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Talk in one slide	


  “Fast data” = data at high velocity	

  Need for fast, constant-space, constant-time algorithms	


  Problem: topic detection in the tweet stream	


  Solution: adaptive streaming language models	

  Design considerations: recency and sparsity	


  Conclusion: simple techniques work well… K.I.S.S.	




No data like more data!	
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Twitter by the numbers…	


  140 characters	


  200m+ users	


  200m+ tweets per day	


  Delivering 350b tweets per day	


We need fast, constant-space, constant-time, algorithms!	




Problem… and Solution	


  Topic tracking: show me tweets of interest	

  Stable interests, denoted by hashtags (#nfl, #apple, #glee, etc.)	


  Definition of convenience: lots of (free) annotated data	


  Relatively small number, human curation not impossible	


  K.I.S.S.	


  Proposed solution:	

  Model topics using language models (streaming!)	


  Classify tweets based on perplexity	




Language Models	


  Probability distribution	


  Unigram LMs:	


  Bigram LMs:	


  Perplexity	

  Captures “surprise”:	


  Classify based on perplexity threshold	


  Different thresholds realize different precision/recall tradeoffs 	
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Important Issues	


  Recency: need to keep track of recent events	


  Sparsity: need to smooth	


  General strategy = integrate two components	

  “Foreground model” to keep (recent) up-to-date statistics	


  “Background model” to combat sparsity	


  Key questions:	

  How do we keep track of history?	


  How do we smooth?	




History	


  Context size:	

  1000 terms, 10000 terms	


  Think of it as a “buffer”	


  Different methods for maintaining context:	

  “Forget”: forget everything periodically	


  “Queue”: moving window	

  “Epoch”: throw away infrequent events periodically (Goyal et al., NAACL 2009)	




Smoothing (1)	


  Notation	

  Count of term within context (i.e., history):	


  Background model (MLE over one month):	


  Absolute Discounting	


  Jelinek-Mercer smoothing	
€ 

P(w) =
max(c(w;h) −δ,0)

c(w;h)
w

∑
+

δ⋅ wn

c(w;h)
w

∑
Pβ (w)€ 

Pβ (w)

€ 

c(w;h)

€ 

P(w) = λ
c(w;h)
c(w;h)

w
∑

+ 1− λ( )⋅ Pβ (w)

foreground	
 background	


foreground	
 background	




Smoothing	


  Bayesian smoothing using Dirichlet priors	


  “Normalized” Stupid Backoff (Brants et al., EMNLP 2007)	
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Experimental Setup	


  Data	

  Week 10/1/2010 to 10/7/2010	


  ~94m tweets per day, ~11m contain hashtags	


  Background model: 2.7b tweets from entire month of 9/2010	


  Ten topics:	


  #nfl	

  #apple	


  #glee	


  #jerseryshore	


  #teaparty	


  #fashion	

  …	




Intrinsic Evaluation: Methodology	


  Separate experimental run for each topic	


  Replay tweets:	

  Discard tweets without appropriate hashtag	


  Remove hashtag	


  Compute perplexity wrt model	


  Update model	


  Compared perplexity of	


  Baseline “background” only	

  Different “background” + “foreground” combinations: smoothing and 

history retention techniques	




Intrinsic Evaluation: Results	


  Generally, Jelinek-Mercer achieves lowest perplexity	

   Normalized stupid backoff not very good…	


  Context:	

  Longer is better, but shorter isn’t that bad	


  “Queue” works well, but “Forget” isn’t that bad	


  Observations:	

  Per topic perplexity varies a lot: ���

#apple (low), #fashion (high)	


  Adding “foreground” helps to varying degrees: ���
#apple (not much), #nfl (a lot)	




Extrinsic Evaluation: Methodology	


  Separate experimental run for each topic	


  Replay tweets:	

  Remove hashtag	


  Classify (given perplexity threshold)	


  Update model	


  Plot precision/recall graphs by varying perplexity thresholds	




Extrinsic Evaluation: Results	
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Normalized stupid backoff is at least as good as other smoothing techniques	


Unigram LM	




Extrinsic Evaluation: Results	
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Extrinsic Evaluation: Unigram vs. Bigram	
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Bigram LMs start to model fluency… but this is essentially a keyword spotting task!	




Results: Summary	


  Intrinsic evaluation: Jelinek-Mercer > Normalized Stupid Backoff	


  Extrinsic evaluation: Normalized Stupid Backoff at least as good 
as other techniques… sometimes better	


  K.I.S.S.	




Back to the beginning	


  “Fast data” = data at high velocity	

  Need for fast, constant-space, constant-time algorithms	


  Problem: topic detection in the tweet stream	


  Solution: adaptive streaming language models	

  Design considerations: recency and sparsity	


  Conclusion: simple techniques work well… K.I.S.S.	


We need more work on fast data!	


What’s the MapReduce of high-volume streaming data?	




Questions?	

…btw, we’re hiring	


Twittering Machine. Paul Klee (1922) watercolor and ink 


