theoverall latencyof the appli-
cation is several seconds. Although this is not done currently,
some equations can also be directly solved using iterative
vertex-centric computations on the base graph directly [98].

6 Related work

To the best of our knowledge, our survey is the first study
that has been conducted across users and of a wide spectrum
of graph technologies and various public information about
these technologies to understand graph datasets, computa-

tions, and software that is in use, the business applications
that use graphs and the challenges users face.

Several surveys in the literature have conducted user stud-
ies to compare the effectiveness of different techniques used
to perform a particular graph processing task, primarily in
visualization [19,46] and query languages [50,74,77]. Addi-
tionally, several software vendors have conducted surveys of
their users to understand how their software is used to pro-
cess graphs. Some of these surveys are publicly available
[31,67,89]. However, these surveys are limited to studying a
specific software product.

There are also numerous surveys in the literature study-
ing different topics related to graph processing. Examples
include surveys on query languages for graph database
systems and RDF engines [10,44,47], graph algorithms
[3,45,53,97], graph processing systems [16,61], and visu-
alization [24,95]. These surveys do not study how users use
the technologies in practice.

7 Conclusion and future work

Managing and processing graph data are prevalent across a
wide range of fields in research and industry.We surveyed 89
users, interviewed 8 users, and reviewed user emails, code
repositories, and white papers of a large suite of software
products. The participants’ responses and our review pro-
vide useful insights into the types of graphs users have, the
software and computations users use, the business appli-
cations they develop, and the major challenges users face
when processing their graphs. We hope that these insights
and in particular the challenges we highlight will help guide
research on graph processing.

We conclude with two final remarks. First, we found
product–order–transaction graphs to be themost popular type
of graph. Workloads that process these product data appear
in popular SQL benchmarks, such as TPC-C [94], and are
well studied in research on relational systems. However, sev-
eral existing graph benchmarks, such as LDBC [59] and
Graph500 [36], do not yet provide workloads and data to
process product graphs. One such benchmark is the WatDiv
benchmark [7] that generates RDF triples containing infor-
mation about products and purchases. Developing similar
benchmarks and popularizing their use would be highly ben-
eficial to the research community. Such benchmarks are great
facilitators of research.

Second, query languages and APIs emerged as one of the
top challenges in our survey and certainly the most popu-
lar discussion topic in emails and code repositories. These
challenges can be partly mitigated by a collaborative effort
to standardize the query languages of different graph soft-
ware that satisfy users’ needs. One such successful effort is
the adoption of SPARQL as a standard for querying RDF
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data. Similar efforts are ongoing for developing standard
query languages and JDBC-like interfaces [51] for property
graphs, such as the Gremlin language [79] and the efforts to
combine openCypher [72], PGQL [78], and G-CORE [9] to
create GSQL [43]. There is also ongoing effort to develop a
standard set of linear algebra operations for expressing graph
algorithms [64].
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A Choices of graph computations

One way to ask this question is to include a short-answer
question that asks “What queries and graph computations do
you perform on your graphs?”. However, the terms graph
queries and computations are very general and we thought
this version of the question could be under-specified.We also
knew that participants respond less to short-answer ques-
tions, so instead we first asked a multiple-choice question
followed by a short-answer question for computations that
may not have appeared in the first question as a choice.

In a multiple-choice question, it is very challenging to
provide a list of graph queries and computations from which
participants can select, as there is no consensus on what con-
stitutes a graph computation, let alone a reasonable taxonomy
of graph computations. We decided to select a list of graph
queries and computations that appeared in the publications
of six conferences, as described in Sect. 2.2. We use the term
graph computation here to refer to a query, a problem, or an
algorithm.

For each of the 90 papers, we identified each graph com-
putation, if (i) it was directly studied in the paper; or (ii) for
papers describing a software, it was used to evaluate the
software. We used our best judgment to categorize the com-
putations that were variants of each other or appeared as
different names under a single category. For example, we
identified motif finding, subgraph finding, and subgraph
matching as subgraph matching. When reviewing papers
studying linear algebra operations, e.g., amatrix–vectormul-
tiplication, for solving a graphproblemsuch asBFS traversal,

we identified the graph problem and not the linear algebra
operation as a computation.

Finally, for each identified and categorized computation,
we counted the number of papers that study it and selected
the ones that appeared in at least 2 papers. In the end, we
provided the participants with the 13 choices that are shown
in Table 10.

B Choices of machine learning computations

Similar to graph computation,machine learning computation
is a very general term. Instead of providing a list of ad hoc
computations as choices, we reviewed each machine learn-
ing computation that appeared in the 90 graph papers we had
selected. Specifically, the list of machine learning compu-
tations we identified included the following: (i) high-level
classes of machine learning techniques, such as clustering,
classification, and regression; (ii) specific algorithms and
techniques, such as stochastic gradient descent and alter-
nating least squares that can be used as part of multiple
higher-level techniques; and (iii) problems that are com-
monly solved using a machine learning technique, such as
community detection, link prediction, and recommendations.
We then selected the computations, i.e., high-level tech-
niques, specific techniques, or problems, that appeared in
at least 2 papers. As in the graph computations question, we
used our best judgment to identify and categorize similar
computations under the same name.

C Storage inmultiple formats

We asked the 33 participants who said that they store their
data in multiple formats, which formats they use as a short-
answer question. Out of the 33 participants, 25 responded.
Their responses contained explicit data storage formats as
well as the internal formats of different software. Table 19
shows the number of responses we received for the main
formats. A relational database and a graph database format
combination was the most popular combination. Other com-
binations varied significantly, examples of which include
HBase and Hive, GraphML and CSV, and XML and triple-
store.

D Other tables from the survey

Table 20 shows the sizes of graphs we found in user emails
and issues. Table 21 shows the number of emails and issues
we identified for each specific challenge we discussed in
Sect. 3.4.2. Table 22 shows the total number of emails and
issues we reviewed for each software product from January
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Table 19 Data storage formats

Data storage format #

Graph databases 10

Relational databases 8

RDF store 5

NoSQL store (Key-value, HBase) 5

XML/JSON 4

JGF/GML/GraphML 4

CSV/text files 3

Elasticsearch 3

Binary 2

Table 20 Graph sizes in user
emails and issues

Vertices #

(a) Number of vertices

100 M–1 B 10

1 B-10 B 17

10 B–100 B 1

> 100B 2

Edges #

(b) Number of edges

1 B–10 B 42

10 B–100 B 17

100 B–500 B 6

> 500B 1

Table 21 Challenges found in user emails and issues

Challenge #

Graph DBs and RDF engines

High-degree vertices 24

Hyperedges 18

Triggers 18

Versioning and historical analysis 14

Schema and constraints 10

Visualization software

Layout 31

Customizability 30

Large graph visualization 8

Dynamic graph visualization 4

Query languages

Subqueries 7

Querying across multiple graphs 6

DGPS and graph libraries

Off-the-shelf algorithms 41

Graph generators 7

GPU support 3

to September of 2017. The table also shows the number of
commits in the code repositories of each software product
during the same period.

E Other applications from interviews

Large-Scale Data Integration for Analysis of Turbines: Our
interviewee from Siemens described an application that
Siemens engineers use to analyze different properties of gas
turbines Siemens produces using a knowledge graph. The
application emphasized the advantage of using graphs to inte-
grate different sources of corporate data, in this case mainly
about where turbines are installed, measurements from the
installed turbines’ sensors, and information about mainte-
nance activity on the turbines. The knowledge graph is stored
in an RDF engine and engineers ask queries, such as “What is
the mean time failure of turbines with coating loss?” through
a visual interface where they navigate the different types of
nodes in the knowledge graph and express aggregations. The
visually expressed queries get translated to SPARQLqueries.

Contact Deduplication: One of our interviews was with two
engineers from a company called FullContact that manages
contact information about individuals by integrating public
and manually curated information, which is sold to other
businesses. An over 10 B-edge and 4 B-vertex graph models
this contact information as follows: nodes represent differ-
ent pieces of information, such as addresses, phone numbers,
and edges between nodes indicate the likelihood that the
information belongs to the same individual. The company
uses GraphX to run a connected component-like algorithm
to finding the contacts that are likely to belong to the same
individual.

Other applications using knowledge graphs: One of our
interviewees was a consultant to a chemical company spe-
cializing in agricultural chemicals. The company has an over
30 billion-edge knowledge graph on pesticides, seeds, chem-
icals that are stored in a commercial RDF system. This graph
is used by many applications, such as, to track the evolution
of seeds, to power internal wiki pages and tools used by ana-
lysts. Another interviewee was the founder of a start-up that
works on tools that can be used by biologists to publish bio-
logical knowledge. Our interviewee described examples of
knowledge graphs that model the cellular activity in the con-
text of different species’ different tissues. Triples included
facts about which genes transcribe which protein and which
proteins’ presence decreases other proteins’ presence, etc.
[71]. The example applications were similar broadly to our
interviewee from the chemical company and powerwikis and
Web site which biologists use to analyze these interactions.
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Table 22 Number of reviewed emails and issues, and the code commits in the repositories of each software product

Technology Software #Emails #Issues #Commits

Graph database system ArrangoDB 140 466 5264

Caley 50 57 151

DGraph 175 558 760

JanusGraph 225 308 411

Neo4j 286 243 4467

OrientDB 169 668 918

Sparksee 8 NA NA

RDF engine Apache Jena 307 126 471

Virtuoso 72 61 179

Distributed graph processing engine Apache Flink (Gelly) 34 68 48

Apache Giraph 19 34 23

Apache Spark (GraphX) 23 28 11

Query language Gremlin 409 206 1285

Graph library Graph for Scala 10 12 18

GraphStream 18 26 7

Graphtool 121 66 172

NetworKit 37 30 236

NetworkX 78 148 171

SNAP 57 17 34

Graph visualization Cytoscape 388 264 8

Elasticsearch X-Pack Graph 50 38 NA

Gephi NA 147 10

Graphviz NA 58 277

Graph representation Conceptual graphs 30 NA NA
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