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Scene: ���
Internet company in Silicon Valley (circa 2010)	


Standard data science task: ���
What have people been clicking on?	




Simple!	


raw = load '/logs/' using LogLoader(); 
 
a = filter raw by action == 'click'; 
b = group a by target; 
c = foreach b generate COUNT(a), group; 
 
store c into 'counts/'; 

val input = TypedTsv[(String, String)]("/logs”) 
val raw = TypedPipe.from(input) 
 
raw.groupBy { case (target, action) => target } 
  .size 
  .write(TypedTsv("counts")) 

Write some Pig…	


Or some Scalding (more recently)…	




Standard data science task: ���
What have people been clicking on?	


Now try: ���
What have people been clicking on right now?	


*grumble*	


Two major pain points (circa 2010):	

1. Lack of a standardized online processing framework	


2. Having to write everything twice	


Simple!	


*ugh*	
 *hrmmm*	




State of the industry (circa 2013):	

Good handle on batch processing at scale	


Increasing convergence on online processing frameworks	


Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 

Storm	




Two major pain points:	

1. Lack of a standardized online processing framework	


2. Having to write everything twice	


✓Widespread adoption of Storm at Twitter	


The point of this work…	




A domain-specific language (in Scala) designed	

to integrate batch and online MapReduce computations	


Summingbird	


Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	


Probabilistic data structures as monoids	

Idea #2: For many tasks, close enough is good enough	




Summingbird	


Primary goal is developer productivity	

Optimizations can come later…	


counting etc. (min, max, mean, moments…)	


Scope: “the easy problems”	


set membership	

histograms	




“map”	


flatMap[T, U](fn: T => List[U]): List[U] 

map[T, U](fn: T => U): List[U] 

filter[T](fn: T => Boolean): List[T] 

sumByKey 

Batch and Online MapReduce 	


“reduce”	




Semigroup = ( M , ⊕ )	

⊕ : M × M → M, s.t., ∀m1, m2, m3 ∋ M	


Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	


(m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3) 	


Monoid = Semigroup + identity	


Commutative Monoid = Monoid + commutativity	


ε s.t., ε ⊕ m = m ⊕ ε = m, ∀m ∋ M	


∀m1, m2 ∋ M, m1 ⊕ m2 = m2 ⊕ m1	


Simplest example:  integers with + (addition)	




( a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f )	


You can put the parentheses anywhere!	


Batch = Hadoop	


Mini-batches	

Online = Storm	


 Summingbird values must be at least semigroups���
(most are commutative monoids in practice)	


((((( a ⊕ b ) ⊕ c ) ⊕ d ) ⊕ e ) ⊕ f )	

(( a ⊕ b ⊕ c ) ⊕ ( d ⊕ e ⊕ f ))	


Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	


Power of associativity =	


Results are exactly the same!	




def wordCount[P <: Platform[P]] 
  (source: Producer[P, String], 
   store: P#Store[String, Long]) = 
   source.flatMap { sentence => 
      toWords(sentence).map(_ -> 1L) 
    }.sumByKey(store) 

Scalding.run { 
  wordCount[Scalding]( 
    Scalding.source[Tweet]("source_data"), 
    Scalding.store[String, Long]("count_out") 
  ) 
} 

Storm.run { 
  wordCount[Storm]( 
    new TweetSpout(), 
    new MemcacheStore[String, Long] 
  ) 
} 

Summingbird Word Count	


Run on Scalding (Cascading/Hadoop)	


Run on Storm	


where data comes from	

where data goes	


“map”	


“reduce”	


read from HDFS	


write to HDFS	


read from message queue	


write to KV store	




Map Map Map 

Input Input Input 

Reduce Reduce 

Output Output 

Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 



“Boring” monoids	


addition, multiplication, max, min	

moments (mean, variance, etc.)	


sets	


hashmaps with monoid values	


More interesting monoids?	


tuples of monoids	




Idea #2: For many tasks, close enough is good enough!	


“Interesting” monoids	

Bloom filters (set membership)	


HyperLogLog counters (cardinality estimation)	

Count-min sketches (event counts)	


1. Variations on hashing	

2. Bounded error	


Common features	




Cheat sheet	


Set membership	


Set cardinality	


Frequency count	


set	


set	


hashmap	


Bloom filter	


hyperloglog counter 	


count-min sketches	


Exact	
 Approximate	




def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, Map[String, Long]]) = 
   source.flatMap { query => 
      (query.getHour, Map(query.getQuery -> 1L)) 
    }.sumByKey(store) 

def wordCount[P <: Platform[P]] 
  (source: Producer[P, Query], 
   store: P#Store[Long, SketchMap[String, Long]]) 
  (implicit countMonoid: SketchMapMonoid[String, Long]) = 
   source.flatMap { query => 
      (query.getHour, 
       countMonoid.create((query.getQuery, 1L))) 
    }.sumByKey(store) 

Exact with hashmaps	


Task: count queries by hour	


Approximate with CMS	




(Left) Joins	


def urlCount[P <: Platform[P]] 
  (tweets: Producer[P, Tweet], 
   urlExpander: P#Service[String, String], 
   store: P#Store[String, Long]) = 
   source.flatMap { tweet => 
      extractUrls(tweet.getText) 
    }.map { url => (url, 1L) } 
     .leftJoin(urlExpander) 
     .map { 
      case (shortUrl, (count, optResolvedUrl)) => 
        (optResolvedUrl.getOrElse("unknown"), count) 
    }.sumByKey(store) 

Task: count expanded URLs	




Hybrid Online/Batch Processing	


online results  
key-value store 

batch results  
key-value store 

client 
Summingbird 

program 

Message 
Queue 

Hadoop job 

Storm topology 

store1 source2 source3 … store2 store3 … source1 

read write 

ingest 

HDFS 

read write 

query 

query 

online 

batch 

cl
ie
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 li
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Example: count historical clicks and clicks in real time	




Multiple generation of systems for “real-time counting”	


A few dozen jobs, account for ~half of online analytics	


Began late 2012	

First production usage early 2013	

Open-sourced Sept 2013	


Powers dashboards, signals for products	


Deployment Status	


(lots of experience on use cases)	


Currently:	




Related work	

Lots of work on dataflow languages: ���
Pig, Scaling, DryadLINQ, Spark, etc.	


Lots of work on online MapReduce: ���
HOP, DEDUCE, MapUpdate, etc.	


Lots of work on stream processing: ���
Aurora, S4, Samza, BlockMon, Spark Streaming, MillWheel, Photon, etc.	


Lots of work on incremental batch processing: ���
CBP, Incoop, Hourglass, etc.	


Lots of work on pub-sub: ���
Kafka, RabbitMQ, SQS, etc.	


Some work on category theory and big data: ���
monad comprehensions, monoids for ML, CRDT	




More target execution frameworks, e.g., Spark	


Automatic tuning of mini-batches for Storm	


Future Work	


Optimizations:	

Standard “bag of tricks”	




Integrating batch and online MapReduce	

Summingbird	


Idea #1: Algebraic structures provide the basis for ���
seamless integration of batch and online processing	


Probabilistic data structures as monoids	

Idea #2: For many task, close enough is good enough	


Questions?	



