Building a Self-Contained Search Engine in the Browser

Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

jimmylin@uwaterloo.ca

ABSTRACT

JavaScript engines inside modern web browsers are capa-
ble of running sophisticated multi-player games, rendering
impressive 3D scenes, and supporting complex, interactive
visualizations. Can this processing power be harnessed for
information retrieval? This paper explores the feasibility
of building a JavaScript search engine that runs completely
self-contained on the client side within the browser—this in-
cludes building the inverted index, gathering terms statistics
for scoring, and performing query evaluation. The design
takes advantage of the IndexDB API, which is implemented
by the LevelDB key-value store inside Google’s Chrome
browser. Experiments show that although the performance
of the JavaScript prototype falls far short of the open-source
Lucene search engine, it is sufficiently responsive for interac-
tive applications. This feasibility demonstration opens the
door to interesting applications and architectures.

Categories and Subject Descriptors: H.3.4 [Information
Storage and Retrieval]: Systems and Software

Keywords: JavaScript; LevelDB; IndexedDB

1. INTRODUCTION

In nearly all deployments, search engines handle the vast
bulk of processing (e.g., document analysis, indexing, query
evaluation) on the server; the client is mostly relegated to
results rendering. This approach vastly under-utilizes the
processing capabilities of clients: web browsers today embed
powerful JavaScript engines capable of running real-time col-
laborative tools [5], powering online multi-player games [3],
rendering impressive 3D scenes, supporting complex, inter-
active visualizations,! enabling offline applications [6], and
even running first-person shooters.> These applications take
advantage of HTML5 standards such as WebGL, WebSocket,
and IndexedDB, and therefore do not require additional
plug-ins (unlike with Flash).

1dl‘}js.org
2www.quakejs.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

ICTIR’15, September 27-30, Northampton, MA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3833-2/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808194.2809478.

309

Can we apply this processing power for information re-
trieval in interesting new ways? This paper explores the
feasibility of building a JavaScript search engine that runs
completely self-contained in the browser—this includes pars-
ing documents, building the inverted index, gathering terms
statistics for scoring, and performing query evaluation.

Is such a design merely a curiosity, or does it offer advan-
tages over traditional client—server architectures? Even as
a curiosity, this work explores how far browser technologies
have advanced in the previous decade or so, where they have
emerged as a viable platform for delivering rich user expe-
riences. However, browser-based search engines provide in-
teresting opportunities for information retrieval, both from
the perspective of enabling novel applications and opening
up the design space of search architectures.

In addition to discussing the implications of a browser-
based search engine, this paper—which is a shorter version of
a previous report [7]—describes the design and implementa-
tion of JScene (pronounced “jay-seen”, rhymes with Lucene),
an open-source proof of concept that illustrates the feasibil-
ity of these ideas. JScene takes advantage of the IndexedDB
API, which is supported by a few modern web browsers and
implemented using LevelDB in Google’s Chrome browser.
The result is a completely self-contained search engine that
executes entirely on the client side without any external de-
pendencies. As a reference, JScene is compared against the
popular open-source Java search engine Lucene; it should
not be a surprise that JScene falls short of Lucene in per-
formance, but results nevertheless demonstrate that a pure
JavaScript implementation is sufficiently responsive to sup-
port interactive search capabilities.

2. DESIGN IMPLICATIONS

Suppose it were possible to build an in-browser JavaScript
search engine that is fully self-contained and delivers reason-
able performance: so what? More than a technical curiosity,
such a design promises to open up many interesting possi-
bilities, detailed below (see more discussion in [7]).

Offline access. One obvious advantage of this design is
that the user doesn’t need to be connected to the inter-
net, so documents are available for searching offline. One
can imagine a background process that continuously ingests
web pages that the user has visited in the recent past and
updates an index of these documents—search capabilities
would then be available even if the computer were discon-
nected from the network. Previous studies have shown that
a significant fraction of users’ search behavior on the web
consists of “refinding” [9], or searching for pages they had

encountered before. Thus, a reasonably-sized local index
might achieve good coverage of many user queries.

Private search. Another advantage of a search engine that
resides completely self-contained within the browser is that
there is no third party logging queries, clicks, and other in-
teractions. This is particularly useful when a user has a
collection of documents she wishes to search privately—for
example, when researching a medical condition, some stig-
matized activity, or other sensitive topics. This scenario
would be operationalized by coupling the in-browser search
engine with a focused crawler: the user would, for example,
direct the crawler at a collection of interest (e.g., a website
with medical information), and the search engine would then
ingest documents according to crawl settings.

Load shedding. From the perspective of a commercial
search engine company, which needs to continuously invest
billions in building datacenters, in-browser search capabil-
ities are appealing from the perspective of reducing server
load. However, “dispatching” queries for local execution on
the client’s machine may eliminate the opportunity to gen-
erate revenue (i.e., via ad targeting), but this is an opti-
mization problem that search engine companies can solve.
Although the coverage of a local index would be miniscule
compared to the centralized index of a commercial search
engine, for particular classes of queries (such as the “refind-
ing” queries discussed above), the local collection might be
adequate (and it is possible that refinding queries provide
fewer ad targeting opportunities anyway).

Split execution. Instead of purely server-side or client-
slide query execution, there are possibilities for split execu-
tion where query evaluation is performed cooperatively. One
possibility is search personalization, where generic search re-
sults are tailored to a user’s interests on the client side.

Distributed search marketplace. Synthesizing the ideas
discussed above, one possible future scenario is the emer-
gence of a marketplace for hybrid models of centralized and
distributed search where optimization decisions are arrived
at jointly by rational economic actors driven by incentives.
For example, a commercial search engine company might
offer an incentive for a user to execute all or part of a search
locally, in the form of a micropayment or the promise of pri-
vacy (e.g., not storing the queries and interactions). From
the search engine company perspective, the value of the
incentive can be computed from the costs of datacenters,
revenue opportunities from ad targeting, etc. Commercial
search engine companies have a clear sense of which searches
are “money-makers” (rich ad targeting opportunities) and
which aren’t. Yet, all searches currently cost the compa-
nies money. From the users’ perspective, they can control
in a fine-grained manner their preferences for privacy and
resource usage. The marketplace determines when the in-
centives on both ends align. To the extent that “money-
losing” queries overlap with the types of queries that can be
handled locally, such transactions are mutually beneficial.

3. FEASIBILITY STUDY

Having discussed the interesting applications and archi-
tectural possibilities of self-contained, in-browser search en-
gines, it is now time to address the practical question: Is such
a design actually feasible? Note that the goal of JScene, the
proof of concept described in this paper, is to show that
it is possible to build a pure JavaScript in-browser search

310

engine with reasonable performance—within users’ latency
tolerance for interactive search. Of course, the performance
of the system will not come close to a custom-built search
engine (e.g., Lucene), but that’s not the point; a feasibility
demonstration confirms that this general concept warrants
further exploration. To facilitate follow-on work, the JScene
prototype is released under an open-source license and avail-
able to anyone interested.?

At the storage layer, JScene depends on LevelDB, an on-
disk key—value store built on the same basic design as the
Bigtable tablet stack [2]. It is implemented in C++ and was
open-sourced by Google in 2011. The key—value store pro-
vides the Chrome implementation of the Indexed Database
(IndexedDB) API, which is formally a W3C Recommenda-
tion.* LevelDB supports basic put, get, and delete oper-
ations on collections called “stores”. Keys are maintained
in sorted order, and the API supports forward and back-
ward iteration over keys (i.e., to support range queries).
Data are automatically compressed using the Snappy com-
pression library, which is optimized for speed as opposed
to maximum compression. The upshot is that inside every
Chrome browser, there is a modern key—value store accessi-
ble via JavaScript. The JScene prototype takes advantage
of LevelDB, as exposed via the IndexedDB API, to store all
index structures.

3.1 Index Construction

The biggest challenge of building JScene is implementing
an inverted index using the provided APIs. The IndexedDB
API is built around key—value pairs, where values can be
complex JavaScript objects and keys can be JavaScript prim-
itives, a field inside the value object, or auto generated. In
JScene, the postings are held in a store called postings,
where the key is a concatenation of the term and the docid
containing the term, and the value is the term frequency.
For example, if the term “hadoop” were found twice in doc-
ument 2842, the key would be “hadoop+2842” (with “+” as
the delimiter) with a value of 2. In the tweet search demo
application (see below), tweet ids can be used directly as
docids, but in the general case, docids can be sequentially
assigned as documents are ingested. A postings list corre-
sponds to a range of keys in the postings store, and thus
query evaluation can be translated into range scans, which
are supported by IndexDB.

A few alternative designs were considered, but then re-
jected (at least for this prototype): it seemed more natural
to map each individual posting onto a key—value pair as op-
posed to accumulating a list as the value of a single key (the
term), since in that case the indexer would need to rewrite
the value every time a term was encountered. Of course, it
is possible to batch data and perform term—document inver-
sion in memory, but this adds complexity that is perhaps
not necessary for a proof of concept. In many retrieval en-
gines, terms are mapped to unique integer ids, which allows
the postings to be more compactly encoded. Since IndexDB
keys are strings, this doesn’t seem like much help.

Given this design, the indexer operation is straightfor-
ward. Each input document is represented as a JSON object
and the entire collection is stored in an array. The indexer
processes each document in turn and generates key—value
pair insertions corresponding to the inverted index design

3j scene.io
w3, org/TR/IndexedDB/

described above. All transactions in IndexDB are asyn-
chronous, where the caller supplies an onsuccess callback
function which is executed once the transaction completes.
Thus, a naive indexer implementation based on a for loop
that iterates over the documents would simply queue poten-
tially millions of transactions, completely overwhelming the
underlying store. Instead, the indexer is implemented using
a chained callback pattern—the onsuccess callback func-
tion of a transaction to insert a key—value pair initiates the
next insertion, iterating through all tokens in a document
and then proceeding to the next document, until the entire
collection has been processed. This style of programming,
although foreign in languages such as C/C++ or Java, is
common in JavaScript.

Separately, the index also needs to store document fre-
quencies for scoring purposes. These statistics are held in
a separate store, aptly named df. The document frequen-
cies are first computed by iterating over the entire collection
and keeping track of term statistics in a JavaScript object
(i.e., used essentially as a hash map). Once all documents
have been processed, all entries in the object are inserted
into the store, with the term as the key and the document
frequency as the value. Once again, the chained callback
pattern described above is used for these operations.

3.2 Query Evaluation

With an inverted index, query evaluation algorithms tra-
verse postings in response to user queries to generate a top k
ranking of results. Query evaluation for keyword search, of
course, is a topic that has been extensively studied (see [10]
for a survey). In the context of this work, the goal is to
explore the feasibility of in-browser query evaluation using
JavaScript, not raw performance per se. Thus, experiments
in this paper used a simple approach based on tf-idf scoring
that requires the first query term to be present in any result
document. There are several reasons for this choice: First,
previous work has shown that this scoring model works rea-
sonably well in practice [1]. Second, terms in a user’s query
are often (implicitly) sorted by importance, and so it makes
sense to treat the first query term in a distinguished man-
ner. Third, this approach serves as a nice middle ground
between pure conjunctive (AND) and pure disjunctive (OR)
query evaluation. Finally, this approach lends itself to a very
natural implementation in JavaScript described below.

The prototype query evaluation algorithm uses a very sim-
ple hash-based approach in which a JavaScript object is used
as the accumulator to store current document scores, with
the document id as the property and the score as the value
(essentially, a hash map). In the initialization step, the doc-
ument frequencies of all query terms are first fetched from
the df store. Next, a range query corresponding to the first
query term is executed, and all postings are scanned. The
accumulator hash map is initialized with scores of all docu-
ments that contain the term. After the first query term is
processed, the query evaluation algorithm proceeds to the
next query term, which results in another range scan; for
each posting, the accumulator structure is probed, and if
the key (document) is found, the value (document score) is
updated. All query terms are processed in this manner. At
the end, the contents of the accumulator are sorted by value
to arrive at the top k.

Two details are worth discussing. First, this query eval-
uation algorithm bears resemblance to the so-called SvS al-

311

gorithm for postings intersection (i.e., AND-ing of all query
terms) that cyclically intersects the next postings list with
the current partial results [4]. However, the standard imple-
mentation takes advantage of binary search, skip lists, and
other techniques—given the limitations of the Level DB API,
it is not entirely clear how such optimizations can be imple-
mented in JavaScript. Second, the design of the IndexedDB
API makes the JScene query evaluation code somewhat con-
voluted. A range scan begins by acquiring a cursor, which is
an asynchronous operation with an associated onsuccess
callback. An object passed into the callback provides a
method that advances the cursor. Thus, the entire query
evaluation algorithm is implemented (somewhat awkwardly)
as chained callbacks: when the sequence of callbacks corre-
sponding to the processing of the first query term completes,
it triggers the range query for the second term and the se-
ries of callbacks associated with that, and so on. As with
indexing, this style of programming is foreign to developers
used to building systems in C/C++ or Java.

4. EXPERIMENTS

Experiments were conducted on a 2012-generation Mac-
book Pro, with a quad-core Intel Core i7 processor running
at 2.7 GHz with 16 GB RAM and a 750 GB SSD. The ma-
chine ran Mac OS X 10.9.2 with Google Chrome version
33.0.1750.146. Experiments used the T'weets2011 collection
from the TREC 2011 Microblog track [8], which consists of
16 million tweets. Initial trials indicated that JScene would
not be able to index the entire T'weets2011 collection within
a reasonable amount of time. Thus, a smaller collection
comprising 1.12m tweets was created by random sampling.
In total, the documents contain 13.9m tokens with 1.74m
unique terms, occupying 140 MB on disk uncompressed.

For evaluation, JScene was compared to the Lucene search
engine (version 4.7.0). To provide a fair comparison, the
Lucene queries were formulated to specify the same con-
straints as in JScene. To ensure that both systems were
processing the same content, for JScene the collection was
first tokenized with the Lucene tools provided as a reference
implementation in the TREC Microblog evaluations® and
the resulting tokens were then re-materialized as strings to
create the JSON documents used by JScene.

Evaluations used 109 queries from the Microblog tracks
at TREC 2011 and 2012 (ignoring the query timestamps).
The relevant metrics in these experiments are indexing and
query evaluation speed. No effectiveness evaluation was con-
ducted, which is saved for future work.

It took JScene 644 minutes (~10.7 hours) to build the in-
verted index for 1.12m tweets and another 152 minutes (~2.5
hours) to construct the document frequency table (both av-
eraged over two trials). While building the inverted index,
the Mac OS X Activity Monitor showed CPU usage oscil-
lating roughly between 15% and 25%, where the peaks cor-
respond to LevelDB compaction events. These utilization
levels suggest that the process is IO bound (even though
the machine is equipped with an SSD). The LevelDB data
for the postings occupy approximately 1.6 GiB on disk, and
the document frequency table another 0.2 GiB.

Indexing results translate into a sustained write through-
put of around 360 postings per second. However, these fig-
ures are not directly comparable with other performance

5twitter‘cools .cc

System mean median P90 max
JScene 146 106 311 1058
Lucene 1.4 0.8 2.8 9.8

Table 1: Query evaluation performance comparing
JScene and Lucene; all values in milliseconds.

evaluations of Level DB because of at least two reasons: first,
it is unclear how much overhead JavaScript and the IndexDB
API introduce, and second, our chained callback implemen-
tation means that the insertions were performed sequentially
(i.e., synchronously), which is known to be much slower than
the standard asynchronous write mode.°

For reference, Lucene took 27 minutes to index the same
collection on a single thread (averaged over two trials). The
on-disk index size is just 154 MiB. It is quite clear that
JScene indexing throughput falls far short of Lucene, and
that Snappy compression is far less effective than special-

purpose compression schemes designed specifically for search.

This should not be surprising.

Table 1 compares query latency of JScene and Lucene for
the 109 queries from TREC 2011 and 2012: figures show
mean, median, 90*"-percentile, and max values (averaged
over three trials). Results for both are with a warm cache
and Lucene ran in a single thread. In terms of the mean
latency, JScene is roughly two orders of magnitude slower
than Lucene; the performance gap is about the same based
on the other metrics. This is of course not surprising since
Lucene uses specialized data structures and has received
much attention from the open-source community. However,
JScene is reasonably responsive, with query latencies within
the range that users would expect for interactive systems.

To further explore the performance of JScene, a set of
terms were randomly sampled from the df store and treated
as single-term queries. The performance of these queries
are shown as solid squares in Figure 1. The figure focuses
on terms with df less than 1000, but the linear relationship
extends to all sampled terms. The solid squares give a sense
of the lower bound on query latency, since any document-
at-a-time query evaluation algorithm will need to scan all
postings for the single query term. For comparison, the
TREC queries are plotted as circles based on the df of their
first query term. This plot illustrates two points: First, there
remains much room for improvement in JScene. Second,
even in the limit, query evaluation with IndexedDB (via
LevelDB), at least with the current storage layout, will still
be measured in tens of milliseconds.

5. FUTURE WORK AND CONCLUSION

What can we conclude from these experiments? Results
suggest that although a self-contained, in-browser JavaScript
search engine is much slower than a custom native applica-
tion (big surprise), the JavaScript implementation is suffi-
ciently responsive for interactive querying. The current pro-
totype is sufficiently performant to be deployed for searching
(most) users’ timelines, i.e., all tweets that a user has ever
read. From this perspective, the design is most definitely
feasible and worthy of further exploration.

These experimental results, however, reflect only a first
attempt at realizing the general concept. The prototype
reflects a straightforward (i.e., dumb) technical implemen-
tation, without applying any of the standard efficiency tricks

S1eveldb. googlecode.com/svn/trunk/doc/benchmark.html

312

200)
o

o ° o
150 [~ o o s : .
) o o o o
£
< . o o o
) o o ©
c
2 100 - o ¢ i i
] © o
> 020 8 ° o
5 o o%° P ° °o ° o
& fe .

50 @ ® ° 5 | o . " i
° % o = - "
S g rad
LI Random Queries =
j j j TREC Qu‘eries o
0

0 200 400 600

Document Frequency

800 1000

Figure 1: Latency vs. document frequency of query
term for randomly-generated and TREC queries.

that are available in every researcher’s toolbox. These in-
clude various types of compression, alternative schemas and
storage layouts, optimizing data access patterns for better
locality, etc. These techniques, coupled with future improve-
ments in the IndexedDB implementation, will narrow the
gap between in-browser and native search applications.

Given this feasibility demonstration, it would not be pre-
mature to start exploring some of the applications and archi-
tectures discussed in Section 2. Performance and scalability
will continue to improve and become less and less of an is-
sue: in the limit, local indexes have an inherent performance
advantage in eliminating network latencies.

6. ACKNOWLEDGMENTS

This research was supported by NSF awards 1IS-1218043
and CNS-1405688 while the author was at the University of
Maryland. Any opinions, findings, conclusions, or recom-
mendations expressed are the author’s and do not necessar-
ily reflect the views of the sponsor.

7. REFERENCES

[1] N. Asadi and J. Lin. Fast candidate generation for
real-time tweet search with Bloom filter chains. ACM
TOIS, 31, 2013.

F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber.
Bigtable: A distributed storage system for structured data.
OSDI, 2006.

B. Chen and Z. Xu. A framework for browser-based
multiplayer online games using WebGL and WebSocket.
ICMT, 2011.

J. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. ACM TOIS, 29(1), 2010.

C. Gutwin, M. Lippold, and T. Graham. Real-time
groupware in the browser: Testing the performance of
web-based networking. CSCW, 2011.

R. Leblon. Building advanced, offline web applications with
HTML 5. Master’s thesis, Universiteit Gent, 2010.

J. Lin. On the feasibility and implications of self-contained
search engines in the browser. arXiv:1410.4500, 2014.

I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview
of the TREC-2011 Microblog Track. TREC, 2011.

S. K. Tyler and J. Teevan. Large scale query log analysis of
re-finding. WSDM, 2010.

J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(6):1-56, 2006.

2]

3]

(10]

