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W hat’s growing faster, Big Data or Moore’s 
Law?

It’s undeniable that the amount of 
data that organizations must store, process, 
organize, and analyze is growing rapidly. This 
requires increasingly larger clusters and data-
centers, as well as increasingly complex software 
infrastructure to orchestrate the necessary com-
putations. But is Big Data growing faster than 
Moore’s Law is lowering the costs of computing 
capabilities to accomplish these tasks? For rhetor-
ical convenience, I’m using Big Data to refer to all 
the things we want to do on massive collections 
of data, and Moore’s Law to refer to exponen-
tial increases in computing capabilities for doing 
it. It’s worth emphasizing that I don’t literally 
mean the periodic doubling of transistors on a 
chip; I use Moore’s Law as a convenient short-
hand to refer to continued exponential advances 
in computing.

Logically, there are only three possibilities:

1.	Big Data is growing faster than Moore’s Law.
2.	Big Data is growing at the same rate as 

Moore’s Law.
3.	Big Data is growing slower than Moore’s Law.

The first two scenarios aren’t particularly inter-
esting: In the first case, what we can store will be 
bounded by Moore’s Law and the rest of the data will 
need to be processed in real time (and then thrown 
away). The second case is essentially the status quo 
(hence, uninteresting). The third scenario, however, 
is intriguing: it suggests that computing capabilities 
are going to “catch up” to Big Data at some point. In 
other words, Big Data is a transient problem.

Defining the Question
What do I mean by a transient problem? Here’s 
an analogy that might resonate with many: I 
remember when digital music first burst upon the 
scene about two decades ago. At the time, storing 

all those MP3s on my (gasp, desktop!) computer 
was a big deal. I distinctly remember my music 
collection consuming most of my hard drive, and 
having to sacrifice (delete) some files to make 
room for others. Over time, however, keeping 
MP3s around became less and less of a prob-
lem: storage technology improved many-fold, 
whereas the amount of music I could consume 
had a clear upper bound (24 hours in a day), and 
beyond a certain point, increased encoding qual-
ity didn’t make a difference (at least to my ears). 
Today, all the music I could possibly want to lis-
ten to easily fits in my pocket (on my phone). In 
this sense, digital music storage was a transient 
problem that technology solved. Is Big Data the 
same way?

Of course, I’m assuming that Moore’s Law 
will continue for some time, or more generally, 
exponential increases in computing technology 
will continue unabated. Obviously, there are 
physical limits,1 but we’re still pretty far from 
those. What do I mean by “for some time?” I have 
left this deliberately vague, because it depends 
on the particular prediction: when examining 
extrapolations of computing capabilities (“sup-
ply”) with the demands of Big Data, it only mat-
ters if the pace of technological improvement 
will “hold up” until the anticipated crossover 
point. As to the broader question about con-
tinued technological progress (dire predictions 
about the end of Dennard Scaling notwithstand-
ing), it depends on whether you’re Cornucopian 
or Malthusian. This philosophical argument is 
beyond the scope of my piece, although I would 
note that Malthusians have essentially been 
wrong every time, because human civilization 
is still around and we don’t (yet) live in a post-
apocalyptic wasteland.

In this article, I only focus on human-generated 
data and leave aside data from scientific instru-
ments (such as the Large Hadron Collider and 
the Square Kilometer Array), remote sensing (for 
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example, satellite imagery), surveil-
lance (including traffic cameras), and 
related applications because the eco-
nomics are quite different. Human-
generated data benefit from what Jeff 
Bezos calls the flywheel: the virtuous 
cycle where insights from user-gen-
erated data are exploited to improve 
products and services, which lead to 
broader usage and even more user-
generated data, thus closing the loop. 
Amazon, Google, Facebook, Uber, and 
countless other companies are all built 
on this powerful driver. In contrast, the 
economics of data not generated by 
humans are very different (and in some 
ways, less interesting).

Note that my definition of human-
generated data is fairly expansive: it 
includes all forms of data generated by 
humans, including those in databases 
(for example, Amazon’s vast product 
catalog is human generated in the sense 
that the products for sale are produced 
and consumed by humans), behavior 
logs, personal medical records, and 
even some aspects of the Internet of 
Things (the data generated by connected 
appliances are ultimately derived from 
human activity).

Data Bounds
The upper bound on human-generated 
data is the product of two terms: total 
human activity and the amount of data 
generated per unit time, or the data 
density. Let’s examine the first term: by 
most accounts, the human population 
will stabilize sometime relatively soon. 
The “medium” scenario of Samir KC 
and Wolfgang Lutz2 shows a continued 
world population increase, resulting in 
9.17 billion in 2050, peaking around 
9.4 billion in the 2070s, and declining 
somewhat to 9 billion by 2100. A com-
peting analysis by Patrick Gerland and 
his colleagues3 is somewhat more pes-
simistic, arguing that world population 
stabilization is unlikely this century. 
According to their models, there’s an 
80 percent probability that the world 
population will increase to between 
9.6 and 12.3 billion in 2100.

Regardless, there appears to be a 
consensus that overall fertility rates 
are decreasing — the debate is mostly 
over how quickly — so the point 
remains that the human population 
on this planet won’t grow indefinitely. 
This means, in turn, that there’s a 
finite upper bound on human activ-
ity; after all, there are only 24 hours 
in a day. My analysis depends on the 
assumption that the human popu-
lation won’t grow without bound, 
which means that when we start colo-
nizing the galaxy, all bets are off!

Let’s look at the second term, the 
data density. As a specific case, con-
sider the amount of human-generated 
textual data on the Web (for exam-
ple, HTML pages): evidence suggests 
that it’s growing slower than Moore’s 
Law. Andrew Trotman and Jinglan 
Zhang present quite reasonable pro-
jections suggesting that by the mid-
dle of the next decade, “the storage 
capacity of a single hard drive will 
exceed the size of the index of the 
Web at that time,” and that “within 
another decade it will be possible to 
store the entire searchable text on the 
same hard drive.”4 They explore the 
implications of this for the design of 
search engines, which is interesting 
but beyond the scope of the current 
discussion. You might quibble with 
the details of their projections, but 
the underlying point remains: when 
we talk about text, it’s not growing 
as fast as we have room to store and 
index it.

The challenge in extending this 
argument to all human-generated 
media is that there’s no upper bound 
to data density except for special 
cases like text, since we can arbitrarily 
improve sensor resolution (we’ll even-

tually run into quantum limits, I sup-
pose, but we’re far from those). The 
argument with textual data “works” 
because text has a low and constant 
data density — which isn’t the case with 
images and video, for example. What 
if we include all human-generated  
images and video on the Web? Imagine 
a dystopian future where all humanity 
does is create YouTube videos all day 
long: although the content’s length in 
hours would be bounded, the data’s 
size wouldn’t, since the resolution 
could be made arbitrarily better. You 
might counter with the observation 
that, beyond a certain resolution, the 
human visual system can’t tell, so the 
bandwidth of the human perceptual 
system might provide a natural upper 
bound. But what if I wanted to zoom 
in on a previously captured image or 
video? Then I’d want as high a reso-
lution as physically possible. (Perhaps 
it wouldn’t matter if nobody was 
watching!)

Why stop at video? What about a 
personal magnetic resonance image 
(MRI) scanner that continuously moni-
tors and captures our physiological 
state? Or a swarm of nanobots living 
inside us that gathers detailed measure-
ments of our molecular functionings? 
The limits imposed by physics aside, 
it’s difficult to see an end to increased 
data density. However, it’s important 
to remember that many of the techno-
logical trends that give rise to higher-
resolution sensors are either directly 
or indirectly related to Moore’s Law 
(for example, the increase in megapix-
els in digital cameras). Could it be that 
what Moore’s Law giveth, data density 
taketh? In which case, the real ques-
tion is: What’s the growth in our abil-
ity to capture data at finer resolutions 
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compared to increases in computing 
power? The human population is simply 
the “constant” in the equation (albeit a 
fairly large constant), but if we’re talk-
ing about exponential growth, the con-
stant is basically irrelevant.

At this point, we might shift the 
argument to focus on useful data as 
opposed to all data. Suppose I went 
around capturing 4K-quality video of 
my every waking moment (technically 
possible today) — who cares and why 
would I possibly want that? Perhaps 
not now, but this is a failure of imagi-
nation: much of data science and Big 
Data analytics today is built on data 
we thought was useless two decades 
ago (in fact, some people call it data 
exhaust). One day, questioning the 
usefulness of certain data-collection 
activities could sound as quaint as 
asking: Why would we ever want to 
keep around click logs? What possible 
use could we have for them?

However, a more nuanced way 
to think about this issue is to com-
pare the growth of Big Data with the 
extent to which we can exploit the 
data practically. Numerous stud-
ies have found roughly a log-linear 
relationship between the amount of 
data analyzed and its effectiveness in 
an application.5,6 That is, achieving 
the next increment in effectiveness 
(for example, accuracy in a classifi-
cation task) requires a multiple-fold 
increase in the amount of data. The 
relationship between Moore’s Law 
and the slope of this effectiveness 
line is important. For example, if 
making an algorithm incrementally 
better requires four times more data, 
then one Moore’s Law cycle (dou-
bling capabilities) is insufficient to 
improve our algorithm. However, in 
rough terms, it does make the current 
problem half as difficult. In this case, 
we might say that practically exploit-
able Big Data is growing slower than 
Moore’s Law. Yet, there’s a hole in 
this argument, since it assumes that 
there won’t be significant algorithmic 
improvements in the future. Perhaps 

some brilliant researcher will devise 
entirely new classes of algorithms 
that exploit Big Data much more 
efficiently?

Implications
So, is Big Data growing slower than 
Moore’s Law? Hopefully, I’ve shown 
that it’s plausible, at least in a suitably 
qualified or more restrictive form. 
Thus, it’s worthwhile to consider some 
of the implications on future comput-
ing systems for Big Data.

The most important implication is 
what I call “the revenge of scale up.” 
A nearly unquestioned assumption in 
the design of data processing systems 
today is the superiority of scaling “out” 
on a cluster of commodity machines 
as opposed to scaling “up” on a single 
“beefy” machine (more memory, more 
cores). Previously, scaling up simply 
wasn’t an option because no single 
machine, no matter how powerful, was 
sufficient to handle the data-processing 
task at hand. Scaling out, however, 
incurs large costs in terms of synchro-
nization, communication, and fault 
tolerance. If Big Data is indeed grow-
ing slower than Moore’s Law, then we 
need to revisit the scale out versus scale 
up debate, because at some point, a 
single machine might become powerful 
enough to handle Big Data.

In fact, this debate is already under 
way. According to the analysis of 
Antony Rowstron and his colleagues,7 at  
least two analytics production clusters 
(at Microsoft and Yahoo) have median 
job input sizes under 14 gigabytes and 
90 percent of jobs on a Facebook clus-
ter have input sizes under 100 giga-
bytes (in 2012). A study of enterprise 
Hadoop clusters at around the same 
time shows that the workloads are 
dominated by relatively small jobs.8 So 
why are we still using distributed pro-
cessing frameworks such as MapRe-
duce or Spark when the data easily 
can be held in memory on a single 
machine? As my colleague Jens Dittrich 
puts it, why are we all obsessed with 
building a 1,000-horsepower supercar  

just to make a two-mile trip to the 
supermarket? Indeed, we’re seeing 
a resurgence of interest in scale-up 
approaches, particularly from the aca-
demic community.9-12

So then, what’s with all the pet-
abytes that we’re accumulating in 
our vast data warehouses? As it turns 
out, the process of extracting fea-
tures (or “signals”) from raw data is 
quite distinct from data mining and 
machine-learning algorithms for deriv-
ing insights from those features. In the 
first, we typically distill raw data into 
sparse feature vectors; during this pro-
cess there’s typically many orders of 
magnitude reduction in data size. The 
feature vectors then serve as input to 
machine-learning or data-mining algo-
rithms. We still need large clusters for 
feature extraction, since the raw data 
are often immense and we need the 
aggregate throughput of disk spindles 
across many machines. However, the 
distilled feature vectors are quite man-
ageable. For example, state-of-the-art 
large-scale machine learning today 
talks about billions of training exam-
ples with millions of parameters,13 on 
the order of a trillion nonzero features 
in total (since the feature vectors are 
sparse). A trillion floating-point values 
occupy four terabytes of main memory: 
any day now, we’ll purchase commod-
ity machines with that much memory.

Similarly, consider a graph with a 
trillion edges: stored in the most naive 
manner as (source, destination) pairs, 
it would take eight terabytes. We’ll 
purchase a commodity machine with 
that much memory soon enough (one 
Moore’s Law cycle later, in fact). In gen-
eral, graphs of human social relations 
are bounded by population size, which 
suggests that graph problems are pro-
gressively becoming easier with each 
generation of hardware. As a concrete 
example, Twitter’s production graph 
recommendation service began with a 
scale-up approach, holding the entire 
follower graph in memory on a single 
machine (and exploiting replication 
for increased throughput).14 Examples 
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of impressively fast machine learn-
ing on individual machines include 
Vowpal Wabbit (see https://github.
com/JohnLangford/vowpal_wabbit), 
the lock-free “Hogwild” method for 
parallelizing parameter updates,15 and 
recent work in matrix factorization.16

Decoupling feature extraction and 
machine learning suggests a hetero-
geneous architecture where we exploit 
clusters to munge the raw data, and 
then bring extracted features over to a 
single machine to perform the actual 
machine learning — in other words, 
scale out for data cleaning, feature 
extraction, and so on, and scale up for 
machine learning.

This architecture, however, raises 
two interesting questions: First, data 
scientists loathe multiple processing 
frameworks, which introduce imped-
ance mismatches into their daily activi-
ties. Having one framework for feature 
extraction and another framework for 
machine learning introduces friction. 
Thus, it would be ideal to have a single 
framework that both scales up and out. 
Second, datacenter operations engi-
neers prefer consolidated clusters with a 
homogeneous hardware configuration, 
from both the perspective of econom-
ics and management overhead. Mod-
ern cluster-management software such 
as Mesos17 (and Google’s equivalents) 
work best with homogeneous fleets 
of servers. This doesn’t mean they’re 
unable to handle workloads where cer-
tain jobs (that require lots of memory) 
can run only on certain machines (that 
have enough memory) — but it does 
add an element of complexity in sched-
uling and coordination.

Finally, if Big Data indeed is grow-
ing slower than Moore’s Law, this 
means that the Big Data of today will 
fit in my pocket tomorrow — in the 
same way that my music collection, 
which occupied most of the disk on my 
desktop machine about 15 years ago, 
fits in my pocket easily today. How 
would information seeking change if 
we could store a cache of the Web in 
a mobile device we carry around all 

the time? We’re already proceeding 
down this path: Ask yourself, when 
was the last time you searched Google 
just to go to Wikipedia? Or when you 
used a search engine as a bookmark 
to return to a page you’ve visited 
before (what the information retrieval 
community calls “refinding”18)? In 
both cases, perhaps a local cache of 
the Web might do the job just as well, 
and has the additional advantages of 
freeing us from flaky connectivity 
and network latencies.

Already today, so-called low-power 
“wimpy” devices (such as mobile phones 
and tablets) are far more prevalent than 
traditional servers and PCs. The technol-
ogy research firm Gartner forecasts that 
worldwide shipments of PCs in 2015 will 
total around 320 million units, com-
pared to 2.3 billion mobile phones and 
tablets (www.gartner.com/newsroom/ 
id/2791017). Thus, it’s worthwhile to 
explore how infrastructure designed 
for “brawny” servers in a traditional 
datacenter might run in wimpy envi-
ronments, and the implications of many 
thousands of wimpy devices within a 
relatively small area (say, in a Manhat-
tan city block or sporting venue). Inter-
esting work along these lines include 
deploying full-text search engines19 
and transactional databases20 on mobile 
phones, and Web archiving infrastruc-
ture on Raspberry Pis.21 In addition to 
scaling out and up, it’s worthwhile to 
think about scaling “down” Big Data 
technology.

W hat does the future hold for 
Big Data? It could be the same 

qualitatively, just bigger and better, 
or there might be fundamentally dis-
ruptive forces that completely reshape 
the computing landscape. Trying to 
predict the future, of course, is a per-
ilous exercise. At best, this discussion 
provides some deep insight on future 
developments in Big Data. At worst, it 
makes for an interesting cocktail con-
versation. Either way, it’s worth the 
rumination.�
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