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Global Pointers = Evil

Introduced mainly for trees [Jacobson, 1989].
Applied to Strings:

binary [Clark and Munro, 1996].
larger alphabet [Golynski et al., 2006].

Applied to Trees:
cardinal [Benoit et al., 1999].
ordinal [Munro and Raman, 2001].
partitioned [Geary et al., 2004].
labeled [Ferragina et al., 2005].
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Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) =

string_select(1, 2) =
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String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.
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(Unlabeled) Trees

Tree Succinct Encodings support

navigation operators: child(x , r),
depth(x), leveled_ancestor(x , i);

ranking operators: tree_rank(x),
tree_select(r);

other useful ones: isanc(x , y),
childrank(x), degree(x),
nbdesc(x).
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Labeled Trees

Labeled Tree Succinct Encodings support

labeltree_anc(α, x):
first α-ancestor of x ;

labeltree_desc(α, x):
first α-descendant of x ;

labeltree_child(α, x):
first α-child of x .

{a}

{b}

{e}

{c}

{d}

{e}
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Input Size 6= Difficulty

First as output dependent analysis for Convex Hull
[Kirkpatrick and Seidel, 1986].

Extensively applied to Sorting
[Estivill-Castro and Wood, 1992].

Applied to Union, Difference, and Intersection
[Demaine et al., 2000, Barbay and Kenyon, 2002,
Barbay, 2003.]
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Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {

Intersection of k sets computed in O(δk) searches.
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What is a Binary Relation?

Consider a binary relation defined by:

n objects (the references to web-pages),

σ labels (the keywords),

t pairs from [n] × [σ] (the index).

σ







1 0 . . . 0 1
1 0
... (t ones)

...
0 1
0 1 . . . 1 0

︸ ︷︷ ︸

n
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String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

1 0 1 1
0 1 1 0
1 1 1 1

⇒

ROWS = 1, 3, 2, 3, 1, 2, 3, 2
NEWCOLUMN = 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1

This uses
(
t lg σ + n+t

)
bits.
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Operators on Binary Relations:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support

Random Access O(lg lg σ) O(lg lg σ);
Rank on the rows O(lg lg σ) O(lg lg σ lg lg lg σ);
Select on the rows O(1) O(lg lg σ);
Rank on the columns O

(
(lg lg σ)2

)
O(lg lg σ);

Select on the columns O(lg lg σ) O(1).

This is much better than O(lg n), using posting lists!
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Improved Result on Intersection

When non-deterministic requires δ steps,
deterministic requires time

O(δk lg(n/δk)) with arrays,

O(δk lg lg σ) with our encoding.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3}

Improvement factor: lg(n/δk)/ lg lg σ.
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What’s a Multi-Labeled Tree?

A Multi-Labeled Tree is defined by:

n nodes,

σ labels,

t pairs from [n] × [σ].

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

It’s like an XML tree, except that several labels
can be associated to each node.
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Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.
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Operators on Multi-Labeled Trees:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support in time O(lg lg σ)

1 labeltree_desc and labeltree_anc
on non-recursive multi-labeled trees;

2 labeltree_desc and labeltree_child
on any multi-labeled trees.

For simple labeled trees, much better than [Geary],
2n + n

(
lg σ + O(σ lg lg lg n/ lg lg n)

)

ours is 2n + n(lg σ + o(lg σ)) bits.
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What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}

{b, c}

{e}

{c, e}

{b, d}

{b, c, d}

⇒ File System Search.
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Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {

This algorithm solves Path queries
in time O(δk lg lg σ).
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Optimality

This is close to optimal:
For any δ, n, k , σ, t , there is a path query such that

1 for any deterministic algorithm there is distribution on
non-recursive multi-labeled tree,

2 for any randomized algorithm there is one non-recursive
multi-labeled tree,

on which they perform on average Ω(δk) searches.
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Summary

Succinct encodings improve space and time.

Labeled Trees use optimal space.

Adaptive almost as good as Non-Deterministic!

Future Work
Other type of queries on trees.
Applications to algorithms on graphs.
Support for all labeled-based operators
at once on (multi-)labeled trees.
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Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.
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Entropy and Compression

By taking advantage of the frequencies of labels,
we can attain the entropy lower bound on a string.

But what is the entropy of an array, of a tree?
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XPath Index

Two distinct encodings, supporting
1 labeltree_desc and labeltree_anc
2 labeltree_desc and labeltree_child

Potential extensions are:

labeltree_anc on recursive multi-labeled trees;

labeltree_anc and labeltree_child
at once (with labeltree_desc).
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Information Retrieval

There is a (small) catch.

In real applications, labels are strings.

For exact match, simply add a (succinct) suffix tree S.
For sub-string match, each query label corresponds to

a subtree of the suffix tree S;
i.e. an interval in the pre-order traversal of S.

Can we extend rank and select to intervals of labels?
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