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Abstract

Evaluation is a major driving force in advancing the state of the art in language technologies.
In particular, methods for automatically assessing the quality of machine output is the preferred
method for measuring progress, provided that these metrics have been validated against human
judgments. Following recent developments in the automatic evaluation of machine translation and
document summarization, we present a similar approach, implemented in a measure called Pourpre,
an automatic technique for evaluating answers to complex questions based on n-gram co-occurrences
between machine output and a human-generated answer key. Until now, the only way to assess the
correctness of answers to such questions involves manual determination of whether an information
“nugget” appears in a system’s response. The lack of automatic methods for scoring system output
is an impediment to progress in the field, which we address with this work. Experiments with the
TREC 2003, TREC 2004, and TREC 2005 QA tracks indicate that rankings produced by our metric
correlate highly with official rankings, and that Pourpre outperforms direct application of existing
metrics.

1 Introduction

Question answering, which lies at the intersection between natural language processing and information
retrieval, has recently emerged as a technology that promises to deliver “answers” instead of “hits”. In
the past few years, researchers have made significant strides in systems capable of answering fact-based
natural language questions such as “What city is the home to the Rock and Roll Hall of Fame?”,
“Who invented the paper clip?”, and “How far is it from the pitcher’s mound to home plate?” These
so-called “factoid” questions can be typically answered with named entities such as dates, locations,
people, organizations, measures, etc.

Implicit in the factoid question answering task is the notion that there exists a single, short, correct
answer. A straightforward extension that relaxes this criterion yields list questions such as “What
countries export oil?”, where the desired response is an unordered set of named entities. List questions
are challenging because it is difficult to predict a priori the total number of existing answer instances
and to recognize answers that refer to the same entity (due to synonymy, name variations, etc.).
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Progress in factoid question answering does not alter the fact that such questions comprise only
a small fraction of all possible information needs. To address the limitations of current technology,
researchers have begun to explore techniques for answering more complex questions such as the follow-
ing:

• Who is Aaron Copland?

• How have South American drug cartels been using banks in Liechtenstein to launder money?

• What was the Pentagon panel’s position with respect to the dispute over the US Navy training
range on the island of Vieques?

The first is an example of a so-called “definition” question, where the goal is to generate a profile
of a person, entity, or event that integrates information from multiple sources within a given text
collection. The second is an example of a “relationship” question, focused on the ties (economic,
familial, etc.) between different entities. The last is an example of a so-called “opinion” question,
which might involve sentiment detection and analysis of language use. This work presents a method
for automatically evaluating answers to such complex questions.

Research in evaluation methodology is important because evaluation is arguably the single biggest
force that drives advances in the state of the art. Typically, quantitative evaluation of language
technology is accomplished through the use of a test collection, which consists of a corpus, a series of
well-defined tasks, and a set of judgments indicating the desired system output. Another requirement
is the existence of a meaningful metric that quantifies machine performance in relation to a reference,
usually human output.

Automatic methods for evaluating system output are highly desirable because humans represent
a bottleneck in the experimental cycle. The ability to assess system performance without human
intervention allows quick experimental turnaround and rapid exploration of the solution space, which
often leads to dramatic advances in the state of the art. A case in point is machine translation,
where the development of Bleu (Papineni et al., 2002) and related metrics has stimulated significant
improvements in translation quality. Prior to the existence of these automatic metrics, humans were
required to assess translation quality, a process that was both slow and error-prone.

This work presents Pourpre, an automatic technique for evaluating answers to complex questions
based on n-gram co-occurrences between machine output and a human-generated answer key. Ex-
periments with data from the TREC question answering evaluations show that our metric correlates
well with human judgments. Pourpre represents the first automatic evaluation method for complex
questions: by serving as a surrogate for human assessors, it enables rapid experimentation in question
answering, which will hopefully lead to accelerated advances in the state of the art.

This paper is organized as follows: Section 2 discusses the general methodology for evaluating
answers to complex questions, and how it is implemented in the context of the TREC question answering
tracks. Section 3 relates our proposed metric with previous work for automatically evaluating language
technologies: machine translation and document summarization. Section 4 provides an algorithmic
description of Pourpre. Section 5 outlines our evaluation methodology for validating the metric using
data from previous TREC question answering tracks. Section 6 presents results from our evaluation,
comparing different variants of Pourpre and direct application of existing metrics. Section 7 describes
a series of more detailed experiments that attempts to provide a better understanding of how Pourpre
works and factors that affect its performance. Finally, Section 8 concludes this paper.

2 Evaluating Answers to Complex Questions

Consider a “definition” question such as “Who is Vlad the Impaler?” A “good” answer might include
information about the 16th century warrior prince’s life, accomplishments, and legacy. Actually a

2



misnomer, such questions can be better paraphrased as “Tell me interesting things about X.”, where X
(the target) can be a person, an organization, a common noun, an event, etc. Given that named entities
alone are insufficient to describe the target, answers to “definition” questions might be comprised of
natural language sentences and phrases that express relevant facts about the target entity. Taken
together, these facts might qualify for a “good answer”. Consider the following “nuggets” of information
about “Vlad the Impaler”:

16th century warrior prince
Inspiration for Bram Stoker 1897 novel “Dracula”
Buried in medieval monastery on islet in Lake Snagov
Impaled opponents on stakes when they crossed him
Lived in Transylvania (Romania)
Fought Turks
Called “Prince of Darkness”
Possibly related to British royalty

By viewing complex questions as requests for collections of facts that address a particular informa-
tion need, it becomes possible to characterize the properties of a “good” answer. From this basic idea,
one can develop the desiderata for an evaluation metric:

• Answers that contain more relevant facts are preferred over answers that contain fewer relevant
facts.

• Shorter answers are preferred over longer answers containing the same number of facts. Verbosity
should be punished.

• Some facts are more important than others, and this should be reflected accordingly.

Despite differences in form, a fact-based evaluation methodology can be applied to many types of
complex questions, including the “relationship” and “opinion” questions described above. In fact, this
methodology has been implemented in the TREC question answering tracks, organized by the National
Institute of Standards and Technology, since 2003. The QA tracks, which first began in 1999, provide
the infrastructure and support necessary to conduct large-scale evaluations on shared collections using
common testsets. This setup provides meaningful comparisons between different retrieval techniques.
TREC evaluations have gained widespread acceptance as the de facto benchmark by which question
answering performance is measured, and results from previous years provide data necessary to validate
our automatic evaluation metric.

To date, NIST has conducted four separate evaluations of complex questions, all using a fact-
based evaluation methodology: “definition/other” questions in TREC 2003–2005 (e.g., “What is feng
shui?”); “relationship” questions in TREC 2005 (e.g., “Do the military personnel exchanges between
Israel and India show an increase in cooperation? If so, what are the driving factors behind this
increase?”); a small-scale pilot of “opinion” questions in 2005 (e.g., “Do the American people think
that Elian Gonzalez should be returned to his father?”). Since relatively few teams participated in the
TREC 2005 evaluation of relationship questions, this work focuses only on the three years’ worth of
definition/other questions.

In 2004 and 2005, factoid and list questions were organized in “series” around topics (Voorhees,
2005), for example:

the band Nirvana
1 factoid Who is the lead singer/musician in Nirvana?
2 list Who are the band members?
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1 vital 32 kilograms plutonium powered
2 vital seven year journey
3 vital Titan 4-B Rocket
4 vital send Huygens to probe atmosphere of Titan, Saturn’s largest moon
5 okay parachute instruments to planet’s surface
6 okay oceans of ethane or other hydrocarbons, frozen methane or water
7 vital carries 12 packages scientific instruments and a probe
8 okay NASA primary responsible for Cassini orbiter
9 vital explore remote planet and its rings and moons, Saturn
10 okay European Space Agency ESA responsible for Huygens probe
11 okay controversy, protest, launch failure, re-entry, lethal risk, humans, plutonium
12 okay Radioisotope Thermoelectric Generators, RTG
13 vital Cassini, NASA’S Biggest and most complex interplanetary probe
14 okay find information on solar system formation
15 okay Cassini Joint Project between NASA, ESA, and ASI (Italian Space Agency)
16 vital four year study mission

Table 1: The “answer key” to the question “What is the Cassini space probe?”

3 factoid When was the band formed?
4 factoid What is their biggest hit?
5 list What are their albums?
6 factoid What style of music do they play?
7 other

Requests for definitions were implicit in the other questions associated with each topic. These
other questions differed from the TREC 2003 definition questions only in that duplicate answers to
factoid or list questions in the same series were not considered relevant; i.e., these questions are best
paraphrased as “Tell me interesting things about X that I haven’t already explicitly asked about.”
For the purposes of this study, this fine distinction was ignored, as the decision does not have any
significant consequences for our results.

Answers to definition questions are comprised of an unordered set of [document-id, answer string]
pairs, where the strings are presumed to provide some relevant information about the entity being
“defined”, i.e., the target. Although no explicit upper limit is placed on the length of the answer string
or the number of response pairs, the final F-score penalizes verbosity (described below).

To evaluate system responses, NIST pools answer strings from all systems, removes their association
with the runs that produced them, and presents them to a human assessor. Using these responses and
research performed during the original development of the question, the assessor creates an “answer
key” comprised of a list of “nuggets”—essentially facts about the target. According to TREC guidelines,
a nugget is defined as a fact for which the assessor could make a binary decision as to whether a response
contained that nugget (Voorhees, 2003). In addition to creating the nuggets, the assessor also manually
classifies each as either “vital” or “okay”. Vital nuggets represent concepts that must be present in a
“good” definition; on the other hand, okay nuggets contribute worthwhile information about the target
but are not essential. The vital/okay distinction has significant implications for scoring, demonstrated
below. As an example, nuggets for the question “What is the Cassini space probe?” are shown in
Table 1.
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[XIE19971012.0112] The Cassini space probe, due to be launched from Cape Canaveral in Florida
of the United States tomorrow, has a 32 kilogram plutonium fuel payload to power its seven year
journey to Venus and Saturn.
Nuggets assigned: 1, 2

[NYT19990816.0266] Early in the Saturn visit, Cassini is to send a probe named Huygens into
the smog-shrouded atmosphere of Titan, the planet’s largest moon, and parachute instruments to
its hidden surface to see if it holds oceans of ethane or other hydrocarbons over frozen layers of
methane or water.
Nuggets assigned: 4, 5, 6

Figure 1: Examples of nuggets found in a system response, as determined by a human assessor.

Let

r # of vital nuggets returned in a response
a # of okay nuggets returned in a response
R # of vital nuggets in the answer key
l # of non-whitespace characters in the entire

answer string

Then
recall (R) = r/R

allowance (α) = 100× (r + a)

precision (P) =

{
1 if l < α

1− l−α
l otherwise

Finally, the Fβ = (β2 + 1)× P ×R
β2 × P +R

β = 5 in TREC 2003, β = 3 in TREC 2004, 2005.

Figure 2: Official definition of F-score.

Once the answer key of vital/okay nuggets is created, the assessor then goes back and manually
scores each run. For each system response, he or she decides whether or not each nugget is present.
Two examples of this matching process are shown in Figure 1: nuggets 1 and 2 were found in the top
passage, while nuggets 4, 5, and 6 were found in the bottom passage.

The final F-score for an answer is calculated in the manner described in Figure 2, and the final
score of a system run is simply the mean of scores across all questions. The per-question F-score is a
harmonic mean between nugget precision and nugget recall, where recall is heavily favored (controlled
by the β parameter, set to five in 2003 and three in 2004 and 2005). Nugget recall is calculated solely
on vital nuggets (which means no credit is given for returning okay nuggets), while nugget precision is
approximated by a length allowance based on the number of both vital and okay nuggets returned. Early
on in a pilot study, researchers discovered that it was impossible for assessors to enumerate the total
set of nuggets contained in a system response (Voorhees, 2003), which corresponds to the denominator
in the precision calculation. Thus, a penalty for verbosity serves as a surrogate for precision.

Because the answer key to a question only needs to be created once, the process of manually
assessing each system response is the bottleneck in TREC evaluations. It is thought that a human is
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required to determine the presence or absence of a particular nugget because assessors do not simply
perform string matches in this decision process. Rather, matching occurs at the conceptual level,
abstracting away from issues such as vocabulary differences, syntactic divergences, paraphrases, etc.
Consider the following examples:

Who is Al Sharpton?
Nugget: Harlem civil rights leader
System response: New York civil rights activist

What is Freddie Mac?
Nugget: Fannie Mae is sibling of Freddie Mac
System response: both Fannie Mae and Freddie Mac, the quasi-governmental agencies that
together . . .

Who is Ari Fleischer?
Nugget: Elizabeth Dole’s Press Secretary
System response: Ari Fleischer, spokesman for . . . Elizabeth Dole

What is the medical condition shingles?
Nugget: tropical [sic] capsaicin relieves pain of shingles
System response: Epilepsy drug relieves pain from . . . shingles

In each of the above cases, is the nugget contained in the system response fragment? Regardless of
the judgment, these examples show the supposed necessity of having a human in the loop—to decide
whether two strings contain the same semantic content. For this reason, there exists no automatic
method for evaluating answers to complex questions. As a result, the experimental cycle for developing
systems has been tortuously long; to accurately assess the performance of new techniques, one must
essentially wait for the yearly TREC cycle (or conduct less-accurate in-house manual evaluations).

In attempts to remedy this situation, we reexamined the assumption that matching answer nuggets
with system responses requires human involvement. We show that, despite inherent difficulties in
matching meaning, automatically computing substring overlap is a viable alternative to human–in–
the–loop evaluation. This insight, first demonstrated by Papineni et al. (2002) in the context of
machine translation, has given rise to much subsequent work focused on the development of automatic
evaluation metrics for various language technologies. Pourpre, our algorithm for evaluating answers
to complex questions, follows very much in this line of research. It is shown through experiments on
data from previous TRECs that Pourpre scores correlate well with human judgments, thus validating
the usefulness of our metric for guiding system development.

3 Related Work

The evaluation of many language applications involves comparing system-generated output with one
or more desired outputs, usually generated by humans. In machine translation, for example, testsets
include a number of human-generated “reference” translations; in document summarization, manually-
generated summaries provide examples of “good summaries”. The idea of employing n-gram co-
occurrence statistics (i.e., substring matches) to compare machine-generated output with desired output
was first successfully implemented in the Bleu metric (Papineni et al., 2002) and the closely-related
NIST metric (Doddington, 2002) for machine translation evaluation. Experiments have shown that
these automatically-generated scores correlate well with human judgments across large testsets (al-
though not on a per-sentence basis) (Kulesza and Shieber, 2004). Since then, the basic method for
scoring translation quality has been improved upon by others, e.g., (Babych and Hartley, 2004; Lin and
Och, 2004). Although there have been recent attempts to introduce more linguistically-rich features in
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the evaluation algorithms, e.g., (Banerjee and Lavie, 2005), the basic idea of matching n-grams remains
at the core of machine translation evaluation.

The simple idea of matching substrings from system output against a reference standard has also
been applied to document summarization evaluation. The Rouge metric (Lin and Hovy, 2003) has
been shown to correlate well with human judgments and has been widely adopted by researchers for
system development. Although more sophisticated methods, e.g., the pyramid scheme (Nenkova and
Passonneau, 2004), have been proposed, Rouge remains an important benchmark due to its ease of
use and accuracy.

Recently, Soricut and Brill (2004) employed n-gram co-occurrences to evaluate question answering
in a FAQ domain; unfortunately, the task differs from that of answering “definition” questions, making
their results not directly comparable. Xu et al. (2004) applied Rouge to automatically evaluate answers
to definition questions, viewing the task as a variation of document summarization. Because TREC
answer nuggets are short snippets of text, the authors found it necessary to rephrase them—two humans
were asked to manually create “reference answers” based on the assessors’ nuggets and IR results. This
proved to be a labor-intensive process. Furthermore, Xu et al. did not perform a large-scale assessment
of the reliability of Rouge for evaluating answers to “definition” questions (which we describe in
Section 6). As explicated by C.-Y. Lin and Hovy (2003), among other researchers, metrics developed
for one task cannot usually be directly applied to another task without modification. Our experiments
show that Rouge is less well-suited for evaluating answers to complex questions because it fails to
capture the finer intricacies of the official scoring metric such as the vital/okay nugget distinction and
precision length penalty.

In general, we have noted a recent convergence between multi-document summarization and ques-
tion answering (Lin and Demner-Fushman, 2005). The move towards more complex information needs
in question answering is complemented by the development of topic-focused summarization (Dang,
2005). Most notably, the DUC 2005 task requires systems to generate answers to natural language
questions based on a collection of known relevant documents: “The system task in 2005 was to synthe-
size from a set of 25–50 documents a brief, well-organized, fluent answer to a need for information that
cannot be met by just stating a name, date, quantity, etc.” (DUC 2005 guidelines1). These guidelines
were modeled after the information synthesis task suggested by Amigó et al. (2004), which they charac-
terize as “the process of (given a complex information need) extracting, organizing, and inter-relating
the pieces of information contained in a set of relevant documents, in order to obtain a comprehen-
sive, non-redundant report that satisfies the information need”. This trend represents a remarkable
opportunity for cross-fertilization and intellectual dialog between two mostly-disjoint communities.

4 Algorithm Description

As previously mentioned, it has been widely assumed that matching nuggets from the assessors’ an-
swer key with systems’ responses must be performed manually because it involves semantics (Voorhees,
2003). In actuality, however, this assumption has not been experimentally verified, and we hypothesize
that term co-occurrence statistics can serve as a surrogate for this semantic matching process. Expe-
rience with the Rouge metric has demonstrated the effectiveness of matching unigrams, an idea we
employ in our Pourpre metric. Matching longer n-grams (bigrams, trigrams, etc.) has proven useful
in machine translation because it measures the fluency of system-generated responses, an important
aspect of translation quality. However, since almost all current question answering systems employ
extractive techniques (i.e., no natural language generation), fluency is not usually a concern. The
presence or absence of relevant content, captured via unigram co-occurrence, is the more important
factor in both document summarization and complex question answering.

1http://www-nlpir.nist.gov/projects/duc/duc2005/tasks.html
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okay vital total
Testset mean σ mean σ mean σ

TREC 2003 “definition” 4.2 2.7 4.1 3.4 8.3 3.7
TREC 2004 “other” 5.4 2.1 3.6 1.8 9.1 2.8
TREC 2005 “other” 6.0 2.3 4.1 2.4 10.1 2.5

Table 2: Descriptive statistics (mean and σ) of the number of nuggets in each year’s testset.

The idea behind Pourpre is relatively straightforward: calculate a match score for each nugget
by summing the unigram co-occurrences between terms from the nugget and terms from the system
response. We decided to start with the simplest possible approach: count the term overlap and divide
by the total number of terms in the answer nugget. The only additional wrinkle is to ensure that
all words appear within the same answer string. Since nuggets represent coherent concepts, they are
unlikely to be spread across different answer strings (which are usually extracts of different source
documents). As a simple example, let’s say we’re trying to determine if the nugget “A B C D” is
contained in the following system response:

1. A
2. B C D
3. D
4. A D

The match score assigned to this nugget would be 3/4, from answer string 2; no other answer string
would get credit for this nugget. This provision reduces the impact of coincidental term matches.

Once we determine the match score for every nugget, the final F-score is calculated in the usual way
(see Figure 2), except that the automatically-derived match scores are substituted where appropriate.
For example, nugget recall now becomes the sum of the match scores for all vital nuggets divided by
the total number of vital nuggets. In the official F-score calculation, the length allowance—for the
purposes of computing nugget precision—was 100 non-whitespace characters for every okay and vital
nugget returned. This remained exactly the same under Pourpre.

A major drawback of this basic unigram overlap approach is that all terms are considered equally
important—surely, matching “year” in a system’s response should count for less than matching “Huy-
gens”, in the example about the Cassini space probe. We decided to capture this intuition using inverse
document frequency, a commonly-used measure in information retrieval; idf(ti) is defined as log(N/ci),
where N is the number of documents in the collection, and ci is the number of documents that contains
the term ti. With scoring based on idf, term counts are simply replaced with idf sums in computing the
match score, i.e., the match score of a particular nugget is the sum of the idfs of matching terms in the
system response divided by the sum of all term idfs from the answer nugget. The effects of stemming,
i.e., matching stemmed terms derived from the Porter stemmer, were also examined.

Finally, we attempted two different methods for aggregating results: microaveraging and macroav-
eraging. For microaveraging, final per-run scores were calculated by computing nugget match scores
over all nuggets for all questions. For macroaveraging, scores for each question were first computed,
and then averaged across all questions in the testset. With microaveraging, each nugget is given equal
weight, while with macroaveraging, each question is given equal weight. This is a distinction that is
often made in evaluating text classification.
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5 Validation Methodology

Submitted runs to the TREC 2003, 2004, and 2005 question answering tracks were used to validate
Pourpre (2003 “definition” questions, 2004 and 2005 “other” questions). There were 50 questions in
2003 testset, 65 in 2004, and 75 in 2005. Table 2 shows the median and standard deviation of okay and
vital nuggets in each year’s testset. In total, there were 54 runs from TREC 2003, 63 from TREC 2004,
and 72 from TREC 2005. For each experiment, system runs were automatically scored with a variant of
our Pourpre metric, and the results were then correlated with the official scores generated by humans.
As a baseline, we compared Pourpre to Rouge, Bleu, and Nist, using a simple concatenation of all
answer nuggets as the reference output.

Before presenting results, it is important to first define the basis for assessing the validity of an
automatic evaluation metric. Direct correlation between official scores and automatically-generated
scores, as measured by Pearson’s r, seems like an obvious metric for quantifying the validity of a
scoring algorithm. Indeed, this measure has been employed in the evaluation of Bleu, Rouge, and
other related metrics.

However, we believe that there are better measures of performance. In comparative evaluations,
we ultimately want to determine if one technique is “better” than another. Thus, the system rankings
produced by a particular scoring method are often more important than the actual scores themselves.
Following the information retrieval literature, we employ Kendall’s τ to capture this insight; earlier
uses of this metric for validation question answering evaluations can be seen in, for example, (Voorhees
and Tice, 2000). Kendall’s τ computes the “distance” between two rankings as the minimum number
of pairwise adjacent swaps necessary to convert one ranking into the other. This value is normalized
by the number of items being ranked such that two identical rankings produce a correlation of 1.0;
the correlation between a ranking and its perfect inverse is −1.0; and the expected correlation of two
rankings chosen at random is 0.0. Typically, a value of greater than 0.8 is considered “good”, although
0.9 represents a threshold researchers generally aim for. In this study, we primarily focus on Kendall’s
τ , but also report Pearson’s r where appropriate.

6 Validation Results

The Kendall’s τ correlations between rankings produced by Pourpre and the official rankings are
shown in Table 3 for all testsets. The Pearson’s r correlations between the two sets of scores are shown
in Table 4. These two tables contain results of four separate Pourpre variants along two different
parameters: scoring by term counts only vs. scoring by term idf, and microaveraging vs. macroaveraging.
We present results for six distinct sets of runs: In TREC 2003, the value of β, which controlled the
relative importance of precision and recall, was arbitrarily set to five, which was later determined to
favor recall too heavily. As a result, β was readjusted to three in TREC 2004. In our experiments with
TREC 2003, we report figures for both values. In the answer key to the TREC 2005 “other” questions,
we noticed that many nuggets were written with shorthand or contained typos, e.g.,

Bob Dole rcvd $45000 weekly while endorsement ran.
CBS bdcsts event to 100+ countries.
Purchasing 28 wud cost NZ $346 million (US).

From the assessors’ point of view, answer nuggets serve as notes to assist in scoring; they were not
aware of the nuggets’ subsequent use as an answer key. In addition to using the verbatim answer key
for the 2005 “other” questions, we also manually corrected it (without altering nugget content) and
reran experiments. Finally, we also report results of experiments using the 2005 data that excludes a
manually-generated run; this is denoted “auto only” in Tables 3 and 4 (more on this below).
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Pourpre
Run micro, cnt macro, cnt micro, idf macro, idf
2003 “definition” (β = 5) .890 .878 .860 .875
2003 “definition” (β = 3) .846 .886 .848 .876
2004 “other” (β = 3) .785 .833 .806 .812
2005 “other” (β = 3) .598 .709 .679 .698
2005 “other” (β = 3, auto only) .590 .731 .707 .725
2005 “other” (β = 3, corrected) .572 .710 .683 .700

Table 3: Kendall’s τ correlation between rankings generated by four different Pourpre variants and
official scores on various TREC testsets.

Pourpre
Run micro, cnt macro, cnt micro, idf macro, idf
2003 “definition” (β = 5) .977 .982 .978 .982
2003 “definition” (β = 3) .958 .981 .970 .979
2004 “other” (β = 3) .915 .964 .950 .956
2005 “other” (β = 3) .849 .916 .894 .903
2005 “other” (β = 3, auto only) .852 .935 .922 .929
2005 “other” (β = 3, corrected) .843 .916 .894 .903

Table 4: Pearson’s r correlation between scores generated by four different Pourpre variants and
official scores on various TREC testsets.

Interestingly, scoring based on macroaveraged term counts outperformed any of the other variants—
it does not appear that idf term weighting helps at all. Also surprising is the fact that correcting errors
in the answer key had almost no effect on performance. This suggests that Pourpre is relatively
insensitive to errors in the reference nuggets. Although the best variant of Pourpre, macroaveraging
with term counts, predicts human preferences well for TREC 2003 and TREC 2004, the correlations
are much lower for the 2005 testset (although the values are still high enough for Pourpre to be useful
in guiding the development of future systems). In Section 7.4, we will examine this issue in more detail.

How does Pourpre stack up against using Rouge2, Bleu, and Nist3 to directly evaluate answers
to complex questions? For all three measures, the reference output consisted simply of all answer
nuggets concatenated together. Results are shown in Table 5 for Kendall’s τ and Table 6 for Pearson’s
r. We tested three variants of Rouge: the default with neither stopword removal nor stemming (base),
with stopword removal but no stemming (stop), and with both stopword removal and stemming (s+s).
For Bleu and Nist, we report both the unigram score (uni) and total score (tot). In all cases except
for the 2005 “other” questions with corrected nuggets, the Pourpre condition with macroaveraging
and term counts outperforms all variants of the other three metrics (based on Kendall’s τ). Scatter
graphs plotting official F-scores against Pourpre scores (macro, count) and Rouge scores (stopword
removal, no stemming) for TREC 2003 (β = 5), TREC 2004 (β = 3), and TREC 2005 (β = 3) are
shown in Figure 3. Corresponding graphs for other variants appear similar, and are not shown here.

In the scatter plot for TREC 2005 (β = 3), we note a very interesting data point on the right-
most edge (marked by two arrows): the highest-scoring run according to human assessors performs
poorly with Pourpre. There is a straightforward explanation: answers contained in that run were

2We used Rouge-1 recall values from ROUGE-1.4.2; experiments were also conducted on Rouge-1 precision, Rouge-2
precision, and Rouge-2 recall. Empirically, Rouge-1 performed the best.

3For both, we used the default parameter settings.
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Pourpre Rouge Bleu Nist
Run macro, cnt base stop s+s uni tot uni tot
2003 “definition” (β = 5) .878 .807 .843 .834 .154 .290 .192 .200
2003 “definition” (β = 3) .886 .780 .816 .810 .169 .306 .207 .216
2004 “other” (β = 3) .833 .780 .786 .771 .168 .409 .235 .235
2005 “other” (β = 3) .709 .662 .670 .675 .213 .368 .226 .238
2005 “other” (β = 3, auto only) .731 .700 .698 .704 .190 .349 .203 .215
2005 “other” (β = 3, corrected) .709 .717 .764 .760 .213 .374 .228 .234

Table 5: Comparison of Pourpre and other metrics in terms of Kendall’s τ . For Rouge: base=no
stemming, no stopword removal; stop=no stemming, stopword removal,s+s=stemming and stopword
removal. For Bleu/Nist: uni=unigram scoring, tot=total.

Pourpre Rouge Bleu Nist
Run macro, cnt base stop s+s uni tot uni tot
2003 “definition” (β = 5) .982 .958 .964 .962 .159 .278 .215 .224
2003 “definition” (β = 3) .981 .936 .942 .938 .224 .344 .276 .285
2004 “other” (β = 3) .964 .924 .933 .931 .210 .539 .293 .304
2005 “other” (β = 3) .916 .900 .902 .902 .416 .584 .479 .491
2005 “other” (β = 3, auto only) .935 .940 .938 .940 .351 .605 .424 .438
2005 “other” (β = 3, corrected) .916 .906 .930 .928 .416 .586 .478 .490

Table 6: Comparison of Pourpre and other metrics in terms of Pearson’s r. For Rouge: base=no
stemming, no stopword removal; stop=no stemming, stopword removal,s+s=stemming and stopword
removal. For Bleu/Nist: uni=unigram scoring, tot=total.
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Figure 3: Scatter graph of official scores plotted against Pourpre (macro, count) and Rouge scores
(stopword removal, no stemming) for TREC 2003 (β = 5), TREC 2004 (β = 3), TREC 2005 (β = 3).
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Run unstemmed stemmed
2003 “definition” (β = 5) 0.878 0.895
2003 “definition” (β = 3) 0.886 0.897
2004 “other” (β = 3) 0.833 0.825
2005 “other” (β = 3) 0.709 0.680
2005 “other” (β = 3, auto only) 0.731 0.703
2005 “other” (β = 3, corrected) 0.710 0.685

Table 7: The effect of stemming on Kendall’s τ ; all runs with the (macro, count) variant of Pourpre.

actually supplied by a trained librarian, in an attempt to better understand human performance on
this particular task (Lin et al., 2005). The human run did not primarily consist of sentence extracts,
but truly summarized information nuggets within the documents—and thus was not fairly assessed
by Pourpre, which was designed (like Rouge) for extractive responses. Experiments with this run
removed are denoted as “auto only” in Tables 3 through 6. It can be seen that removing this manual
run increases both Kendall’s τ and Pearson’s r correlations.

The effect of stemming on Kendall’s τ and Pearson’s r between Pourpre (macro, count) and
official scores is shown in Table 7. Results from the same stemming experiment on the other Pourpre
variants are similarly inconclusive.

Why does neither stemming nor idf-weighting improve the correlation of Pourpre with official
TREC results? After detailed examination of the data, we were able to produce explanations for both
seemingly counter-intuitive results.

Stemming is primarily a recall-focused technique that handles morphological divergences between
the reference nuggets and system outputs—it allows terms to match despite differences in surface
morphology; cf. (Kraaij and Pohlmann, 1996). Reference nuggets can be broadly classified into two
categories: those that are essentially extracts of documents from the corpus, and more “abstractive”
ones that summarize content found in multiple documents. For extractive nuggets, stemming doesn’t
make a difference because most TREC systems are extractive also, taking passages directly from
relevant documents. Hence, terms already match without additional morphological processing. For
“abstractive” nuggets, since they are often paraphrases of system responses, stemming doesn’t help
bridge the gap between the semantically equivalent, but superficially different, forms anyway. Thus,
stemming has a relatively minor overall effect on the performance of Pourpre.

A term-weighting scheme based on idf doesn’t affect performance much for similar reasons. The ra-
tionale behind idf is that more emphasis would be placed on content words, so that matching frequently-
occurring words would be penalized by comparison. However, the reference nuggets in general have a
high proportion of content words (since they must be sufficiently descriptive to assist in the evaluation
process), which lessens the impact of idf-weighting.

Building on the basic results reported here, we describe in the next section several additional
experiments aimed at a better understanding of performance factors affecting Pourpre.

7 Understanding Performance Effects

Our experimental results show a strong correlation between official human-generated TREC scores
and automatically-computed Pourpre scores, indicating that a simple term-matching approach can
capture various aspects of the evaluation process. Starting from a set of questions and a list of relevant
nuggets, Pourpre can accurately assess the performance of a complex question answering system
without any human intervention.
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To better understand the limitations of our work, it is worth mentioning that Pourpre, or any
automatic evaluation metric based on substring overlap, for that matter, cannot actually replace hu-
man judgments or capture all the fine-grained semantic considerations that go into matching system
responses with reference output. We have merely demonstrated that it is possible to approximate
human judgments in a manner that facilitates system development. It is certainly possible that at
some future point in time, Pourpre will “outlive its usefulness”, for exactly the reasons stated above.
Nevertheless, it is our hope that the metric will facilitate the creation of more sophisticated systems
until then. Similar limitations exist for all automatic evaluation metrics based solely on surface string
matching. The machine translation community is contending with exactly such an issue: it is probable
in the not–so–distant future that system performance will be indistinguishable from human perfor-
mance according to Bleu. At that point, the MT community would need to develop metrics that are
better able to capture various linguistic phenomena (e.g., paraphrases). Meanwhile, however, Bleu
will remain useful in guiding system development.

Although Pourpre addresses the problem of automatically assessing system output, it does not
assist in the creation of test collections themselves, which is a time- and resource-consuming endeavour.
In particular, our metric depends on the existence of reference nuggets, which, in the TREC setup, is
“distilled” by a human after examining all system results (and performing additional topic research).
Similar limitations apply to all metrics of this sort—Bleu requires human-generated reference trans-
lations and Rouge requires human-generated summaries. Naturally, since the notion of relevance
features prominently in the evaluation of question answering systems, and since relevance ultimately
boils down to human judgments, there are theoretical limitations on the degree to which evaluations
can be automated. However, it may be possible to develop systems that assist in the process of nugget
creation; for example, the work on Basic Elements (Hovy et al., 2005) represents such an attempt.

The results reported in the previous section leads to a number of interesting questions:

• Why exactly does Pourpre work better than Rouge?

• How reliable are Pourpre scores and what is the margin of error associated with them?

• How sensitive is Pourpre to different precision–recall tradeoff points?

• How does the vital/okay distinction affect the validity of Pourpre scores?

In the following subsections, we describe a series of detailed experiments that address the above
issues. The goal is to gain more insight into the nugget evaluation methodology and the automatic
evaluation process.

7.1 Algorithm Analysis and Hybridized Matching

We believe that Pourpre better correlates with official scores than Rouge because it takes into
account special characteristics of the task: the distinction between vital and okay nuggets, the length
penalty, etc. Other than a higher correlation, Pourpre offers an advantage over Rouge in that it
provides a better diagnostic than a coarse-grained score, i.e., it can reveal why an answer received a
particular score. With our measure, it is possible to reconstruct which answer nuggets were present
in a response and which nuggets were omitted. This allows researchers to conduct failure analyses to
identify opportunities for improvement.

Comparisons with the baselines of Rouge and Bleu/Nist support our hypothesis concerning the
nature of complex question answering. The correlation between Rouge and official human-generated
scores is much higher than that of Bleu or Nist—conceptually, the task of answering complex questions
is closer to document summarization than it is to machine translation, in that both are recall-oriented
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and focus primarily on content. Since almost all question answering systems employ extractive tech-
niques, fluency (i.e., precision) is not usually an issue. However, as systems begin to employ abstractive
techniques to generate answers, evaluation metrics will need start assessing answer fluency; however,
such systems appear to be just beyond the short-term horizon.

To better understand why Pourpre outperforms Rouge, we conceptually decomposed the evalu-
ation of complex questions into two distinct stages. The first deals with the matching of the nuggets
themselves, while the second deals with the manner in which the nugget match scores are combined
to generate a final F-score for a particular question. Since Pourpre attempts to capture both stages
of the evaluation process, it outperforms Rouge, which does not explicitly match individual nuggets,
nor does it capture the TREC scoring model.

In order to confirm this hypothesis, we experimented with a Pourpre–Rouge hybrid that matches
individual nuggets using Rouge, but combines the match scores in a manner consistent with the TREC
scoring model, like Pourpre. Nugget recall and length allowance, the two variables that determine
F-score, can be computed in the following manner:4

• Nugget recall. Instead of lumping all nuggets in a single “summary”, we treated each individual
vital nugget as a distinct reference summary and scored system output using Rouge in the
following manner:

R =
∑

s∈A Rougevital(s)
R

(1)

Where A is the set of answer passages returned by a system. Since Rouge output is bounded
between zero and one, this produced the equivalent of nugget recall, i.e., r/R in Figure 2.

• Length allowance. Length allowance is a product of a constant (100 non-whitespace characters)
and the number of vital and okay nuggets matched. With Rouge, it can be computed in the
following manner (using all vital and okay nuggets as separate reference summaries):

α = 100×
∑
s∈A

Rougevital+okay(s) (2)

Once again, A represents the set of all answer passages returned by a system. This produces the
equivalent of r + a in Figure 2.

How does this Pourpre–Rouge hybrid (which we term Pourpre-R) stack up against Pourpre
alone? Results of correlation experiments are shown in Table 8 (for Kendall’s τ) and Table 9 (for
Pearson’s r). For the Rouge component inside Pourpre-R, we experiment with three variants of
Rouge-1 recall scores: the default with neither stopword removal nor stemming (base), with stopword
removal but no stemming (stop), and with both stopword removal and stemming (s+s). Correlation
values are juxtaposed with the best Pourpre and Rouge values from Tables 5 and 6.

Our experiments show that Pourpre-R is comparable to the simpler version of Pourpre, and
in some cases, slightly better. This confirms our hypothesis regarding why Pourpre achieves higher
correlations. Of the two stages in the evaluation process, it does not appear that the nugget matching
process plays a particularly important role—the choice of the maximal unigram recall method employed
by Pourpre or the use of multiple summaries with Rouge inside Pourpre-R does not appear to have
a large impact on performance. The contribution to correlation appears to be coming from explicit
recognition of the nugget-based evaluation methodology.

4We are indebted to an anonymous reviewer for suggesting this experiment.
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Pourpre Rouge Pourpre-R
Run macro, cnt stop base stop s+s
2003 “definition” (β = 5) .878 .843 .866 .877 .890
2003 “definition” (β = 3) .886 .816 .864 .880 .897
2004 “other” (β = 3) .833 .786 .808 .837 .855
2005 “other” (β = 3) .709 .670 .708 .692 .751
2005 “other” (β = 3, auto only) .731 .698 .728 .711 .769
2005 “other” (β = 3, corrected) .709 .764 .713 .767 .756

Table 8: Comparison of Kendall’s τ correlation for Pourpre-R (base=no stemming, no stopword
removal; stop=no stemming, stopword removal,s+s=stemming and stopword removal).

Pourpre Rouge Pourpre-R
Run macro, cnt stop base stop s+s
2003 “definition” (β = 5) .982 .964 .977 .981 .983
2003 “definition” (β = 3) .981 .942 .975 .980 .982
2004 “other” (β = 3) .964 .933 .948 .972 .970
2005 “other” (β = 3) .916 .902 .905 .907 .920
2005 “other” (β = 3, auto only) .935 .938 .924 .926 .938
2005 “other” (β = 3, corrected) .916 .930 .905 .926 .920

Table 9: Comparison of Pearson’s r correlation for Pourpre-R (base=no stemming, no stopword
removal; stop=no stemming, stopword removal,s+s=stemming and stopword removal).

7.2 Rank Swap Analysis

What do rank correlations mean in the context of real-world evaluations? An analysis of rank swaps
can help us better interpret the effectiveness of an evaluation metric, and is a common technique used
in information retrieval research. A rank swap is said to have occurred if the relative ranking of two
runs is different under different scoring conditions, i.e., according to one condition, system A is better
than system B, but the opposite conclusion is drawn based on the other condition. Rank swaps are sig-
nificant because they may prevent researchers from confidently drawing conclusions about the relative
effectiveness of different techniques or systems. For example, observed rank swaps between official and
Pourpre scores indicate cases where the automatic scoring metric is not accurately capturing human
judgments.

We analyzed rank swaps between official human-generated scores and Pourpre scores on testsets
from TREC 2003 (β = 5), TREC 2004 (β = 3), and TREC 2005 (β = 3). For the 2003 testset, we
observed 81 rank swaps out of a total of 1431 pairwise comparisons for 54 runs (5.7% of all comparisons).
For the 2004 testset, we observed 157 rank swaps out of a total of 1953 pairwise comparisons for 63
runs (8.0% of all comparisons). For the 2005 testset, we observed 357 rank swaps out of a total of
2556 pairwise comparisons for 72 runs (14% of all comparisons). Removing the human-generated run
reduces the number of rank swaps to 320.

Histograms of these rank swaps, binned by the difference in official score between the two runs, are
shown in Figure 4 for the four different testsets described above. As can be seen, on the TREC 2003
(β = 5) testset, 48 rank swaps (59.3%) occurred when the difference in official score is less than 0.02;
there were no rank swaps observed for runs in which the official scores differed by more than 0.061.
The other histograms can be interpreted similarly.

What is the meaning of these rank swap analyses? Since measurement error is an inescapable fact
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Figure 4: Histogram of rank swaps binned by differences in official score: TREC 2003 (β = 5) (top
left), TREC 2004 (β = 3) (top right), and TREC 2005 (β = 3) (bottom left), TREC 2005 (β = 3, auto
only) (bottom right). Bin units are in hundredths.

of evaluation, we need not be concerned with rank swaps for which differences in the original score
is less than the bounds of error for the evaluation (since one could not distinguish the two runs with
confidence anyway). For TREC 2003, Voorhees (2003) calculated this value to be approximately 0.1;
that is, in order to conclude with 95% confidence that one run is better than another, an absolute
F-score difference greater than 0.1 must be observed. As can be seen, all the rank swaps observed can
be attributed to error inherent in the evaluation process. The histogram for TREC 2004 shows two
rank swaps in range of [0.09, 0.10), but none above .1; the 2005 testset shows greater variability, with
23 rank swaps above that threshold (although many of which can be attributed to the top-scoring run,
which was generated by a human).

From these results, we can conclude that evaluation of “definition” questions is relatively coarse-
grained. In general, Pourpre accurately predicts human judgments on the quality of answers to
complex questions, to the extent where the margin of error is approximately equal to the measurement
uncertainty associated with the evaluation itself.

7.3 Balancing Precision and Recall

The final F-score of an answer is the harmonic mean of nugget recall and nugget precision, where
relative weight between the two components is controlled by the β parameter. Obviously, a single
measure of effectiveness is desirable from an evaluation point of view, but it is important to note
that the specific setting of β operationalizes one particular tradeoff between recall and precision. For
different applications, the relative importance of these two components may vary dramatically. The
model of complex question answering implemented at TREC places significantly more emphasis on
recall, with β set to five in 2003 and three the years thereafter.

Recognizing that different parameter settings may be appropriate for other types of applications, we
ran our experiments with β as the independent variable. More specifically, we computed the Kendall’s
τ correlation between Pourpre scores (macroaveraging and term counts) and official scores under
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Testset # q’s 1 vital 2 vital
TREC 2003 50 3 10
TREC 2004 64 2 15
TREC 2005 75 5 16

Table 10: Number of questions with few vital nuggets in the different testsets.

various settings of β. These results are shown in Figure 5.
We observe that an emphasis on recall yields better correlation between Pourpre and official scores.

A β value of one (equal precision and recall) results in a lower Kendall’s τ value than a β value of two,
but higher values of β don’t seem to make much of a difference. In general, these results confirm that
Pourpre is primarily a recall-oriented metric, much like Rouge. This makes sense because unigram
overlap measures the amount of shared content between system and reference nuggets. Precision enters
into the calculation only as a length penalty.

7.4 Implications of the Vital/Okay Distinction

The vital/okay distinction on nugget labels attempts to capture the intuition that some facts are more
important than others. Nevertheless, this binary distinction may be problematic from an automatic
evaluation point of view. In this section, we explore the implications of this evaluation aspect in greater
detail.

From Tables 3 and 4, it can be seen that the accuracy with which Pourpre predicts human
judgments varies from testset to testset. In particular, correlation is highest for the TREC 2003
testset, slightly lower for the TREC 2004 testset, and noticeably lower for the TREC 2005 testset.

We believe that this can be attributed to the distribution of vital and okay nuggets in the three
testsets. Table 10 shows statistics about the number of questions that have only one or two vital
nuggets. Compared to the size of the testset, these numbers are relatively large. As a concrete example,
“F16” is the target for question 71.7 from TREC 2005. The only vital nugget is “First F16s built in
1974”. With only one vital nugget, a system’s score on that particular question would be zero unless
it returned the sole vital nugget, since okay nuggets figured only in the precision calculation—in other
words, a system had only one chance to achieve a non-zero score. This results in highly unpredictable
scores that were often dictated by chance as much as by actual system performance. The same effect
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Run Pourpre Rouge

2003 “definition” (β = 5) 0.910 0.886
2003 “definition” (β = 3) 0.915 0.872
2004 “other” (β = 3) 0.868 0.840
2005 “other” (β = 3) 0.807 0.789

Table 11: Kendall’s τ correlation for Pourpre and Rouge (stopword removal, no stemming) based
on variant answer key where all nuggets are considered vital.

is also present for questions with only two vital nuggets, although to a lesser degree. This phenomenon
is further amplified by the final F-score’s emphasis on recall over precision. As a result, Pourpre is
not able predict human scores on the TREC 2005 testset as well.

To test this hypothesis, we created a variant answer key in which all nuggets were considered vital
and reran our experiments. Because assessors recorded nugget matches independent of vital/okay
status, it is possible to recalculate scores based on different conditions. These results (Kendall’s τ)
are shown in Table 11; for brevity, only the best Pourpre (macro, count) and Rouge (stopword
removal, no stemming) configurations are shown. Indeed, higher correlation is observed when all
nuggets are considered vital, with Pourpre still outperforming Rouge. Nevertheless, there is still a
gap in performance between the three different testset, which can be attributed to the quality of the
different reference nuggets, as discussed in Section 6.

The vital/okay distinction aims to capture differences in assessors’ notions of relevance. As with
many other information retrieval tasks, legitimate differences in opinion about relevance are an in-
escapable fact of evaluating definition/other questions—systems are designed to satisfy real-world in-
formation needs, and users inevitably disagree on which nuggets are important or relevant. These
disagreements manifest as scoring variations in an evaluation setting. The important issue, however,
is the degree to which variations in judgments affect conclusions that can be drawn in a comparative
evaluation, i.e., can we still confidently conclude that one system is “better” than another (across a
broad sampling of users)? For the ad hoc document retrieval task, research has shown that system
rankings are stable with respect to disagreements about document relevance (Voorhees, 2000). In the
remainder of this section, we explore the effect of judgment variability on the stability and reliability
of TREC nugget-based evaluation methodology.

The vital/okay distinction on nuggets is one major source of differences in opinion, as has been
pointed out previously (Hildebrandt et al., 2004). In the Cassini space probe question, for example,
we disagree with the assessors’ assignment in many cases. More importantly, however, there does not
appear to be any operationalizable rules for classifying nuggets as either vital or okay. Consider some
relevant nuggets for the question “What is Bausch & Lomb?”:

world’s largest eye care company
about 12000 employees
in 50 countries
approx. $1.8 billion annual revenue
based in Rochester, New York

According to the official assessment, the first four nuggets are vital and the fifth is not. This means
that the location of Bausch & Lomb’s headquarters is considered less important than employee count
and revenue. Such mysteries are common within answer nuggets across all examined testsets, and the
vital/okay distinction does not seem to follow from any deducible principle. As a result, there is little
hope for systems to learn and exploit this difference. Without any guiding principles, how can we
expect our systems to focus more on returning vital nuggets?
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Run everything vital vital/okay flipped random judgments
TREC 2003 (β = 5) 0.927 0.802 0.822 ± 0.042
TREC 2003 (β = 3) 0.920 0.796 0.808 ± 0.043
TREC 2004 (β = 3) 0.919 0.859 0.841 ± 0.038
TREC 2005 (β = 3) 0.854 0.766 0.777 ± 0.043

Table 12: Kendall’s τ correlations between the official scores and scores under different variations of
judgments and the official scores. The 95% confidence interval is presented for the random judgments
case.

How do differences in opinion about vital/okay nuggets impact the stability of system rankings?
To answer this question, we measured the Kendall’s τ correlation between the official rankings and
rankings produced by different variations of the answer key. Three separate variants were considered:

• all nuggets considered vital

• vital/okay flipped (all vital nuggets become okay, and all okay nuggets become vital)

• randomly assigned vital/okay labels

Results are shown in Table 12. Note that this experiment was conducted with the manually-
evaluated system responses, not our Pourpre metric. For the last condition, we conducted one
thousand random trials, taking into consideration the original distribution of the vital and okay nuggets
for each question using a simplified version of the Metropolis-Hastings algorithm (Chib and Greenberg,
1995); the 95% confidence intervals are reported.

These results suggest that system rankings are sensitive to assessors’ opinion about what constitutes
a vital or okay nugget. In general, the Kendall’s τ values observed here are lower than values computed
from corresponding experiments in ad hoc document retrieval (Voorhees, 2000).

It appears that differences between Pourpre and the official scores are about the same as (or in
some cases, smaller than) differences between the official scores and scores based on variant answer
keys (with the exception of “everything vital”). This means that further refinement of the Pourpre
metric to increase correlation with human-generated scores may not be particularly meaningful; it
might essentially amount to overtraining on the whims of a particular human assessor. We believe that
sources of judgment variability and techniques for managing it represent important areas for future
study. Recently, we have looked into techniques for combining judgments from multiple assessors
in order to obtain a more refined estimate of nugget importance (Lin and Demner-Fushman, 2006).
This was inspired by the pyramid scheme (Nenkova and Passonneau, 2004), related work from the
multi-document summarization literature.

8 Conclusion

The nugget-based evaluation methodology described in this paper is broadly applicable to many types
of complex questions—not only the definition/other questions specifically explored here, but also re-
lationship and opinion questions that are beginning to benefit from large-scale formal evaluations at
TREC. Our work shows that Pourpre can be employed to automatically evaluate answers to complex
questions, and that rankings generated by this method correlate well with human-generated rankings.
We hope that Pourpre can accomplish for complex question answering what Bleu has done for
machine translation, and Rouge for document summarization: allow laboratory experiments to be
conducted with rapid turnaround. A much shorter experimental cycle will allow researchers to explore
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different techniques and receive immediate feedback on their effectiveness. Hopefully, this will translate
into rapid progress in the state of the art.5
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