On the Separation of Logical and Physical Ranking Models for Text Retrieval Applications

Jimmy Lin, Xueguang Ma, Joel Mackenzie, and Antonio Mallia DESIRES 2021 • Thursday, September 16, 2021

What's the opposite of logical?

illogical? Wrong! physical, of course!

tl;dr –

Information Retrieval breaks down into two components:

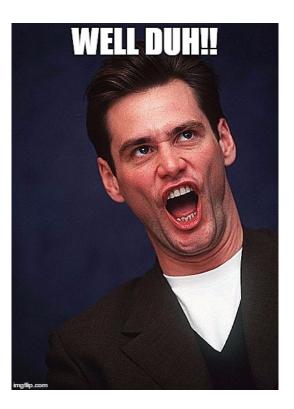
The Logical Scoring Model (how to compute query-document scores)

$$s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q),\eta_d(d))$$

(how to retrieve top-k scoring documents from corpus)

$$\underset{d \in \mathcal{D}}{\operatorname{arg top-k}} \phi(\eta_q(q), \eta_d(d))$$

(of course, borrowing from database systems)



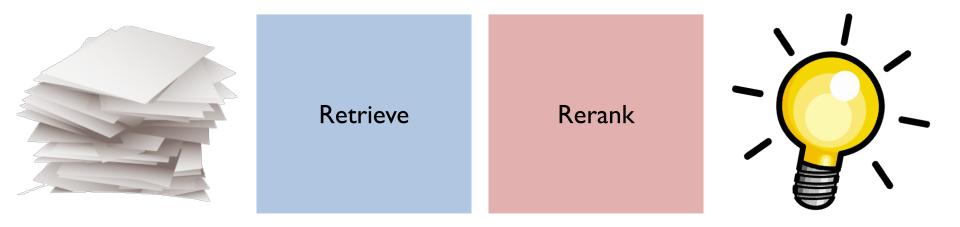
Goal: to convince you that this isn't just pointless symbol manipulation.

Context

For a long time, I thought IR was becoming pretty boring....

Source: flickr (tapasinthesun/49114923568)

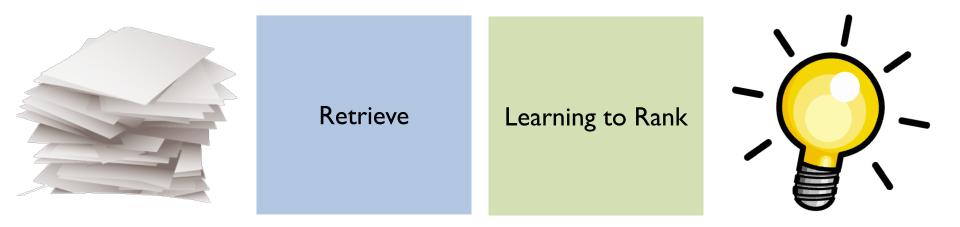
Information Retrieval in Two Steps document (ad hoc) retrieval

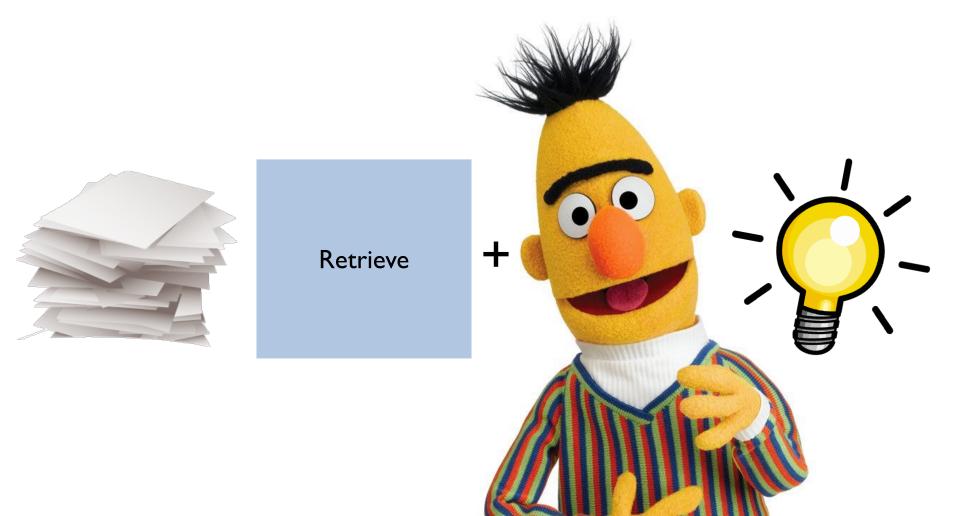


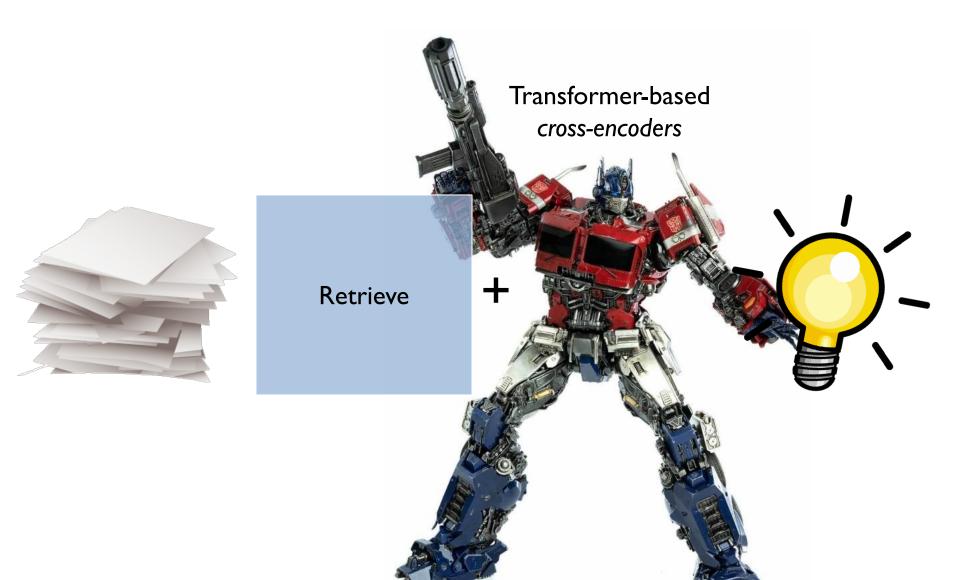
RetrieveLearning to RankMulti-stage ranking
Early exits
Selective evaluation
......Wariations on a theme!

Yawn...

Source: Wikipedia



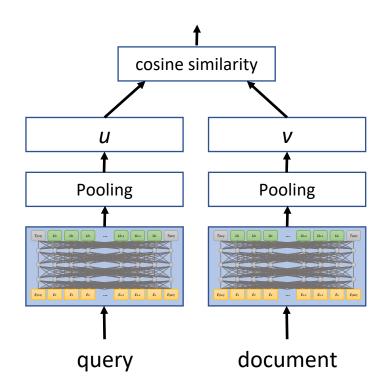




Yawn...

Source: Wikipedia

Enter dense retrieval...



Why is dense retrieval exciting?

Different ways of using transformers (bi-encoders vs. cross-encoders)

Interesting effectiveness-efficiency tradeoffs (less effective than cross-encoders, but much faster)

Versatile

(single-stage ranking and first-stage ranking)

Different "software stack" (inverted indexes vs. HNSW)

What's the relationship between dense retrieval and sparse retrieval?

Hint: I've already shared the answer!

Information Retrieval breaks down into two components:

The Logical Scoring Model (how to compute query-document scores)

$$s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q),\eta_d(d))$$

The Physical Retrieval Model

(how to retrieve top-k scoring documents from corpus)

$$\underset{d \in \mathcal{D}}{\operatorname{arg top-k}} \phi(\eta_q(q), \eta_d(d))$$

BTW, this isn't a new idea...

Previous Work

Discussion of representational separation in IR

Fuhr. Models for integrated information retrieval and database systems. 1996.

Implementing retrieval directly in databases

Héman et al. Efficient and flexible information retrieval using MonetDB/X100. CIDR 2007. GeeseDB!

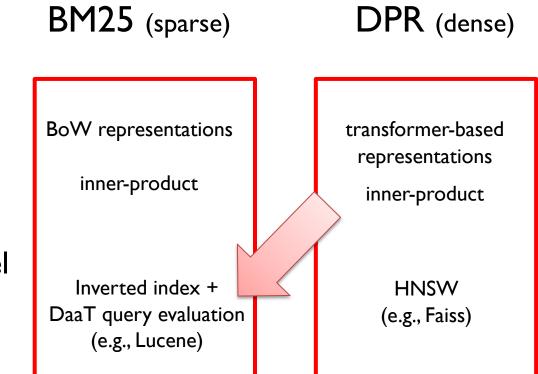
Let's apply this to analyze dense and sparse retrieval...

	BM25 (sparse)	DPR (dense)
The Logical Scoring Model $s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q), \eta_d(d))$	BoW representations inner-product	transformer-based representations inner-product
The Physical Retrieval Model arg top-k $\phi(\eta_q(q), \eta_d(d))$ $_{d \in \mathcal{D}}$	Inverted index + DaaT query evaluation (e.g., Lucene)	HNSW (e.g., Faiss)

"Traditional" tight coupling

Why?

Other combinations are possible!



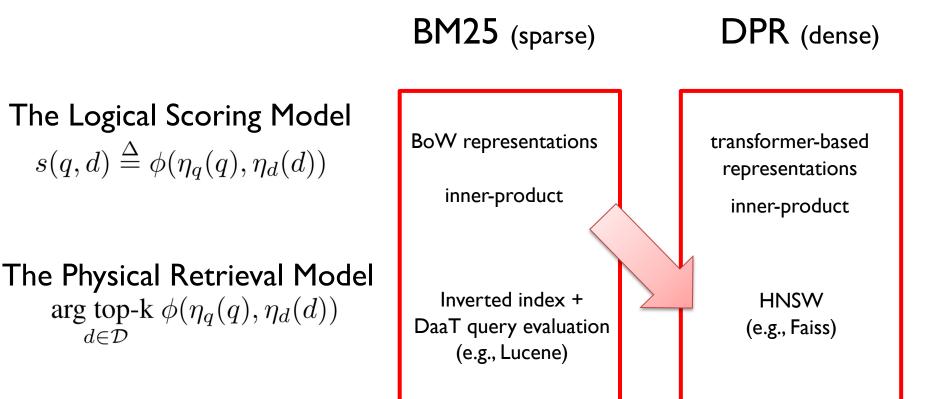
Teofili and Lin. Lucene for Approximate Nearest-Neighbors Search on Arbitrary Dense Vectors. *arXiv:1910.10208*, 2019.

The Logical Scoring Model $s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q), \eta_d(d))$

The Physical Retrieval Model arg top-k $\phi(\eta_q(q), \eta_d(d))$ $_{d \in D}$

Other combinations are possible!

 $d \in \mathcal{D}$



Tu et al. Approximate Nearest Neighbor Search and Lightweight Dense Vector Reranking in Multi-Stage Retrieval Architectures. ICTIR 2020.

			Quality	Time	Space
	Met	hod	MRR@10	Latency	Index Size
				(ms)	(MB)
	Anse	erini (Lucene)			
	(1a)	Bag of words	0.187	40.1	661
	(1b)	doc2query-T5	0.277	62.8	1036
	(1c)	DeepImpact (quantized)	0.325	244.1	1417
	PISA				
	(2a)	Bag of words	0.187	8.3	739
	(2b)	doc2query-T5	0.276	11.9	1150
	(2c)	DeepImpact (quantized)	0.326	19.4	1564
nmslib HNSW					
	(3a)	DeepImpact	0.299	21.9	6686
	(3b)	DeepImpact (quantized)	0.298	22.5	6686

Table 1

Experimental results on the development queries of the MS MARCO passage ranking test collection.

Same logical scoring model, different physical retrieval models! Different quality-time-space tradeoffs!

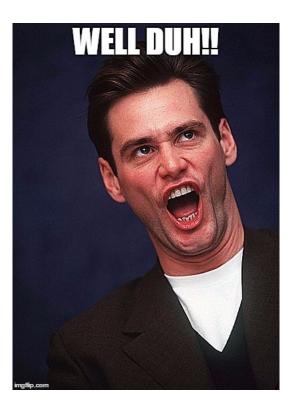
Mallia et al. Learning Passage Impacts for Inverted Indexes. SIGIR 2021.

	Quality	Time	Space		
Method	MRR@10	Latency	Index Size		
		(ms)	(MB)		
Anserini (Lucene)					
(1a) Bag of words	0.187	40.1	661		
(1b) doc2query–T5	0.277	62.8	1036		
(1c) DeepImpact (quantized)	0.325	244.1	1417		
PISA					
(2a) Bag of words	0.187	8.3	739		
(2b) doc2query–T5	0.276	11.9	1150		
(2c) DeepImpact (quantized)	0.326	19.4	1564		
nmslib HNSW					
(3a) DeepImpact	0.299	21.9	6686		
(3b) DeepImpact (quantized)	0.298	22.5	6686		

Table 1

Experimental results on the development queries of the MS MARCO passage ranking test collection.

So? PISA dominates in all tradeoffs!



My goal: to convince you that this isn't just pointless symbol manipulation.

tl;dr – Information Retrieval breaks

down into two components:

The Logical Scoring Model (how to compute query-document scores)

$$s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q),\eta_d(d))$$

The Physical Retrieval Model

(how to retrieve top-k scoring documents from corpus)

$$\underset{d \in \mathcal{D}}{\operatorname{arg top-k}} \phi(\eta_q(q), \eta_d(d))$$

This provides a nice conceptual framework to think about dense/sparse retrieval!

BM25 (sparse)

DPR (dense)

The Logical Scoring Model $s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q), \eta_d(d))$

BoW representation

inner-product

transformer-based representations inner-product

The Physical Retrieval Model arg top-k $\phi(\eta_q(q), \eta_d(d))$

 $d{\in}\mathcal{D}$

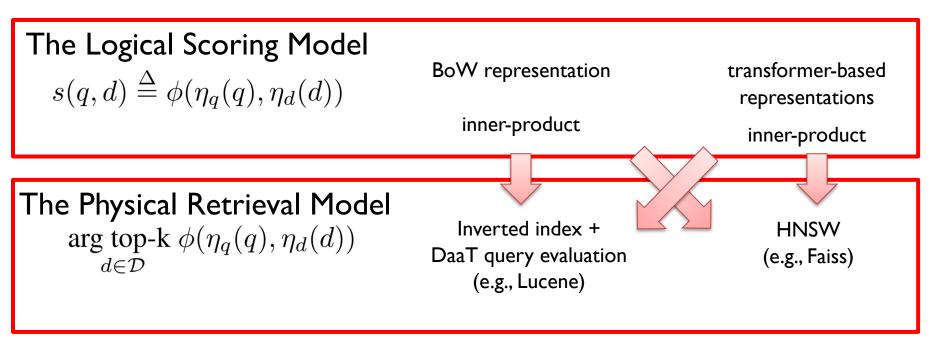
Inverted index + DaaT query evaluation (e.g., Lucene) HNSW (e.g., Faiss)

	BM25 (sparse)	DPR (dense)
The Logical Scoring Model $s(q,d) \stackrel{\Delta}{=} \phi(\eta_q(q), \eta_d(d))$	BoW representation inner-product	transformer-based representations inner-product
The Physical Retrieval Model arg top-k $\phi(\eta_q(q), \eta_d(d))$ $_{d \in \mathcal{D}}$	Inverted index + DaaT query evaluation (e.g., Lucene)	HNSW (e.g., Faiss)

"Traditional" tight coupling

BM25 (sparse)

DPR (dense)



Logical/Physical Separation

For a long time, I thought IR was becoming pretty boring...

Source: flickr (tapasinthesun/49114923568)

Dawn of a new era? It's an exciting time to do research!

Questions?