Smoothing Techniques for Adaptive Online Language Models: Topic Tracking in Tweet Streams

August 24, 2011

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Talk in one slide

- "Fast data" = data at high velocity
 - Need for fast, constant-space, constant-time algorithms
- Problem: topic detection in the tweet stream
- Solution: adaptive streaming language models
 - Design considerations: recency and sparsity
- Conclusion: simple techniques work well... K.I.S.S.

No data like more data!

(Banko and Brill, ACL 2001) (Brants et al., EMNLP 2007)

Volume "big data"

"fast data" Velocity

Variety "heterogeneous data"

Twitter by the numbers...

- 140 characters
- o 200m+ users
- 200m+ tweets per day
- Delivering 350b tweets per day

We need fast, constant-space, constant-time, algorithms!

Problem... and Solution

- Topic tracking: show me tweets of interest
 - Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)
 - Definition of convenience: lots of (free) annotated data
 - Relatively small number, human curation not impossible
- K.I.S.S.
- Proposed solution:
 - Model topics using language models (streaming!)
 - Classify tweets based on perplexity

Language Models

• Probability distribution

 $P(w_1, w_2, ..., w_n) = P(w_1)P(w_1 | w_2)P(w_3 | w_1, w_2)...P(w_n | w_1...w_{n-1})$ [by chain rule]

- Unigram LMs: $P(w_n | w_1 ... w_{n-1}) \approx P(w_n)$
- Bigram LMs: $P(w_n | w_1 ... w_{n-1}) \approx P(w_n | w_{n-1})$
- Perplexity
 - Captures "surprise":

$$pow\left[2, -\frac{1}{N}\sum_{i=1}^{n}\log_2 P(w_i)\right]$$

- Classify based on perplexity threshold
- Different thresholds realize different precision/recall tradeoffs

Important Issues

- Recency: need to keep track of recent events
- Sparsity: need to smooth
- General strategy = integrate two components
 - "Foreground model" to keep (recent) up-to-date statistics
 - "Background model" to combat sparsity
- Key questions:
 - How do we keep track of history?
 - How do we smooth?

History

- Context size:
 - 1000 terms, 10000 terms
 - Think of it as a "buffer"
- Different methods for maintaining context:
 - "Forget": forget everything periodically
 - "Queue": moving window
 - "Epoch": throw away infrequent events periodically (Goyal et al., NAACL 2009)

Smoothing (I)

- Notation
 - Count of term within context (i.e., history): c(w;h)
 - Background model (MLE over one month): $P_{\beta}(w)$
- Absolute Discounting

• Jelinek-Mercer smoothing

Smoothing

• Bayesian smoothing using Dirichlet priors

$$P(w) = \frac{c(w;h) + \mu \cdot P_{\beta}(w)}{\sum_{w} c(w;h) + \mu}$$

• "Normalized" Stupid Backoff (Brants et al., EMNLP 2007)

$$P(w) = \begin{cases} \frac{1}{1+\alpha} \cdot \frac{c(w;h)}{\sum_{w} c(w;h)} & \text{if } c(w;h) > 0 \\ \frac{\alpha}{1+\alpha} \cdot P_{\beta}(w) & \text{otherwise} \end{cases} = \text{background}$$

Experimental Setup

- Data
 - Week 10/1/2010 to 10/7/2010
 - ~94m tweets per day, ~11m contain hashtags
 - Background model: 2.7b tweets from entire month of 9/2010
- Ten topics:
 - #nfl
 - #apple
 - #glee
 - #jerseryshore
 - #teaparty
 - #fashion
 - ...

Intrinsic Evaluation: Methodology

- Separate experimental run for each topic
- Replay tweets:
 - Discard tweets without appropriate hashtag
 - Remove hashtag
 - Compute perplexity wrt model
 - Update model
- Compared perplexity of
 - Baseline "background" only
 - Different "background" + "foreground" combinations: smoothing and history retention techniques

Intrinsic Evaluation: Results

- Generally, Jelinek-Mercer achieves lowest perplexity
 - Normalized stupid backoff not very good...
- Context:
 - Longer is better, but shorter isn't that bad
 - "Queue" works well, but "Forget" isn't that bad
- Observations:
 - Per topic perplexity varies a lot: #apple (low), #fashion (high)
 - Adding "foreground" helps to varying degrees:
 #apple (not much), #nfl (a lot)

Extrinsic Evaluation: Methodology

- Separate experimental run for each topic
- Replay tweets:
 - Remove hashtag
 - Classify (given perplexity threshold)
 - Update model
- Plot precision/recall graphs by varying perplexity thresholds

Extrinsic Evaluation: Results

Normalized stupid backoff is at least as good as other smoothing techniques

Extrinsic Evaluation: Results

Extrinsic Evaluation: Unigram vs. Bigram

Bigram LMs start to model fluency... but this is essentially a keyword spotting task!

Results: Summary

- Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff
- Extrinsic evaluation: Normalized Stupid Backoff at least as good as other techniques... sometimes better
- K.I.S.S.

Back to the beginning

- "Fast data" = data at high velocity
 - Need for fast, constant-space, constant-time algorithms
- Problem: topic detection in the tweet stream
- Solution: adaptive streaming language models
 - Design considerations: recency and sparsity
- Conclusion: simple techniques work well... K.I.S.S.

We need more work on fast data!

What's the MapReduce of high-volume streaming data?

Questions?

...btw, we're hiring

Twittering Machine. Paul Klee (1922) watercolor and ink

and to the

1.15