
Integrating Web Resources and Lexicons into a Natural Language Query System∗

Boris Katz, Deniz Yuret, Jimmy Lin, Sue Felshin
Rebecca Schulman, Adnan Ilik, Ali Ibrahim, Philip Osafo-Kwaako

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

545 Technology Square, Cambridge, MA 02139, USA
{boris, deniz, jimmylin, sfelshin, rebecka, adnan, aibrahim, osafo}@ai.mit.edu

Abstract

The START system responds to natural language queries
with answers in text, pictures, and other media. START’s
sentence-level natural language parsing relies on a number
of mechanisms to help it process the huge, diverse resources
available on the World Wide Web. Blitz, a hybrid heuristic-
and corpus-based natural language preprocessor, enables
START to integrate a large and ever-changing lexicon of
proper names, by using heuristic rules and precompiled ta-
bles of symbols to preprocess various highly regular and
fixed expressions into lexical tokens. LaMeTH, a content-
based system for extracting information from HTML doc-
uments, assists START by providing a uniform method of
accessing information on the Web in real time. These mech-
anisms have considerably improved START’s ability to an-
alyze real-world sentences and answer queries through ex-
pansion of its lexicon and integration of Web resources.

1. Introduction

With recent advances in computer and Internet technol-
ogy, people have access to more information than ever be-
fore. As the amount of information grows, so does the prob-
lem of finding what one is looking for. We believe that the
most natural form of communication and information ac-
cess for humans is natural language (NL). We strive to cre-
ate systems which can answer such queries.

The START system has answered over a million English
questions on the World Wide Web since 1993.1 START
(SynTactic Analysis using Reversible Transformations) an-
alyzes sentences as embedded ternary expressions and
stores them in a knowledge base.[4] An information seg-

∗This research was supported in part by DARPA under Air Force Re-
search Laboratory grant F30602-98-1-0036.

1http://www.ai.mit.edu/projects/infolab

ment can be annotated with a computer-analyzable collec-
tion of NL sentences and phrases that describe it.[5] START
analyzes these annotations and when a query matches a rep-
resentation derived from an annotation, START responds
with the annotated information fragment. START’s anno-
tation mechanism gives it the ability to store and retrieve
information of any complexity and in any media.

In order to respond to a query, an NL system must un-
derstand the question, find the resource with the answer,
and extract “just the right information” to present to the
user. NL systems have traditionally accessed data in a uni-
form database and included lexicons containing all relevant
words. Due to the explosion of the World Wide Web this
approach is no longer adequate. Given the size, complexity,
and diverse nature of information on the Web, three bottle-
necks stand in our way to making use of the Web:
1. Special-purpose extra-linguistic constructions defeat or
bog down morphological/lexical/syntactic analyzers.
2. Ever-changing myriads of proper names are not amen-
able to storage in a traditional static lexicon.
3. Incorporating knowledge distributed across the Web re-
quires flexible systems for data access and combination.

This paper describes solutions we have implemented to
address the above problems. For example, START answers
the query “who wrote the music for next stop, wonderland”

even though word-for-word, the sentence is not parseable
according to standard English grammar, and one of the
words in it is not likely to be found in most lexicons.

To address the first two bottlenecks, we created Blitz,
a hybrid heuristic- and corpus-based NL preprocessor that
eases the burden on the parser by recognizing human names,

jimmylin
In Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS 1999), June 1999, Florence, Italy

institutions, places, addresses, currencies, etc.
To address the third bottleneck, we created LaMeTH,

a content-based system for extracting information from
HTML documents that provides a uniform method for ac-
cessing real-time information on the Web.

Integrating these mechanisms with START has consider-
ably improved START’s ability to analyze real-world sen-
tences and to answer hundreds of thousands of live queries
submitted over the Web. Thus by blending linguistic-based
and corpus-based methods of language processing, we gain
the best of both worlds and achieve a far more powerful
system than could be built with either method alone.

2. Blitz

Linguistically motivated natural language parsers have
been plagued by the vast complexity of language. Parsers
which attempt to handle the richness of unrestricted lan-
guage often grow to contain unmanageably large grammars.
Other parsers which reduce language to a simple and tightly
constrained linguistic model either cannot analyze syntacti-
cally odd structures or cannot decide between multiple in-
terpretations. Certain NL constructions, such as numbers,
dates, times, emails, URLs, and proper names, while quite
simple in form, contribute significantly to the complexity
of grammars. These constructions do not exhibit the typi-
cally richly hierarchical structure of language, and therefore
are well-suited to heuristic-based non-linguistic analysis in
the absence of surrounding context. These structures can be
analyzed by a preprocessing module and converted to single
tokens, vastly speeding and simplifying parsing.

Other NL constructions, particularly names, present a
problem to linguistically motivated parsers because their
structures are extraordinarily ambiguous and because they
involve large numbers of ever-changing vocabulary items.

To solve these problems, we have created special pur-
pose pattern recognizers to extract such constructions from
free text and return results in a uniform structure.

These recognizers can be divided into two classes:
1. Heuristic recognizers are built to recognize open classes
of constructions like addresses, dates and numbers. It is im-
possible to enlist all members of such classes. They have to
be recognized based on partial cues such as special charac-
ters (e.g., the @ sign of an email address or the capitaliza-
tion marking a generic proper noun) or small fixed classes
of words (e.g., names of numbers or months).
2. Symbol-table recognizers, in contrast, attempt to find
matches using a list of all members of a given class of
symbols. Symbol tables permit quick recognition of non-
dictionary words (“Reebok”) and tokenization of phrases
used as names (“Gone with the Wind”). We have collected
large lists of people, place, and institution names, titles of
books, movies, songs, and so forth.

These recognizers and their control module comprise
Blitz, a hybrid heuristic- and symbol-table-based NL pre-
processor. Blitz components are compartmentalized in lay-
ers, yielding a highly customizable modular system. Ulti-
mately, all frames are passed back to START (or any NL
system), endowing it with the ability to understand sen-
tences that it otherwise would not be able to understand.

2.1. Methodology

These premises and philosophy underlie Blitz:
Minimal linguistic and lexical knowledge Blitz’s heuris-
tic component recognizes typographical properties such as
case and certain closed classes of words, e.g., names of
months, and employs simple rules for generating construc-
tions, e.g., a month name and ordinal represent a date (“June
3rd”). Such rules don’t result in much overgeneration be-
cause most special constructions take highly defined forms.
Other components which recognize fixed tokens access lists
of symbols, e.g., proper names, compiled from databases
without reference to significant linguistic knowledge.
Supplementation, not Replacement Blitz was not de-
signed as a standalone system, but rather as a component of
an NL system which assists in parsing and understanding.
The NL parser, equipped with greater syntactic and seman-
tic knowledge, will consider each suggestion and attempt to
incorporate it into its analysis of the sentence.
Compartmentalization Blitz components are isolated
from each other in independent modules that can easily be
interchanged and switched on or off. This architectural de-
sign allows Blitz to be specifically adapted to any applica-
tion. This compartmentalization strategy leads to a system
that is easily fine-tuned, maintained, and improved.
Comprehensiveness and accuracy Blitz’s heuristics rec-
ognize a wide range of constructions which are syntactically
impoverished and are limited to a relatively small number
of forms; not only are they composed from closed category
lexical items, but in addition, it is possible to enumerate the
rules for forming them. Blitz can very accurately extract the
information within each recognized token, such as the value
of a written number.
Recall is (locally) more important than precision All sus-
pected special constructions are detected by Blitz, even un-
der the threat of overgeneration. This is acceptable because
a true NL parser will restore precision by deciding the final
treatment of all tokenized constructions, employing seman-
tic and linguistic knowledge and aided by confidence values
provided by Blitz. (See Section 2.6.)

2.2. Frames

Blitz communicates extracted tokens in the format of a
“frame” which encodes the lexical information for the to-

2

ken, following this template: (type "string" :span (be-
gin end) :symbol symbol :attribute value ...)

type indicates the syntactic category of the token. string
is the token as entered by the user and span gives the to-
ken’s character position in the input sentence. symbol is the
token as found in a database, if any; the string and sym-
bol may differ if the Blitz has used its “fuzzy matching”
to account for minor differences such as case. Finally, an
arbitrary number of attribute/value pairs contain extracted
information specific to the type. For example:

(number "4" :span (0 1) :value 4)
(propernoun "gone with the wind" :span (0
18) :symbol "Gone with the Wind" :database
"imdb-movie")

2.3. Heuristic layer

The heuristic layer of the Blitz system consists of several
independent modules. This design facilitates the removal,
addition, or improvement of any module without drastic
changes to the system architecture:
Email Looks for @ sign and domain endings.
URL Looks for prefixes such as “http://”, “mailto://”.
Numbers Looks for numerals, numbers, and combinations.
(number "three hundred sixty-fourth" :span (0 25)

:value 364 :notation ordinal)

(number "42.2 million" :span (0 11) value 42.2+e7

:notation natural)

Because a single number may be written with the con-
junction “and”, it is difficult to separate cases of two actual
numbers from one single number constructed with “and”.
True disambiguation may be impossible without additional
insights offered by context and grammar.
Proper Names Looks for capitalized words optionally sep-
arated by a small, fixed set of connectors. See Section 2.4.
Time (time "7:12 pm" :span (0 6) :hour 7 :minute

12 :time pm)

Date (date "Friday, May 13, 1998" :span (0 24)

:day Friday :month May :date 13 :year 1998)

Address (address "77 Mass. Avenue" :span (0 15)

:number 77 :location "Mass. Avenue")

Quantity (quantity "$23.5 billion" :span (0 13)

:value 2.35e+10 :unit $)

2.4. Proper names

In truth, the extraction and disambiguation of proper
names2 is extremely difficult to accomplish in the absence

2“Proper noun” is sometimes used strictly to refer to a single noun used
as a name. We use the term “proper name” to make it clear that we are dis-
cussing full noun phrases which function as names. These phrases may
be made of any number of constituent words, whether nouns, e.g., “Queen
Victoria”, and/or other, e.g., “For Whom the Bell Tolls”. With the ex-

of context. Names by their very nature are deeply inter-
twined with the basic lexical and semantic fabric of the sen-
tence; hence it is difficult, if not impossible, to understand
and extract such information successfully without process-
ing the entire sentence with a full parser. The following five
sentences demonstrate a small sample of such ambiguities.
(1) The New York Times is a newspaper.

(2) In The New York Times today there was an article about
artificial intelligence.

(3) For Better or Worse is a popular comic strip.

(4) The copy of the New York Times John read was missing
an entire section.

(5) Is Mary Joe Frank’s daughter?
“The New York Times” is the full name of the popu-

lar newspaper, but it is impossible to derive such informa-
tion except with a priori knowledge. The beginning of ev-
ery sentence is capitalized; therefore heuristics cannot de-
termine whether or not that word is part of a name. This
is also the problem encountered in sentence (2), where a
preposition might be mistaken for part of the actual name.
In this case, disambiguation is difficult unless there exists
a large list of common words that should be excluded from
any name, which might include all prepositions. However,
even that scheme is far from foolproof, because prepositions
can legitimately begin a name, as in sentence (3). Sentence
(4) further demonstrates compounded ambiguity when two
names are adjacent to each other, unbroken by any punctu-
ation. Finally, there are truly ambiguous sentences, such as
(5), where it may be that Mary is the daughter of Joe Frank,
or that Mary Joe is Frank’s daughter.

These ambiguities frustrate or confound heuristics and
linguistic parsers, but knowledge of the world in the form
of symbol tables nearly solves this problem; see Section
2.5. We might wonder, then, what the value is in a heuris-
tic module. First, it allows the system to answer more in-
telligently in the negative; e.g., we can reply to “Tell me
about Xloij Plkjw” with “I don’t know anything about Xloij
Plkjw” rather than “I don’t understand you.” Second, a sym-
bol table may recognize a token without recognizing its in-
ternal structure, yet a heuristic can parse the token; e.g.,
we can reply to “Tell me about Pat Jones” with “Pat Jones
is a staff member. Pat’s office number is 5023.” Third, a
heuristic module can reinforce the result of a symbol table
module, tipping the balance in favor of a particular interpre-
tation of the input, e.g., “I bought an apple” (the fruit) vs.
“I bought an Apple” (the computer).

The Blitz name module looks for sequences of adjacent
capitalized words that may potentially be separated by a
very small list of connecting words such as “and,” “the,” and

ception of sometimes-optionally-lowercase connectors such as articles and
prepositions, constituent words have fixed case—traditionally capitalized,
although there are cases such as all-uppercase acronyms (“NASA”), bicap-
italized words (“MacGregor”), and odd exceptions (“e.e. cummings”).

3

“of.” All combinations of the entire token are then enumer-
ated, in anticipation of the ambiguities mentioned above;
e.g., New York Times would lead to “New York Times,”
“New York,” “York Times,” “New,” “York,” and “Times.”
Since the name module detects all combinations of capital-
ized words, it may return a large number of frames. “Confi-
dence values,” discussed in detail in Section 2.6, below, are
used to choose among frames.

2.5. Symbol table layers

Because heuristics and linguistic parsing are only effec-
tive in extracting constructions according to their form, it
is necessary to incorporate other knowledge sources for the
recognition of names which have no set form. The easiest
way to accomplish this is through lists of symbols for indi-
vidual categories; e.g., lists of all famous people, Fortune
500 companies, movie titles, etc. The rich resources avail-
able on the World Wide Web make it possible to create such
long symbol lists with relative ease.

In addition to simple heuristics, Blitz consults multiple
common proper names databases. When a sentence is pre-
processed, it is checked against the database for matches.
The matches are also packaged in frames and ultimately re-
turned to the natural language system.

Compartmentalization is also relevant in the context of
symbol tables. Due to the potentially huge number of sym-
bols in each database and the number of databases, it is im-
perative to isolate knowledge sources from each other to
ensure scalability and flexibility. For example, the movies
database should be separate from the database of Fortune
500 Companies. This modularization of data assists in the
management of complexity, making the modification of in-
dividual databases easier.

There are several advantages to storing symbols in
database format. The first is that large amounts of data
can easily be added or changed, allowing great flexibil-
ity in preprocessing applications. More importantly, how-
ever, storing additional information about symbols is possi-
ble with this scheme. For instance, the symbol “Gone with
the Wind,” stored as a movie title, could also contain in-
formation about the director, date and cast of the movie.
Such information can be passed on to a natural language
engine. And for databases on the World Wide Web, URL
information can be included, so that such symbols may be
hyperlinked. (Another program, LaMeTH (see Section 3)
enables convenient, real-time access to such data.)

2.6. Confidence and conflict resolution

Blitz overgenerates symbols because it works without re-
gard to context, because some input is inherently ambigu-
ous, and because identical symbols can be detected by more

than one means (e.g., by both the name module and a sym-
bol table of proper names). Blitz errs on the side of false
positives when detecting symbols, leaving the NL parser
ultimate responsibility for ruling out unwanted symbols.
Nevertheless, Blitz evaluates the likelihood and accuracy of
frames, insofar as it can, to assist the parser, returning its
calculations as “confidence” values within frames.

In some cases, a heuristic module or symbol table can
decide confidence without reference to other modules. For
example, the name module always assigns lower confidence
to a name at the beginning of the input, since the first word
might be capitalized purely because it starts the sentence.
Also, confidence values are adjusted appropriately if the en-
tire input is in uniform uppercase or lowercase.

In other cases, Blitz can adjust the confidence of a frame
based on the presence of another frame. For example, given
“We went to a concert on May 1st,” Blitz can lower the
confidence on “May” as a month because a month name
is highly unlikely to occur next to a possible date ordinal
without being part of the larger date. On the other hand,
given “Profits were high this year for Dewey, Cheatham,
and Howe,” Blitz has no way to assign higher probability
to either the three-frame or one-frame interpretation (unless
the symbol table contains the symbol).

2.7. Combining frames

Blitz can combine frames and reduce overgeneration,
and in some cases can assign higher confidence when com-
bining frames. For example, given “who wrote Gone With
The Wind,” Blitz can combine the heuristically derived
proper name frame with the symbol table frames, reducing
the total number of frames.

2.8. Using confidence values

A natural language parser will need some minor interface
code in order to integrate information supplied by Blitz. The
parser will likely want to combine its own lexical and syn-
tactic knowledge with Blitz’s confidence values in order to
decide on the proper interpretation of the input. Thus it may
prefer Blitz’s interpretations in some cases:

* I saw [det The] [pronoun Who] in concert.
I saw [NP (propernoun “The Who”)] in concert.

but not in others:
[aux May] I go now?

* [NP (date “May”)] I go now?

In addition, the parser can specify a confidence threshold
to prevent Blitz from returning low-confidence frames. This
greatly reduces the problem of overgeneration.

4

3 LaMeTH

START’s goal is to be able to understand the structure
and content of information such that START can index it au-
tomatically, and respond correctly and concisely to queries
about it. Blitz assists START in understanding queries that
contain unknown lexical items. However, this is not enough
to complete the query answering process; an equally pow-
erful system must be available to access relevant knowledge
and produce a satisfactory answer for the user.

Traditional methods of storing and representing knowl-
edge are no longer adequate in light of the explosion of in-
formation on the Web. Numerous Web databases provide a
tremendous amount of information worth exploiting. How-
ever, data in these source databases is often not accessible
directly by START; instead, information is returned from
the remote server in the form of a complex HTML docu-
ment. The desired knowledge is often buried in the midst
of other irrelevant information, rendering its extraction dif-
ficult. Although it is possible to present the user with this
entire HTML document as an answer, this is far from desir-
able because the majority of the document frequently bears
no relevance to the user query.

One popular attempt to solve this problem is through use
of relational databases. While information stored in this
form is easy to access and these databases support relatively
complex operations, the original problem of populating the
database remains. Fully automatic parsing of HTML docu-
ments would require solving not only the problem of pars-
ing and understanding human language, but also the prob-
lem of parsing visual document structure into logical docu-
ment structure. Yet manual scanning of HTML text is dif-
ficult and tedious. Furthermore, it is often impractical to
store Web-based information sources locally, because it es-
sentially duplicates the remote database server; at times, the
sheer size of the database limits local storage. Finally, stor-
age of data in local databases erases the dynamic and active
nature of the Web, where information is constantly updated
and renewed. In order to mine the vast quantities of data
on the Web, we need a fast and easy method of extracting
specific information from HTML documents as needed.

The Web’s population of numerous large “databases”
of documents does have fairly regular format and struc-
tural content which is clear to a human reader. LaMeTH
bridges the gap between our ability to automatically recog-
nize knowledge and the complexity of HTML documents
by making it easy for a human to write short scripts to de-
scribe the location of relevant knowledge in these untradi-
tional “databases.” After START understands a particular
query, it calls LaMeTH to retrieve the requested piece of
information, live and directly over the Web from a remote
server, without having to store any information locally. For
example, given a query such as “Who wrote the screenplay

for Next Stop, Wonderland,” START uses LaMeTH to fetch
the “writing credits” attribute of the symbol “Next Stop,
Wonderland.” Thus LaMeTH serves as START’s portal into
knowledge reserves on the World Wide Web.

3.1. Creating LaMeTH scripts

It is difficult for humans to extract information using
popular methods of HTML extraction which involve us-
ing regular expression-like scripts to search through HTML
code or parsers which separate each tag and perform match-
ing on them, because it requires detailed knowledge of
HTML syntax, and because they do not allow extraction by
“visual inspection,” the most intuitive method for humans.
The scripter can only view raw HTML as a linear, text-
only representation of hierarchical material, understandable
only through close reading, whereas displayed HTML can
be quickly skimmed for textual or visual elements, accord-
ing to the material the scripter is trying to locate, or the
scripter’s personal preferences in analyzing information.

The LaMeTH environment provides tools and methods
for a human to expand START’s knowledge in an intuitive
manner based on content elements and layout: it provides
an interface which assists the user in the extraction process
by automatically annotating an HTML document. This sim-
ple interface creates a duplicate version of the input HTML
document which contains annotations marking up relevant
content elements. Each content element is assigned a lin-
ear reference number, which the scripter can use to index
the element. This further simplifies the analysis of a Web
document, making it as easy as visually locating the desired
element and reading the adjacent number. 3

3.2. The LaMeTH scripting language

The scripting language works as follows:
• LaMeTH recognizes the subset of HTML elements which
are specifically relevant to the structure of a document in
terms of data extraction. It recognizes headings, para-
graphs, tables, lists, and text level elements such as empha-
sis. In addition to recognizing “logical” structural elements,
LaMeTH recognizes “visual” elements such as tables, bold-
face and italics, and recognizes any series of text bigger than
the surrounding text in size, such as a heading.
• Document elements are referenced in the scripting lan-
guage by type. For example, if a document contains a head-
ing followed by two paragraphs, one would index the sec-
ond paragraph as “paragraph 2,” not as “element 3.”

3Other visually-based HTML extraction tools exist. For example,
Netscape, Excel, and Word all have tools for visually creating extraction
scripts. These tools are in many ways comparable to LaMeTH but are hard
to integrate with other systems.

5

• LaMeTH’s scripting language flexibly allows the con-
tents of an HTML document to be referenced either hierar-
chically or linearly. HTML is hierarchical by nature, and in
referencing elements hierarchically, one refers to the set of
indices which specify an element’s nested location, e.g., the
fifth table within the second table. In many cases, it may
be more convenient to view the document by its linear text
structure rather than its hierarchical HTML structure. In
the linear method, hierarchical structure is ignored, and el-
ements are numbered according to the order in which they
begin. Thus, if a nested table appears at the beginning of
another table, the nested table’s index would be one higher
than the outer table’s index.
• LaMeTH performs detailed analysis on lists and tables.
Every individual list heading and item, whether “ordered,”
“unordered,” or “definition” style, can be referenced. Any
specific table cell can be referenced by row and column in-
dex. Entire rows and columns can likewise be extracted,
allowing advanced filtering and processing of tabular data.
LaMeTH also handles irregularly shaped tables, and tables
with cells which span multiple rows and columns.
• LaMeTH’s scripting language uses LISP-like syntax. A
basic scripting command extracts a single element from an
HTML document. The basic commands can be combined
to perform more complex extractions. Local variables al-
low one to keep track of nested references and to extract
multiple items from the HTML source in a single reference.
• LaMeTH includes an ambiguity resolution algorithm in
order to deal with inconsistencies across similar HTML
documents. A location can be specified as a range or combi-
nation of particular locations, and LaMeTH will choose the
correct location from the various possibilities based on sec-
ondary criteria such as text literals or other features. This al-
lows a script to work across many Web pages whose HTML
markup is similar but not identical.

3.3. Examples

Suppose we wanted to find the revenue of Sun Microsys-
tems. The website of Fortune Magazine offers this informa-
tion in its Fortune 500 companies section:

By visual inspection, it is easy to notice that the piece
of information we want is presented in a table. However,
only after detailed inspection will one discover the location
of that same number within the HTML document:

(160 lines omitted)
...
<TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0">
<TR VALIGN="top" ALIGN="right">
<TD ROWSPAN="2" BGCOLOR="#66FFCC">
Revenues</TD>
<TD BGCOLOR="#66FFCC">
$ millions</TD>
<TD BGCOLOR="#EEEEEE">
8,598</TD></TR>
<TR VALIGN="top" ALIGN="right">
<TD BGCOLOR="#66FFCC">
...
(309 lines omitted)

Indeed, the HTML code of a nicely laid out Web page
is often immensely complicated, bearing no resemblance to
the visual layout; here, the revenues figure we want is buried
within five hundred lines of hard-to-read HTML code. Lo-
cating this information requires not only a great deal of
time, but also knowledge of HTML.

After invocation of the LaMeTH markup interface to
mark the boundaries of tables, we can now see exactly
which table we want. This interface preserves the origi-
nal content and layout of the HTML document, and merely
adds annotation to label and distinguish each relevant con-
tent element—in this case, tables:

We can easily see that the revenues figure (8,598) we
want is located in the first row, third column, and table num-
ber five. Using this information, a simple LaMeTH script
can be written to retrieve this specific piece of information;
that is, the value of the revenues attribute.

The execution of this script by the LaMeTH language
interpreter will produce the desired answer.

6

4 Comparison with related systems

There already exist several systems which specialize in
the extraction of proper nouns, names, and some other sym-
bols, such as NetOwl by IsoQuest [7], Nominator by IBM
and the University of Pennsylvania [9], Nymble by BBN
[2], and others [1, 3, 6, 10, 8]. The focus of the Blitz system
differs somewhat from these systems in that it aims towards
natural language understanding, rather than towards some-
what less ambitious goals of automatic indexing, keyword
extraction, and summary generation.

The systems cited above typically rely on heuristics and
corpus-based training alone, rather than on precompiled
lists of symbols. Although they add expense, due to the
necessity of compiling and storing them, symbol tables also
improve a system’s ability to recognize tokens.

Moreover, in order to answer questions using a variety
of resources on the Web, we need to identify both which
resource to access and what specific information to extract
based on the question. I.e., when someone asks “Who wrote
X?”, it is impossible to know what “database” (e.g., Web
page) to access unless we know whether X is a book, movie,
or song. Since we already need to store symbols in order to
use LaMeTH to extract symbol attributes, we might as well
make use of the symbols to improve Blitz’s operation.

Although fully operational as standalone systems, the
full potential of Blitz and LaMeTH can only be tapped
through integration with a linguistically informed natural
language system. Because they are specifically designed to
be coupled with an NL system, they can afford, in a curi-
ous way, to be simultaneously both more and less power-
ful. That is, Blitz is more powerful in that it can afford to
recognize less likely interpretation which only rarely turn
out to be correct; the coupled NL system, using its own
knowledge and tuning Blitz through modifying confidence
values, compensates for Blitz’s overenthusiasm. Blitz and
LaMeTH are less powerful in that they need not choose or
distinguish between multiple possible interpretations of de-
tected or extracted expressions; they can leave this to the
coupled natural language system. Thus combining Blitz and
LaMeTH with START creates a system vastly superior in
functionality to the individual components.

5 Conclusion

Today’s readily available large databases and cheap com-
puting power let us apply linguistically impoverished, com-
putationally inexpensive mechanisms to huge amounts of
data and fuse the result with strongly linguistically moti-
vated techniques to produce a practical, effective natural
language processing system which provides convenient ac-
cess to all kinds of information.

Integrating Blitz with the START natural language sys-
tem has improved START’s ability to handle real-world sen-
tences dramatically. LaMeTH helps find and return needed
information. START is now able to interpret tokens and ac-
cess live data on the Web in order to answer queries such as
these:

Integrating mechanisms such as Blitz and LaMeTH into
START lets us take advantage of the fruits of labor of thou-
sands of people around the world to provide convenient in-
formation access via the World Wide Web.

References

[1] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, and
M. Tyson. The SRI MUC-5 JV FASTUS Information Ex-
traction System. In Proceedings of the Fifth Message Un-
derstanding Conference, 1993.

[2] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel.
Nymble: a high-performace learning name-finder. In Pro-
ceedings of the Fifth Conference on Applied Natural Lan-
guage Processing, 1997.

[3] P. Hayes. NameFinder: Software that finds names in text. In
Proc. of RIAO ’94, Paris, France, 1994.

[4] B. Katz. Using English for indexing and retrieving. In P. H.
Winston and S. A. Shellard, editors, Artificial Intelligence at
MIT: Expanding Frontiers, volume 1. MIT Press, 1990.

[5] B. Katz. Annotating the World Wide Web using natural lan-
guage. In Proc. of RIAO ’97, Montreal, Canada, 1997.

[6] W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie,
J. Peterson, and F. F. UMASS/HUGHES: Description of the
CIRCUS system used for MUC-5. In Proceedings of the
Fifth Message Understanding Conference, 1993.

[7] NetOwl Extractor technical overview. Technical report, Iso-
Quest, Inc., March 1997.

[8] Managing text with Oracle8 ConText Cartridge. Technical
white paper, Oracle Corporation, June 1997.

[9] Y. Ravin and N. Wacholder. Extracting names from natural-
language text. Research Report RC 20338, IBM, 1997.

[10] Y. Ravin, N. Wacholder, and M. Choi. Disambiguation of
proper names in text. Research Report 20735, IBM, 1997.

7

