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ABSTRACT
Serverless architectures represent a new approach to designing
applications in the cloud without having to explicitly provision
or manage servers. �e developer speci�es functions with well-
de�ned entry and exit points, and the cloud provider handles all
other aspects of execution. In this paper, we explore a novel ap-
plication of serverless architectures to information retrieval and
describe a search engine built in this manner with Amazon Web
Services: postings lists are stored in the DynamoDB NoSQL store
and the postings traversal algorithm for query evaluation is imple-
mented in the Lambda service. �e result is a search engine that
scales elastically with a pay-per-request model, in contrast to a
server-based model that requires paying for running instances even
if there are no requests. We empirically assess the performance and
economics of our serverless architecture. While our implementa-
tion is currently too slow for interactive searching, analysis shows
that the pay-per-request model is economically compelling, and
future infrastructure improvements will increase the a�ractiveness
of serverless designs over time.

1 INTRODUCTION
Servers, referring to both so�ware stacks and the machines they run
on, are central to the architecture of information retrieval systems.
In the standard design, a search service waits for requests from a
client based on some well-known protocol (e.g., HTTP or an RPC
framework such as �ri�), executes the query, and returns the
result. In a distributed search architecture, each server may only be
responsible for a small partition of the entire document collection,
and there may be many replicas of the same service, but servers
remain the basic building block.

�e advent of cloud computing means that physical machines
are nowadays increasingly replaced by on-demand virtualized in-
stances under a pay-as-you-go model. However, running a search
engine still requires managing servers in some form. Even if there
are no requests, one still needs to pay for some basic level of pro-
visioning, in anticipation of incoming queries. As the query load
increases, one then needs to provision more servers and load bal-
ance across them. Although there are tools to assist with scaling
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up (and down) elastically, our goal is to explore alternative archi-
tectures that simplify management.

A new trend in cloud computing under the banner of serverless
architecture or serverless computing aims to divorce the execution
of stateless services from the server machines they run on (whether
physical or virtualized). For example, Amazon’s Lambda service
lets a developer run code without provisioning or managing servers.
�e developer speci�es a block of code that needs to be executed
with well-de�ned entry and exit points, and Amazon handles the
actual execution of the code—from a few times per day to thousands
of requests per second.

�is paper explores applications of serverless architectures for
information retrieval and describes a search application built en-
tirely using this approach with Amazon Web Services. Our key
insight is that search breaks down into two components: postings
lists that comprise the index and postings traversal algorithms that
manipulate the postings to compute query results. �e postings
lists represent the “state” of the application, which we store in Ama-
zon’s DynamoDB NoSQL store. �e “stateless” query evaluation
algorithm is encapsulated in Lambda code that fetches postings of
query terms stored in DynamoDB to compute query results.

�e contribution of this work is the �rst application of serverless
computing to information retrieval that we are aware of. We show
that it is indeed possible to build a fully-functional search engine
that does not require the explicit provisioning or management of
servers. Experimental results show that our design yields end-to-
end query latencies of around three seconds on a standard web
test collection of approximately 25 million documents. While this
latency is not acceptable for interactive retrieval today, the econom-
ics of the pay-per-request model is compelling. We believe that our
design is interesting, and as serverless architectures gain popularity,
infrastructure improvements will increase the a�ractiveness of our
approach over time.

2 BACKGROUND
Serverless computing represents the logical extension of the “as a
service” cloud computing trend that began in earnest a decade ago
(even though precedents date back many decades to the advent of
timesharing machines). Infrastructure as a service (IaaS) provides
elastic, on-demand computing resources, usually in the form of vir-
tual machines—Amazon’s EC2 was the �rst and remains the most
prominent example of this model, although Microso�, Google, and
many others have similar o�erings. �ese cloud providers also o�er
storage and other infrastructure components (e.g., network virtu-
alization) in a pay-as-you-go manner. Platform as a service (PaaS)
raises the level of abstraction, where the cloud provider manages
a complete computing platform—a typical example is Google App
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Engine, which supports hosted web applications. Database as as ser-
vice (DBaaS), such as Amazon’s Relational Database Service (RDS),
Microso�’s Azure SQL, and Google’s Cloud SQL, provides managed
database services that simplify provisioning, administering, and
scaling relational databases in the cloud.

Database and storage as a service can be viewed as providing
developers the ability to o�oad the management of “state” to a
cloud provider. Many modern web applications centralize state in
a database or some backend data store to simplify design and to
support horizontal scalability. �erefore, most, if not all, application
logic becomes stateless, in the sense that state is not preserved
across multiple invocations of a particular functionality. �us, the
application just becomes a bunch of functions that access a common
data store. If the responsibility of managing state is then pushed to
a hosted cloud solution, then all that is le� is a bunch of functions.
In such an architecture, the developer does not really care how
these functions are executed—hence, serverless.

Serverless computing does not actually mean that code can run
without servers—but rather that from the developer’s perspective,
the execution of self-contained functions becomes someone else’s
problem, namely, that of the cloud provider. �e developer does
not need to worry about spinning up servers (or VM images), ag-
gregating multiple execution instances to increase utilization, load
balancing across multiple server instances, scaling up and down
elastically, etc. �e advent of lightweight containers with additional
namespace virtualization and tooling, exempli�ed by Docker [11],
makes serverless computing practical.

To date, most discussions of serverless computing take place in
the context of redesigning user-facing applications in this paradigm.
Such a decomposition is consonant with the “mircoservices” archi-
tecture that is in vogue today. For example, Hendrickson et al. [7]
speculate about what it would take to rebuild Gmail in a completely
serverless design, and the breakthroughs necessary to make it a
reality. In this paper, we focus on the backend and explore what
serverless information retrieval might look like.

3 SERVERLESS DESIGN
�is section describes the design of our serverless search archi-
tecture, shown in Figure 1. We explain how index structures are
mapped to DynamoDB and how the query evaluation algorithm
is implemented using Lambda functions. At present, we have de-
signed our system entirely around Amazon Web Services and thus
vendor lock-in is a concern. Other cloud providers o�er similar
capabilities, although they are not as mature as Amazon’s services.
Cloud interoperability is an important issue in its own right, but
beyond the scope of our work.

In this paper, we consider the JASS score-at-a-time query evalu-
ation algorithm on impact-ordered indexes [9]. �is approach has
been shown to be both e�ective and e�cient compared to state-of-
the-art document-at-a-time approaches [4]. �ery evaluation in
JASS begins with lookup of postings corresponding to query terms.
Each postings list comprises a sequence of decreasing impact scores,
each of which is associated with a run of sorted docids (which we
call a segment). To simplify our implementation, we currently do
not compress docids [10]. Segments from postings lists of all query
terms are sorted in decreasing impact score and processed in that

Figure 1: Our serverless search architecture. AWS infrastruc-
ture is shown in blue (Lambda and DynamoDB) and our cus-
tom components are shown in green.

order. For each segment, its impact score is loaded, and for each
docid in the segment, the impact score is added to its accumulator.
In JASS, the accumulators are implemented as an array of 16-bit
integers, one per document, indexed by the docid. To avoid sorting
the accumulators once all postings segments have been processed,
a heap of the top k can be maintained during processing. �at is,
a�er adding the current impact score to the accumulator, we check
if the document score is greater than the smallest score in the heap;
if so, the pointer to the accumulator is added to the heap. A�er
all postings segments have been processed, the top k elements are
extracted from the heap and returned as results.

3.1 DynamoDB Index Storage
DynamoDB [5] is Amazon’s fully-managed NoSQL store that sup-
ports a basic key–value model. One of its key features is that the
user pays only for data storage and read/write operations. �is
pricing model is truly pay-per-request, in contrast to Amazon’s
Relational Database Service (RDS), which requires payment for
server instances, regardless of query load.

DynamoDB has three core components: tables, items, and at-
tributes. Tables store collections of related data. An item is an
individual record within a table, and an a�ribute is a property of
an item. In DynamoDB, items in the same table can have a�ributes
that are not shared across all items. DynamoDB supports two types
of primary keys: One a�ribute is selected as the partition key and is
used internally by the service itself for data placement. Optionally,
a second a�ribute can be selected as the sort key. No two items
within a table can share a primary key, but DynamoDB supports
additional indexes.

At construction time, each DynamoDB table needs to have a
name and an associated primary key de�ned. Otherwise, the tables
are schemaless, which means that neither the a�ributes, nor their
types, have to be de�ned prior to data insertion. DynamoDB items
have a size limit of 400KB, which is an important limitation we
need to overcome (details below).
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A naı̈ve mapping from an inverted index to a NoSQL store would
be to use the term as the partition key, and to store the postings
for that term as the value. �e issue with this design is that even
for small collections, the size of the postings lists will exceed the
400KB size limit of DynamoDB items. Fortunately, the organization
of impact-ordered indexes presents a natural way of breaking up
the postings—by their impact scores. However, with su�ciently
large collections, a postings segment (particularly for small impact
scores) can still exceed the 400KB limit. To accommodate this we
introduce the notion of “groups”, an ordering of di�erent runs of
docids that share the same impact score. In DynamoDB, we use
a hybrid sort key comprised of the impact score and the group
number within that impact score.

Recall that for JASS score-at-a-time traversal we must retrieve
postings for a term and a given impact score. Unfortunately, our hy-
brid sort key design does not make this easy to do. As a workaround,
we created a secondary index on the postings table with the term
as the hash key and the impact score as the sort key to support
querying directly by impact score. Because there is no uniqueness
constraint for primary keys in a secondary index, this approach
works regardless of whether or not the postings for an impact score
are split across DynamoDB items (i.e., di�erent groups). In addition
to the postings table, we created a separate metadata table, which
stores the number of documents in the collection (necessary for the
initialization of query evaluation) as well as a list of impact values
that have postings for each term. �is design allows us to avoid
fetching non-existent impact scores.

Finally, we built an ingester program that takes impact-ordered
indexes from an external source and inserts the postings into Dy-
namoDB according to our design. Our current implementation is
rather naı̈ve and does not manage “hotspots” in the underlying
DynamoDB table that develop when inserting many items with the
same partition key, and hence does not achieve high throughput.

3.2 Lambda�ery Evaluation
Amazon’s Lambda lets developers run code without provisioning or
managing servers, although creating a Lambda requires specifying
the amount of memory that is available to each code invocation
(up to a maximum of 1.5GB) and a timeout period (not exceeding
300 seconds). Code invocations are charged according to the dura-
tion of the execution, rounded up to the nearest 100ms in a very
�ne-grained manner. While there are no speci�cations of computa-
tional resources provided to execute the Lambda, both the network
bandwidth [6] and the amount of processing power [2] have been
observed to scale linearly with the memory requested.

Lambda code must be wri�en in a supported language: JavaScript,
Python, Java, or C#. However, there is no restriction against in-
voking code wri�en in other languages. It is trivial, and indeed
common usage, to bundle resources such as native binaries and
libraries along with the function code itself. Our Lambda function
is implemented in Python, which then invokes a program wri�en
in C++ that performs the actual query evaluation.

When an invocation request arrives at the API Gateway (a trigger
that invokes a Lambda on HTTP events), Amazon is responsible for
provisioning the necessary resources to execute the Lambda and
managing its lifecycle. All of this happens without our intervention.

Client Lambda Program Processing
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Figure 2: Performance of our serverless architecture.

Within the Lambda itself, our code �rst requests information
about the number of documents and the impact scores for the
query terms from the metadata table. A�er fetching this informa-
tion, the accumulators and the heap are initialized, followed by
the actual processing of the impact segments of the query terms
in descending order. For each impact score, the DynamoDB re-
quests are issued asynchronously, and the results are processed
when available. While it would be possible to perform all requests
asynchronously, this was not done since it would not yield a correct
score-at-a-time traversal order. A�er processing has completed,
the top k results are returned (k = 1000 in our experiments). Our
implementation currently returns internal numeric docids instead
of external (string) docids that are collection-speci�c.

4 EXPERIMENTS
To validate our design, we implemented the serverless retrieval
architecture described in the previous section on the Gov2 collec-
tion, comprised of around 25 million web pages. For evaluation,
we used topics 701–850 (with stopwords removed) used in the Ter-
abyte Tracks from TREC 2004 to 2006 [3]. For expediency, we only
ingested into DynamoDB the postings lists of the query terms.

4.1 Performance Analysis
We report experimental results in Figure 2, showing standard box-
and-whiskers plots for query latency, with the mean shown as a
white diamond. Latency �gures are broken down as follows: “Client”
is measured from the search client using the Unix command time
(mean: 3087ms), “Lambda” is the billable duration as measured by
Amazon (mean: 1887ms), “Program” is the internal timing by our
query evaluation algorithm (mean: 1722ms), and “Processing” cap-
tures the amount of time spent performing query evaluation outside
of waiting for DynamoDB requests (mean: 87ms). �e di�erence
between the “Program” and “Lambda” measurements captures the
overhead of the Python Lambda invoking the native C++ bina-
ries for query evaluation. �e di�erence between “Lambda” and
“Client” represents the additional overhead of invoking the Lambda
itself and retrieving the results. Overall, everything other than
the “Processing” measurement re�ects overheads of the serverless
architecture in various forms.

Even with all the “obvious” optimizations that we have imple-
mented, end-to-end client query latency is longer than is typically
considered usable for an interactive search application. To be�er
contextualize these results, a recent open-source reproducibility
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challenge organized by Lin et al. [8] reported a query latency of
JASS under similar experimental conditions as 51ms (same collec-
tion, same queries, on an EC2 instance). �is compares favorably
with our “Processing” time, and the performance gap can be likely
a�ributed to CPU di�erences in the underlying instances.

Overall, our experiments identi�ed many sources of latencies in
the current design, the biggest of which involves fetching postings
from DynamoDB. �ere is substantial room for improvement, and
we would expect that as serverless designs become more popular,
Amazon would address these bo�lenecks over time. Beyond Dy-
namoDB latencies, there are a few obvious ine�ciencies: for exam-
ple, the invocation overhead of the C++ program can be eliminated
if AWS supported C++ Lambdas. Furthermore, there is time wasted
in needless data conversion—all Lambda requests and responses
must be in JSON format and binary a�ributes in DynamoDB are
encoded in base64, which is slow to decode. It would not be very
di�cult for Amazon to provide the developer more �ne-grained
control over serverless execution in these regards.

Beyond these experiments, there are several additional questions
regarding our setup. In performance evaluations, it is customary to
distinguish “cold” runs and “warm” runs, where the la�er bene�t
from caching e�ects. Since both DynamoDB and Lambda are fully-
managed services, this is di�cult for us to accomplish as many
aspects of execution are not as transparent as we would like. How-
ever, since our work is primarily a feasibility study, we defer these
more detailed explorations to future work.

4.2 Cost Analysis
A key feature of our serverless design is the pay-per-request model
and the automatic horizontal scalability of Lambda and DynamoDB
in response to demand. In this section, we provide a cost analysis
comparison of serverless and server-based architectures.

For a fair comparison, we once again turn to results from the
reproducibility study of Lin et al. [8], which also examined JASS
on the same collection and queries. On an EC2 r3.4xlarge instance,
Lin et al. reported a query latency of 51ms on a single thread. Since
the instance has 16 vCPUs, if we assume linear scaling, we arrive
at a throughput of around 313 queries per second on a fully-loaded
server. �is instance costs USD$1.33 per hour regardless of load,
which means that the cost is the same whether the server executes
zero, one, or one million queries in any given hour. On the other
hand, Lambda is charged on a per-request basis in increments of
100ms. �e average billable time for our system was 1887ms per
query, which translates to USD$0.000047951. DynamoDB storage
is charged at USD$0.25 per GB per month plus additional costs for
read and write operations. However, our usage levels remain in the
DynamoDB “free tier” for these experiments, although a heavier
query load would not substantially a�ect our analysis.

In Figure 3, we model the per-query cost in cents for the server-
based and serverless architectures assuming the con�gurations
above, as a function of query load in queries per second (qps).
�e Lambda design has a constant cost per query, while the EC2
instance becomes more cost-e�ective at higher loads, with the
breakeven point around 7.7 queries per second. In addition, with
Lambda we achieve (potentially unlimited) scalability without man-
ual intervention. While a load of 7.7 qps seems low, consider that
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Figure 3: Cost of serverless vs. server-based architectures.

in the overview of the TREC 2016 Open Search Track [1], it was
revealed that CiteSeerX receives nearly 100,000 queries per day,
which translates into 1.2 qps on average. We venture that in all but
the most demanding applications (e.g., commercial search engines),
a serverless design would be compelling from a cost perspective.

5 CONCLUSIONS
Trends point to an inevitable move of computing to the cloud, and
serverless architectures re�ect this evolution. �is work represents,
to our knowledge, the �rst design of a serverless architecture for
information retrieval. We readily concede that this initial iteration
su�ers from performance issues, although our cost analysis justi�es
the pay-per-request model for most search needs. We expect that
future improvements in cloud infrastructure, along with additional
optimizations in our design, will render serverless information
retrieval increasingly a�ractive.
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