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ABSTRACT
Despite its intuitive appeal, the hypothesis that retrieval at
the level of “concepts” should outperform purely term-based
approaches remains unverified empirically. In addition, the
use of “knowledge” has not consistently resulted in perfor-
mance gains. After identifying possible reasons for previous
negative results, we present a novel framework for “concep-
tual retrieval” that articulates the types of knowledge that
are important for information seeking. We instantiate this
general framework in the domain of clinical medicine based
on the principles of evidence-based medicine (EBM). Exper-
iments show that an EBM-based scoring algorithm dramat-
ically outperforms a state-of-the-art baseline that employs
only term statistics. Ablation studies further yield a better
understanding of the performance contributions of different
components. Finally, we discuss how other domains can
benefit from knowledge-based approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval Models

General Terms
Measurement, Experimentation

Keywords
question answering, semantic models, reranking

1. INTRODUCTION
Although the field of information retrieval has made enor-

mous progress in the last half century, virtually all systems
are still built on the remarkably simple concept of “counting
words”. Fundamentally, the vector space [35], probabilis-
tic [33], inference network [26], language modeling [30], and
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divergence from randomness [1] approaches can be viewed as
sophisticated “bookkeeping” techniques for matching words
from queries with words in documents, under strong assump-
tions of term independence. Although these methods have
been empirically validated (e.g., in TREC evaluations), it is
a simple fact that words alone cannot capture the semantic
content of documents and information needs.

This assertion translates naturally into the hypothesis that
retrieval systems operating at a level above terms (e.g., con-
cepts, relations, etc.) should outperform purely term-based
approaches. Unfortunately, studies along these lines, some
dating back nearly two decades, have failed to conclusively
support this claim (see Section 2). Here, we provide a novel
approach to this age-old problem and demonstrate that large
gains in retrieval effectiveness are possible in restricted do-
mains if semantic knowledge is appropriately utilized.

Our work, which lies at the intersection between document
retrieval and question answering, has the ambitious goal
of developing knowledge-rich “conceptual retrieval” algo-
rithms. This is accomplished in three steps: first, we outline
a general framework that identifies the types of knowledge
important to information seeking (Section 3). Then, we in-
stantiate this framework in the domain of clinical medicine,
mirroring a paradigm of practice known as evidence-based
medicine [34] (Sections 4 and 5). Document reranking ex-
periments using a collection of real world clinical questions
(Section 6) demonstrate that our approach significantly out-
performs a state-of-the-art baseline (Section 7). Finally,
we explore the contributions of different knowledge sources
(Section 8) and discuss how our ideas can be applied to other
domains (Section 9).

2. PREVIOUS WORK
Research on more sophisticated retrieval models can gen-

erally be grouped into attempts to go beyond simple term-
matching and attempts to relax term independence assump-
tions. Due to space limitations, we only discuss representa-
tive works here.

Deeper linguistic analysis of documents and queries rep-
resents a popular avenue of exploration. Typical approaches
involve application of NLP techniques such as query expan-
sion (using ontological resources), word-sense disambigua-
tion, and parsing. Previous work has shown that use of lexi-
cal semantic relations for query expansion does not increase
retrieval performance [38], and neither does indexing syn-
tactic structures [14, 37]; although see [9]. Whether word-
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sense disambiguation helps retrieval is subject to debate [22,
27, 36, 39], but even positive results show modest improve-
ments at best. More encouraging is recent work on formal
models that attempt to capture term dependencies [16, 25];
experiments have yielded gains, suggesting that the problem
lies not with the ideas but their implementation. Neverthe-
less, as Belkin [3] pointed out and Buckley and Harman [4]
confirmed empirically, many difficulties surrounding infor-
mation retrieval are not linguistic in nature. It has been
suggested by many researchers that information seeking ex-
ists in a much broader context involving real-world tasks,
different search strategies, users’ cognitive structures, etc.
Retrieval models often neglect to account for these impor-
tant factors.

We believe that little headway has been made in leverag-
ing semantic knowledge in IR because nearly all attempts
have occurred in unrestricted domains. Reasoning on any-
thing other than a few lexical relations (e.g., using Word-
Net) in the open domain is exceedingly difficult because
there is a vast amount of world and commonsense knowl-
edge that must be encoded, either manually or automati-
cally. As an example, the massive commonsense knowledge
store Cyc [23] was found to have negligible impact on ques-
tion answering performance in a recent TREC evaluation [6].
A promising approach is the use of abductive inferencing
techniques to “justify” candidate answers [28], which, with
substantial knowledge engineering, has produced impressive
performance on simple fact-based questions. Nevertheless,
it is unclear if these methods can be applied to more com-
plex information needs. A possible solution is to sacrifice
breadth for depth, as exemplified by recent work on ques-
tion answering in restricted domains [29], e.g., terrorism. In
a more restricted semantic space, it is much easier to ex-
plicitly encode the body of knowledge necessary to support
conceptual retrieval.

Our approach differs from previous work in two impor-
tant ways: First, we identify linguistic knowledge as one of
three types of knowledge critical to the information-seeking
process. Second, within a general framework for conceptual
retrieval, we present a case study in the domain of clinical
medicine, where existing resources can be effectively lever-
aged to improve retrieval effectiveness. Through a series
of ablation studies, we gain a better understanding of how
these different types of knowledge interact.

3. TYPES OF KNOWLEDGE
The idea that information should be retrieved at the con-

ceptual level predates the existence of computers themselves;
librarians have been building conceptual structures for or-
ganizing information long before the invention of computer-
ized retrieval systems. Even after the development of full-
text search engines, it was well known that “bags of words”
make poor query representations [3]. The idea that systems
for retrieval (computer or otherwise) serve to bring the cog-
nitive representations (of the user and the collection) “into
alignment” has been explored within the framework of cog-
nitive information retrieval [20], but this line of work has
not resulted in computationally implementable models.

Our attempts to develop a framework for conceptual re-
trieval begin with an outline of the types of knowledge im-
portant to the information-seeking process. In particular, we
hypothesize that there are three broad categories of knowl-
edge that should be captured by retrieval algorithms:

• Knowledge about the problem structure, or what
representations are useful for capturing the informa-
tion need? These representations may reflect cognitive
structures of expert information seekers (e.g., the man-
ner in which they decompose the problem and analyze
retrieved results) or may be purely computational ar-
tifacts (or both).

• Knowledge about user tasks, or why is this infor-
mation needed and how will it be further used? Typ-
ically, a search for information is merely the starting
point for other activities (e.g., writing a report, mak-
ing a decision, etc.). These are what Ingwersen [20]
calls “work tasks”.

• Knowledge about the domain, or what background
knowledge does the information seeker bring to bear
in framing questions and interpreting answers? This
includes knowledge of terms used to represent concepts
and relationship between concepts.1

Based on this framework, we envision retrieval as a pro-
cess of “semantic unification” between representations that
encode user information needs and corresponding represen-
tations automatically derived from a text collection. This
work describes a specific instantiation of this idea in the
domain of clinical medicine.

4. CLINICAL INFORMATION NEEDS
The domain of clinical medicine is an appropriate area

in which to explore conceptual retrieval algorithms because
the problem structure, task knowledge, and domain knowl-
edge are all relatively well-understood. Furthermore, the
need to answer questions related to patient care at the point
of service has been well-studied and documented [8, 13,
17]. MEDLINE, the authoritative repository of abstracts
from the medical and biomedical primary literature main-
tained by the U.S. National Library of Medicine (NLM),
provides the clinically-relevant sources for answering physi-
cians’ questions, and is commonly used in that capacity [7,
10]. However, studies have shown that existing systems for
searching MEDLINE (such as PubMed, NLM’s online search
service) are often unable to provide clinically-relevant an-
swers in a timely manner [5, 17]. Better access to high-
quality evidence represents a high-impact decision-support
application for physicians.

The centerpiece of our approach is a widely-accepted par-
adigm for medical practice called evidence-based medicine
(EBM), which calls for the explicit use of current best evi-
dence, i.e., the results of high-quality patient-centered clin-
ical research, in making decisions about patient care. Nat-
urally, such evidence, as reported in the primary medical
literature, must be suitably integrated with the physician’s
own expertise and patient-specific factors. It is argued that
practicing medicine in this manner leads to better patient
outcomes and higher quality health care. One of our goals
is to develop accurate retrieval systems that support physi-
cians practicing EBM.

Evidence-based medicine specifies three orthogonal facets
of the clinical domain, that, when taken together, describe

1Previous work mostly focuses on this. For example, query
expansion and word sense disambiguation are approaches that
model vocabulary mismatch using domain-independent resources
such as WordNet. Phrase-based indexing is an attempt to apply
a general model of language to model term dependencies.
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Clinical Tasks PICO Elements Strength of Evidence

Therapy: Selecting effective treatments
for patients, taking into account other
factors such as risk and cost.

Diagnosis: Selecting and interpreting
diagnostic tests, while considering their
precision, accuracy, acceptability, cost,
and safety.

Prognosis: Estimating the patient’s
likely course with time and anticipating
likely complications.

Etiology: Identifying the causes for a
patient’s disease.

Problem/Population: What is the
primary problem or disease? What are
the characteristics of the patient (e.g.,
age, gender, co-existing conditions, etc.)?

Intervention: What is the main inter-
vention (e.g., diagnostic test, medication,
therapeutic procedure, etc.)?

Comparison: What is the main inter-
vention compared to (e.g., no interven-
tion, another drug, another therapeutic
procedure, a placebo, etc.)?

Outcome: What is the effect of the

intervention (e.g., symptoms relieved or

eliminated, cost reduced, etc.)?

A-level evidence is based on consis-
tent, good quality patient-oriented evi-
dence presented in systematic reviews,
randomized controlled clinical trials, co-
hort studies, and meta-analyses.

B-level evidence is inconsistent, lim-
ited quality patient-oriented evidence in
the same types of studies.

C-level evidence is based on disease-
oriented evidence or studies less rigor-
ous than randomized controlled clinical
trials, cohort studies, systematic reviews
and meta-analyses.

Table 1: The three facets of evidence-based medicine.

a model for addressing complex clinical information needs.
The first facet, shown in Table 1 (left column), describes
the four main tasks that physicians engage in. The second
facet pertains to the structure of a well-built clinical ques-
tion. Richardson [31] identifies four key elements, as shown
in Table 1 (middle column). These four elements are of-
ten referenced with the mnemonic PICO, which stands for
Problem/Population, Intervention, Comparison, and Out-
come. Finally, the third facet serves as a tool for appraising
the strength of evidence (SoE), i.e., how much confidence
should a physician have in the results? For this work, we
adopted a taxonomy with three levels of recommendations,
as shown in Table 1 (right column).

It should be apparent that evidence-based medicine pro-
vides two of the three types of knowledge necessary to sup-
port conceptual retrieval. The four clinical tasks ground
information needs in broader user activities, and strength
of evidence considerations model the pertinence (i.e., non-
topical aspects of relevance) in a real-world clinical context.
The PICO representation provides a problem structure for
capturing clinical information needs. In addition to being
a cognitive model for problem analysis (as physicians are
trained to decompose complex situations in terms of these
elements), PICO frames lend themselves nicely to a compu-
tational implementation.

Finally, substantial understanding of the clinical domain
has already been codified in the Unified Medical Language
System (UMLS) [24]. The 2004 version of the UMLS Meta-
thesaurus contains information about over 1 million biomed-
ical concepts and 5 million concept names from more than
100 controlled vocabularies. In addition, software for uti-
lizing this ontology already exists: MetaMap [2] identifies
concepts in free text, while SemRep [32] extracts relations
between concepts. In summary, the three types of knowl-
edge identified in the previous section already exist in an
accessible form.

Integrating these three perspectives of EBM, we concep-
tualize retrieval as “semantic unification” between needs
expressed in a PICO frame and corresponding structures
extracted from MEDLINE abstracts. This matching pro-
cess, naturally, should be sensitive to task-based consider-
ations. As a concrete example, the question “In children

with an acute febrile illness, what is the efficacy of single-
medication therapy with acetaminophen or ibuprofen in re-
ducing fever?” might be represented as:

Task: therapy
Problem: acute febrile illness
Population: children
Intervention: acetaminophen
Comparison: ibuprofen
Outcome: reducing fever

This frame representation explicitly encodes the clinical
task and the PICO structure of the question. After process-
ing MEDLINE citations, automatically extracting PICO ele-
ments from the abstracts, and matching these elements with
the query, a system might produce the following answer:

Ibuprofen provided greater temperature decre-
ment and longer duration of antipyresis than ac-
etaminophen when the two drugs were adminis-
tered in approximately equal doses.

Strength of Evidence: grade A

Many components are required to realize the above ques-
tion answering capability: first, knowledge extractors for au-
tomatically identifying PICO elements in MEDLINE ab-
stracts; second, a citation scoring algorithm that opera-
tionalizes the principles of evidence-based medicine; third,
an answer generator that produces responses for physicians.
This work focuses on the second: an algorithm that inte-
grates knowledge-based and statistical techniques to assess
the relevance of MEDLINE citations with respect to a clini-
cal information need. For identifying PICO frame elements
in free text abstracts, we employ previously-developed com-
ponents, as described in [11, 12]. By leveraging a combi-
nation of semantic and lexical features, we demonstrated
methods for very precisely extracting clinically-relevant ele-
ments: populations, problems, and interventions, which are
short phrases, and outcomes, which are sentences that as-
sert clinical findings, e.g., efficacy of a drug for a disease
or a comparison between two drugs. The output of these
knowledge extractors serves as the input to our algorithm
for scoring MEDLINE citations.
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5. CITATION SCORING
What is the relevance of a MEDLINE abstract with re-

spect to a clinical question? Evidence-based medicine out-
lines the need to consider three separate facets, each of which
contributes to the total score:

SEBM = λ1SPICO + λ2SSoE + (1 − λ1 − λ2)SMeSH (1)

The relevance of a particular citation is a weighted linear
combination of contributions from matching PICO frames,
the strength of evidence of the citation, and associated MeSH
terms that are indicative of appropriateness for certain clin-
ical tasks. In the simplest model, each component is equally
weighted, but we also experimented with learning optimal
λ’s from training data. Computing SPICO requires knowl-
edge about the problem structure, while SSoE and SMeSH

both reflect knowledge about user tasks. For a more de-
tailed description of the scoring algorithm, see [12].

The following subsections describe how each of these indi-
vidual scores are computed. We readily concede that our ci-
tation scoring algorithm is quite ad hoc, since many weights
are heuristic reflections of our intuition and domain knowl-
edge. However, we know of no comparable scoring algorithm
in the clinical domain, and no suitable data set (of suffi-
cient size) from which to derive model parameters in a more
principled fashion. This particular scoring implementation
serves as a proof-of-concept, and we leave the development
of a more formal model for future work. Furthermore, the
primary focus of this paper is not the algorithm itself, but
rather an exploration of how different types of knowledge
interact in a framework for conceptual retrieval.

5.1 Problem Structure
The score of an abstract based on extracted PICO ele-

ments, SPICO, is broken up into individual components based
on each frame element:

SPICO = Sproblem + Spopulation + Sintervention + Soutcome (2)

The first component in the above equation, Sproblem, re-
flects a match between the problem in the query frame and
the primary problem identified in the abstract. A score of 1
is given if the problems match based on their UMLS concept
id as provided by MetaMap, which essentially performs ter-
minological normalization automatically. Failing an exact
match of concept ids, a partial string match is given a score
of 0.5. If the primary problem in the query has no overlap
with the primary problem from the abstract, a score of −1
is given. Finally, if our problem extractor could not identify
a problem (but the query frame does contain a problem), a
score of −0.5 is given.

Scores based on population and intervention, Spopulation

and Sintervention, respectively, count the lexical overlap be-
tween the query frame elements and corresponding elements
extracted from abstracts. A point is given to either a match-
ing intervention or a matching population. Our framework
collapses the processing of interventions and comparisons
because it is often difficult to separate the two (e.g., in an
abstract that compares the efficacy of two drugs, which is
the “baseline” and which is the comparison?). A single ex-
tractor identifies all interventions under consideration.

The outcome-based score, Soutcome, is the value assigned to
the highest-scoring outcome sentence, as determined by the

knowledge extractor. As outcomes are rarely specified ex-
plicitly in clinical questions, we decided to omit matching on
them. Our citation scoring algorithm simply considers the
inherent quality of the outcome statements in an abstract,
independent of the query (akin to changing document pri-
ors). Given a match on the primary problem, all clinical
outcomes are likely to be of interest to the physician.

5.2 Task Knowledge
Two components of the EBM score take into account task

knowledge. The first quantifies the strength of evidence:

SSoE = Sjournal + Sstudy + Sdate (3)

Citations published in core and high-impact journals such
as Journal of the American Medical Association (JAMA)
get a score of 0.6 for Sjournal, and 0 otherwise. In terms
of the study type, Sstudy, clinical trials, such as randomized
controlled trials, receive a score of 0.5; observational studies,
e.g., case-control studies, 0.3; all non-clinical publications,
−1.5; and 0 otherwise. The study type is directly encoded as
metadata associated with each MEDLINE citation. Finally,
recency factors into the strength of evidence; a mild penalty
decreases the score of a citation proportionally to the time
difference between the date of the search and the date of
publication.

The other scoring component that encodes task knowl-
edge is based on MeSH (Medical Subject Headings) terms,
which are manually-assigned controlled-vocabulary concepts
associated with each MEDLINE citation. For each clinical
task, we have gathered a list of terms that are positive or
negative indicators of relevance. This score is given by:

SMeSH =
X

t∈MeSH

α(t) (4)

The function α(t) maps a MeSH term to a positive score
if the term is a positive indicator for that particular task, or
a negative score if the term is a negative indicator. For ex-
ample, genomics-related terms such as “genetics” and “cell
physiology” are negative indicators for all tasks, while “drug
administration routes” and any of its children are strong
positive indicators for the therapy task. We have manually
identified several dozen indicators and manually assigned
weights; see [12] for more details.

6. EVALUATION METHODOLOGY
Ideally, we would like to apply our scoring algorithm di-

rectly to MEDLINE citations. However, this would involve
pre-extracting and indexing PICO elements from the 15 plus
million entries in the complete MEDLINE database. Unfor-
tunately, we do not have access to the computational re-
sources necessary to accomplish this. As an alternative, we
evaluate our EBM-based citation scoring algorithm in an
abstract reranking task. This corresponds to a two-stage
processing pipeline commonly seen in question answering
systems [19]: retrieval of an initial set followed by postpro-
cessing. Our experiments employed PubMed, NLM’s gate-
way to MEDLINE.

Since no suitable test collection for evaluating our algo-
rithm exists, we had to first manually create one. Fortu-
nately, collections of clinical questions (representing real-
world information needs of physicians) are available on-line.
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Does quinine reduce leg cramps for young athletes?
task: therapy
primary problem: leg cramps
co-occurring problems: muscle cramps, cramps
population: young adult
intervention: quinine

How often is coughing the presenting complaint in
patients with gastroesophageal reflux disease?
task: diagnosis
primary problem: gastroesophageal reflux disease
co-occurring problems: cough

What’s the prognosis of lupoid sclerosis?
task: prognosis
primary problem: lupus erythematosus
co-occurring problems: multiple sclerosis

What are the causes of hypomagnesemia?
task: etiology
primary problem: hypomagnesemia

Table 2: Sample clinical questions and frames.

From two sources, the Journal of Family Practice2 and the
Parkhurst Exchange3, we randomly sampled 50 questions,
which were manually classified according to clinical task and
coded into PICO-based query frames. Our collection was di-
vided into a development set and a blind held-out test set
(24 and 26 questions, respectively). The exact distribution
of the questions over the task types is shown in the head-
ings of Table 3; these figures roughly follow the prevalence
of question types observed by Ely et al. [13]. One example
from each clinical task is shown in Table 2.

For each question, the second author, who is a medical
doctor, manually crafted PubMed queries to fetch an ini-
tial set of hits. The queries took advantage of PubMed’s
advanced features and represent “best effort” from an ex-
perienced user; it was verified that each hit list contained
at least some relevant abstracts. The process of generat-
ing queries averaged about forty minutes per question. The
top fifty results for each query were retained for our experi-
ments. In total, 2309 citations were retrieved because some
queries returned fewer than fifty citations.

All abstracts gathered by the above process were then
exhaustively evaluated by the same author. Since all ab-
stracts were judged, we did not have to worry about biases
when comparing different systems in a reranking setup. In
total, the relevance assessment process took approximately
100 hours, or about an average of 2 hours per question.

Our reranking experiment compared four different con-
ditions: the baseline PubMed results; hits reranked using
Indri, a state-of-the-art language modeling toolkit [26] (us-
ing the questions verbatim as queries); hits reranked by
the EBM-scoring algorithm described in Section 5; and hits
reranked by combining Indri and EBM scores, λSEBM +(1−
λ)SIndri. The development questions were extensively used
in the crafting of the citation scoring algorithm (especially
in the manual determination of weights).

To evaluate retrieval effectiveness, we collected the fol-
lowing metrics: mean average precision (MAP), precision

2http://www.jfponline.com/
3http://www.parkhurstexchange.com/qa/

at ten retrieved documents (P10), and mean reciprocal rank
(MRR). Mean average precision is the most widely-accepted
single-point retrieval metric. Precision at top documents
is particularly important in a real-world clinical setting be-
cause physicians are often under intense time pressure. Mean
reciprocal rank, a metric often used for question answering,
quantifies the expected position of the first relevant hit.

7. RESULTS
Results of our reranking experiment are shown in Ta-

ble 3. For the EBM run, each scoring component was equally
weighted (i.e., λ1 = λ2 = 1/3). For the EBM+Indri run, we
settled on a λ of 0.85, which optimized performance over
the development set. The Wilcoxon signed-rank test was
employed to determine the statistical significance of the re-
sults; significance at the 1% level is indicated by either � or
�, depending on the direction of change; significance at the
5% level, � or �; n.s. is denoted by ◦.

All three conditions (Indri, EBM, EBM+Indri) signifi-
cantly outperform the PubMed baseline on all metrics. In
many cases, the differences are very dramatic, e.g., the EBM
algorithm more than doubles MAP and P10 on the test
set (vs. PubMed). There are enough therapy questions to
achieve statistical significance in the task-specific results;
however, due to a smaller number of questions for the other
tasks, those results are not statistically significant.

Are differences in performance between Indri, EBM, and
EBM+Indri statistically significant? Results of the Wilcoxon
signed-rank test are shown in Table 4. For all but one
case (MRR on the development set), our EBM scoring algo-
rithm significantly outperforms Indri alone—which supports
our claim that appropriate use of semantic knowledge can
yield substantial improvements over state-of-the-art ranking
methods based solely on term statistics. Furthermore, com-
bining term-based statistical evidence from Indri with EBM
scores results in a small but statistically significant increase
in MAP on both the development and test set.

For the above experiments, the PICO, SoE, and MeSH
components of the EBM score were weighted equally. Sep-
arate experiments reported in [12] attempted to optimize
λ1 and λ2 using the development set. However, optimal
weights did not result in statistically significant differences,
suggesting that the performance of the EBM-scoring algo-
rithm is relatively insensitive to specific weight settings. We
conclude that retrieval performance can be attributed pri-
marily to the use of different semantic resources, as opposed
to a fortunate setting of parameters.

Nevertheless, it is important to determine the performance
contributions of each knowledge component within our con-
ceptual retrieval framework. The results of ablation studies
that isolate each score component are shown in Table 5. As
can be seen, each component contributes significantly to the
overall performance, given the fact that using SPICO, SSoE,
and SMeSH individually results in significantly lower perfor-
mance (vs. all three components). In general, the PICO
score alone outperforms Indri, but not SoE or MeSH alone.

8. PARTIAL SEMANTIC MODELS
The domain of medicine represents a fortunate confluence

of circumstances in which problem structure, task knowl-
edge, and domain knowledge are all readily available. In
many domains, one or more components may be missing or
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Development Set Therapy (10) Diagnosis (6) Prognosis (3) Etiology (5) All (24)

MAP baseline 0.354 0.421 0.385 0.608 0.428
Indri 0.706 (+100%)� 0.521 (+24%)◦ 0.502 (+30%)◦ 0.686 (+13%)◦ 0.630 (+47%)�

EBM 0.819 (+131%)� 0.794 (+89%)� 0.635 (+65%)◦ 0.649 (+6.7%)◦ 0.754 (+76%)�

EBM+Indri 0.826 (+133%)� 0.800 (+90%)� 0.632 (+64%)◦ 0.665 (+9.3%)◦ 0.762 (+78%)�

P10 baseline 0.300 0.367 0.400 0.533 0.378
Indri 0.620 (+107%)� 0.483 (+32%)◦ 0.467 (+17%)◦ 0.613 (+15%)◦ 0.565 (+50%)�

EBM 0.730 (+143%)� 0.800 (+118%)� 0.633 (+58%)◦ 0.553 (+3.7%)◦ 0.699 (+85%)�

EBM+Indri 0.740 (+147%)� 0.800 (+118%)� 0.633 (+58%)◦ 0.553 (+3.7%)◦ 0.703 (+86%)�

MRR baseline 0.428 0.792 0.733 0.900 0.656
Indri 0.900 (+110%)� 0.756 (−4.6%)◦ 0.833 (+13.6%)◦ 1.000 (+11%)◦ 0.876 (+34%)�

EBM 0.933 (+118%)� 0.917 (+16%)◦ 0.667 (−9.1%)◦ 1.000 (+11%)◦ 0.910 (+39%)�

EBM+Indri 0.933 (+118%)� 0.917 (+16%)◦ 0.667 (−9.1%)◦ 1.000 (+11%)◦ 0.910 (+39%)�

Test Set Therapy (12) Diagnosis (6) Prognosis (3) Etiology (5) All (26)

MAP baseline 0.421 0.279 0.235 0.364 0.356
Indri 0.595 (+41%)� 0.534 (+92%)◦ 0.533 (+127%)◦ 0.439 (+20%)◦ 0.544 (+53%)�

EBM 0.765 (+82%)� 0.637 (+129%)� 0.722 (+207%)◦ 0.701 (+93%)◦ 0.718 (+102%)�

EBM+Indri 0.777 (+84%)� 0.672 (+141%)� 0.711 (+203%)◦ 0.701 (+92%)◦ 0.730 (+105%)�

P10 baseline 0.350 0.150 0.200 0.320 0.281
Indri 0.575 (+64%)� 0.500 (+233%)◦ 0.367 (+83%)◦ 0.400 (+25%)◦ 0.500 (+78%)�

EBM 0.783 (+124%)� 0.583 (+289%)� 0.467 (+133%)◦ 0.660 (+106%)◦ 0.677 (+141%)�

EBM+Indri 0.775 (+121%)� 0.617 (+311%)� 0.433 (+117%)◦ 0.660 (+106%)◦ 0.677 (+141%)�

MRR baseline 0.579 0.443 0.456 0.540 0.526
Indri 0.750 (+30%)◦ 0.728 (+64%)◦ 0.833 (+83%)◦ 0.380 (−30%)◦ 0.683 (+30%)�

EBM 0.917 (+58%)� 0.889 (+101%)◦ 1.000 (+119%)◦ 1.000 (+85%)◦ 0.936 (+78%)�

EBM+Indri 0.917 (+58%)� 0.889 (+101%)◦ 1.000 (+119%)◦ 1.000 (+85%)◦ 0.936 (+78%)�

Table 3: Results of reranking experiments. (�,�=sig. at 1%; �,�=sig. at 5%; ◦=n.s.)

Development Set Test Set
MAP P10 MRR MAP P10 MRR

EBM vs. Indri +19.7% � +23.6% � +3.8% ◦ +32.1% � +35.4% � +37.0% �

EBM+Indri vs. Indri +20.9% � +24.3% � +3.8% ◦ +34.3% � +35.4% � +37.0% �

EBM+Indri vs. EBM +1.0% � +0.60% � +0.0% ◦ +1.7% � +0.0% ◦ +0.0% ◦

Table 4: Performance differences between various rerankers.

not (yet) computationally accessible. Statistical term-based
ranking algorithms have the advantage that minimal effort
is required to move from domain to domain. In the cases
where only a limited amount of knowledge is available, is
it possible to obtain the best of both worlds by combining
term-based and knowledge-derived evidence?

Additional experiments with our EBM algorithm shed
some light on this question. We conducted a number of runs
that combined Indri scores with components of the EBM
score by linear weighting, λSIndri+(1−λ)SEBM*, where SEBM*

represents different ablated variants of the EBM scoring al-
gorithm. The weights were tuned using the development set.
Results of these experiments are shown in Table 6.

We can see that the availability of any individual source
of evidence improves Indri results. In this specific domain,
problem structure contributes the greatest, although task
knowledge also plays an important role. We can view SoE
and MeSH scores as modeling non-uniform priors on the
relevance of specific document types, based on the particu-
lar task at hand. To conclude, not only can a knowledge-
based approach to retrieval yield significant improvements
over purely term-based methods, but fragmentary evidence
from individual knowledge sources can still be useful.

9. APPLICATIONS TO OTHER DOMAINS
Since the primary thrust of this research is a general frame-

work for conceptual retrieval—with our EBM citation scor-
ing algorithm as an illustrative instantiation—it is impor-
tant to demonstrate the generality of our ideas. In this sec-
tion, we briefly discuss how other applications might benefit
from similar semantic modeling.

The genomics domain represents a straightforward exten-
sion to the work presented here—instead of a physician,
the target user would be a biomedical researcher. Domain
coverage could be provided by UMLS and other specialized
sources, e.g., the Gene Ontology (GO) or Online Mendelian
Inheritance in Man (OMIM). As with the clinical domain,
there exist generalized categories of information needs, as
exemplified by query templates in the TREC 2005 genomics
track [18]. An example is “What is the role of [gene] in
[disease]”, fully instantiated in “What is the role of the gene
Transforming growth factor-beta1 (TGF-beta1) in the dis-
ease Cerebral Amyloid Angiopathy (CAA)?” Finally, task
knowledge is not difficult to obtain, given the existence of
well-defined task models, e.g., determining the genetic basis
of a disease or drug discovery.

Beyond life sciences, our framework for conceptual re-
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MAP vs. EBM vs. Indri P10 vs. EBM vs. Indri MRR vs. EBM vs. Indri

Development Set
SPICO 0.709 −6.0% � +12.5% ◦ 0.657 −6.0% ◦ +16.2% ◦ 0.903 −0.8% ◦ +3.0% ◦

SSoE 0.512 −32.2% � −18.8% � 0.482 −31.0% � −14.7% ◦ 0.674 −25.9% � −23.1% �

SMeSH 0.512 −32.2% � −18.8% ◦ 0.457 −34.6% � −19.2% � 0.714 −21.6% � −18.6% ◦

SSoE+ SMeSH 0.556 −26.4% � −12.0% ◦ 0.528 −24.5% � −6.6% ◦ 0.781 −14.2% ◦ −10.9% ◦

Test Set
SPICO 0.646 −10.0% � +18.8% � 0.627 −7.4% ◦ +25.4% � 0.847 −9.5% ◦ +24.0% ◦

SSoE 0.457 −36.4% � −16.0% � 0.427 −36.9% � −14.6% ◦ 0.644 −31.1% � −5.7% ◦

SMeSH 0.504 −29.8% � −7.3% ◦ 0.435 −35.8% � −13.1% ◦ 0.663 −29.2% � −3.0% ◦

SSoE+ SMeSH 0.538 −25.1% � −1.1% ◦ 0.485 −28.4% � −3.1% ◦ 0.677 −27.6% � −0.9% ◦

Table 5: Performance contribution of different EBM score components. (�,�=sig. at 1%; �,�=sig. at 5%; ◦=n.s.)

λ MAP P10 MRR

Development Set
SIndri 0.630 0.565 0.876
λSIndri+(1 − λ)SPICO 0.46 0.718 (+13.9%)� 0.669 (+18.4%)� 0.917 (+4.6%)◦

λSIndri+(1 − λ)SSoE 0.77 0.663 (+5.1%)� 0.586 (+3.7%)◦ 0.946 (+7.9%)◦

λSIndri+(1 − λ)SMeSH 0.77 0.657 (+4.2%)� 0.603 (+6.6%)◦ 0.866 (−1.2%)◦

λSIndri+(1 − λ)(0.5SSoE+0.5SMeSH) 0.55 0.679 (+7.7%)◦ 0.607 (+7.4%)◦ 0.917 (+4.6%)◦

Test Set
SIndri 0.544 0.500 0.683
λSIndri+(1 − λ)SPICO 0.46 0.668 (+22.9%)� 0.627 (+25.4%)� 0.897 (+31.3%)�

λSIndri+(1 − λ)SSoE 0.77 0.578 (+6.3%)� 0.554 (+10.8%)� 0.766 (+12.2%)◦

λSIndri+(1 − λ)SMeSH 0.77 0.564 (+3.8%)� 0.531 (+6.2%)◦ 0.731 (+6.9%)◦

λSIndri+(1 − λ)(0.5SSoE+0.5SMeSH) 0.55 0.620 (+14.0%)� 0.565 (+13.1%)� 0.876 (+28.2%)�

Table 6: Impact of using partial semantic knowledge.

trieval is broadly applicable to other domains as well. Here,
we briefly discuss three others: patent search, enterprise
search, and QA in the terrorism/warfighting domain. For
patent search [21], the USPTO maintains an extensive clas-
sification system that comprises the core of a domain model.
Search tasks and information needs are specific and well-
defined, e.g., discovery of prior art. In the realm of enterprise
search in workplace settings, Freund et al. [15] have identi-
fied four broad categories of information needs (“how to”,
“why”, “what”, and “show me”) and patterns of association
between tasks (e.g., “performance tuning”) and genres (e.g.,
“cookbook” or “demo”). The appropriateness of different
genres to different tasks parallels Strength of Evidence con-
siderations in medicine, and categories of information needs
translate naturally into template-based problem structures.
In summary, existing resources in the patent and enterprise
domains also support a knowledge-based treatment.

Question answering in the terrorism/warfighting domain
has become a widely-researched topic, given current fund-
ing priorities in the United States, as exemplified by research
programs such as AQUAINT and GALE. In this domain, the
triplet of problem structure, task model, and domain knowl-
edge is available. In terms of problem structure, well-known
query prototypes have been studied (paralleling query tem-
plates in the genomics track), as well as the representations
for reasoning about such problems, e.g., “recipes” for acquir-
ing specific weapons of mass destruction. These information
needs can be decomposed into simpler structures, which can
serve as the basis for a network of related semantic frames
that cover the problem domain (e.g., acquire radiological

material, build device, etc.). Task models are relatively well
specified and functional boundaries are clearly delineated;
for example, the interaction between intelligence and opera-
tional planning is well understood. Finally, domain-specific
ontologies have already been built. All of these elements
provide the foundation for conceptual retrieval algorithms
that incorporate rich sources of knowledge.

10. CONCLUSION
The contributions of this paper are a general framework

for conceptual retrieval and a concrete instantiation of the
approach in the clinical domain. We have identified three
types of knowledge that are important in information seek-
ing: problem structure (PICO frames), task knowledge (clin-
ical tasks and SoE considerations), and domain knowledge
(UMLS). Experiments show that a citation scoring algo-
rithm which operationalizes the principles of evidence-based
medicine dramatically outperforms a state-of-the-art base-
line in retrieving MEDLINE citations. In addition, ablation
studies help us better understand the performance contribu-
tions of each scoring component. This work provides a tan-
talizing peek at the significant advances that can be made in
information retrieval based on appropriate use of semantic
knowledge, and hopefully paves the way for future work.
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