
Introduction
Our Results
Conclusion

Adaptive Searching in Succinctly Encoded
Binary Relations and Tree-Structured

Documents

J. Barbay1 A. Golynski1 J. Ian Munro1 S. S. Rao2

1School of Computer Science
University of Waterloo, Canada.

2Dept. of Theoretical Computer Science
IT University of Copenhagen, Denmark.

December 2005

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Global Pointers = Evil

Introduced mainly for trees [Jacobson, 1989].
Applied to Strings:

binary [Clark and Munro, 1996].
larger alphabet [Golynski et al., 2006].

Applied to Trees:
cardinal [Benoit et al., 1999].
ordinal [Munro and Raman, 2001].
partitioned [Geary et al., 2004].
labeled [Ferragina et al., 2005].

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) =

string_select(1, 2) =

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) = 1

string_select(1, 2) =

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Strings

String Succinct Encodings support

string_rank(α, x): nb. of α-occurrences before pos. x ;

string_select(α, r): position of r -th α-occurrence.

Example:
0 0 0 1 0 0 0 1 0 0

string_rank(1, 6) = 1

string_select(1, 2) = 8

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

(Unlabeled) Trees

Tree Succinct Encodings support

navigation operators: child(x , r),
depth(x), leveled_ancestor(x , i);

ranking operators: tree_rank(x),
tree_select(r);

other useful ones: isanc(x , y),
childrank(x), degree(x),
nbdesc(x).

1

2

3

4

5

6

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Labeled Trees

Labeled Tree Succinct Encodings support

labeltree_anc(α, x):
first α-ancestor of x ;

labeltree_desc(α, x):
first α-descendant of x ;

labeltree_child(α, x):
first α-child of x .

{a}

{b}

{e}

{c}

{d}

{e}

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Input Size 6= Difficulty

First as output dependent analysis for Convex Hull
[Kirkpatrick and Seidel, 1986].

Extensively applied to Sorting
[Estivill-Castro and Wood, 1992].

Applied to Union, Difference, and Intersection
[Demaine et al., 2000, Barbay and Kenyon, 2002,
Barbay, 2003.]

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Succinct Data Structures
Adaptive Algorithms

Algorithm for Intersection

The algorithm from [Barbay and Kenyon, 2002]:

1 If x = ∞, exit;
2 If k labels match, output x ,

pick next α-object, go to 1;
Else pick next set α;

3 If x matches α, go to 2;
Else pick next α-object, go to 1.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3}

Intersection of k sets computed in O(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

What is a Binary Relation?

Consider a binary relation defined by:

n objects (the references to web-pages),

σ labels (the keywords),

t pairs from [n] × [σ] (the index).

σ







1 0 . . . 0 1
1 0
... (t ones)

...
0 1
0 1 . . . 1 0

︸ ︷︷ ︸

n

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

1 0 1 1
0 1 1 0
1 1 1 1

⇒

ROWS = 1, 3, 2, 3, 1, 2, 3, 2
NEWCOLUMN = 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1

This uses
(
t lg σ + n+t

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

1 0 1 1
0 1 1 0
1 1 1 1

⇒

ROWS = 1, 3, 2, 3, 1, 2, 3, 2
NEWCOLUMN = 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1

This uses
(
t lg σ + n+t

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

1 0 1 1
0 1 1 0
1 1 1 1

⇒

ROWS = 1, 3, 2, 3, 1, 2, 3, 2
NEWCOLUMN = 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1

This uses
(
t lg σ + n+t

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

String Representation

We encode it as

one string ROWS on alphabet [σ] of length t ;

one binary string NEWCOLUMN of length n + t .

For instance:

1 0 1 1
0 1 1 0
1 1 1 1

⇒

ROWS = 1, 3, 2, 3, 1, 2, 3, 2
NEWCOLUMN = 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1

This uses
(
t lg σ + n+t

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Operators on Binary Relations:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support

Random Access O(lg lg σ) O(lg lg σ);
Rank on the rows O(lg lg σ) O(lg lg σ lg lg lg σ);
Select on the rows O(1) O(lg lg σ);
Rank on the columns O

(
(lg lg σ)2

)
O(lg lg σ);

Select on the columns O(lg lg σ) O(1).

This is much better than O(lg n), using posting lists!

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Improved Result on Intersection

When non-deterministic requires δ steps,
deterministic requires time

O(δk lg(n/δk)) with arrays,

O(δk lg lg σ) with our encoding.

1 2 3 5 6 7 8
3 4 9

1 2 3 4 9

R = {3}

Improvement factor: lg(n/δk)/ lg lg σ.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

What’s a Multi-Labeled Tree?

A Multi-Labeled Tree is defined by:

n nodes,

σ labels,

t pairs from [n] × [σ].

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

It’s like an XML tree, except that several labels
can be associated to each node.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Separate Labels and Structure.

We encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, our tree corresponds to:
LABELS = a, b, c, e, c, e, b, d , b, c, e
NODES = 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Operators on Multi-Labeled Trees:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support in time O(lg lg σ)

1 labeltree_desc and labeltree_anc
on non-recursive multi-labeled trees;

2 labeltree_desc and labeltree_child
on any multi-labeled trees.

For simple labeled trees, much better than [Geary],
2n + n

(
lg σ + O(σ lg lg lg n/ lg lg n)

)

ours is 2n + n(lg σ + o(lg σ)) bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Operators on Multi-Labeled Trees:

We propose two distinct encodings using
(
t × o(lg σ)

)

additional bits, which support in time O(lg lg σ)

1 labeltree_desc and labeltree_anc
on non-recursive multi-labeled trees;

2 labeltree_desc and labeltree_child
on any multi-labeled trees.

For simple labeled trees, much better than [Geary],
2n + n

(
lg σ + O(σ lg lg lg n/ lg lg n)

)

ours is 2n + n(lg σ + o(lg σ)) bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}

{b, c}

{e}

{c, e}

{b, d}

{b, c, d}

⇒ File System Search.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}1

{b, c}2

{e}3

{c, e}4

{b, d}5

{b, c, d}6

⇒ File System Search.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

What is a Path Query?

Given a non-recursive multi-labeled tree and k labels,
find nodes x s.t. rooted path matches k labels.

Q(a, d , e) {a}1

{b, c}2

{e}3

{c, e}4

{b, d}5

{b, c, d}6

⇒ File System Search.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {

This algorithm solves Path queries
in time O(δk lg lg σ).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {

This algorithm solves Path queries
in time O(δk lg lg σ).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {

This algorithm solves Path queries
in time O(δk lg lg σ).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {5

This algorithm solves Path queries
in time O(δk lg lg σ).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Our Algorithm:

1 If x = ∞, exit;
2 If all labels match, output x ,

pick next α-node, go to 1;
Else pick next label α;

3 If x matches α or has a α-ancestor,
go to 2;

4 If x has a α-descendant,
pick the first one, go to 2;
Else pick next α-node, go to 1.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,d}

Q(a, d , e) = {5}

This algorithm solves Path queries
in time O(δk lg lg σ).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

Optimality

This is close to optimal:
For any δ, n, k , σ, t , there is a path query such that

1 for any deterministic algorithm there is distribution on
non-recursive multi-labeled tree,

2 for any randomized algorithm there is one non-recursive
multi-labeled tree,

on which they perform on average Ω(δk) searches.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Outline

1 Introduction
Succinct Data Structures
Adaptive Algorithms

2 Our Results
Binary Relations
Intersection Algorithm
(Multi-)Labeled Trees
Path Query Algorithm

3 Conclusion

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Introduction
Our Results
Conclusion

Summary

Succinct encodings improve space and time.

Labeled Trees use optimal space.

Adaptive almost as good as Non-Deterministic!

Future Work
Other type of queries on trees.
Applications to algorithms on graphs.
Support for all labeled-based operators
at once on (multi-)labeled trees.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Main References

Barbay, J. and Kenyon, C. (SODA’02).
Adaptive intersection and t-threshold problems.

Geary, R. F., Raman, R., and Raman, V. (SODA ’04).
Succinct ordinal trees with level-ancestor queries.

Golynski, A., Munro, J. I., and Rao, S. S. (SODA’06).
Rank/select operations on large alphabets:
a tool for text indexing.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Encoding for Efficient Child Queries.

We still encode it as

one string LABELS on alphabet [σ];

one binary string NODES of length t ;

the tree structure in 2n bits.

but in a different order.

{a}

{b,c}

{e}

{c,e}

{b,d}

{b,c,e}

For instance, the previous tree corresponds to:
LABELS = a, b, c, c, e, b, c, e, e, b, d
NODES = 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1

This uses
(
t lg σ + t + 2n

)
bits.

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Entropy and Compression

By taking advantage of the frequencies of labels,
we can attain the entropy lower bound on a string.

But what is the entropy of an array, of a tree?

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

XPath Index

Two distinct encodings, supporting
1 labeltree_desc and labeltree_anc
2 labeltree_desc and labeltree_child

Potential extensions are:

labeltree_anc on recursive multi-labeled trees;

labeltree_anc and labeltree_child
at once (with labeltree_desc).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

XPath Index

Two distinct encodings, supporting
1 labeltree_desc and labeltree_anc
2 labeltree_desc and labeltree_child

Potential extensions are:

labeltree_anc on recursive multi-labeled trees;

labeltree_anc and labeltree_child
at once (with labeltree_desc).

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents



Appendix

Main References
Efficient Child Queries
Entropy and Compression
XPath Index
Information Retrieval

Information Retrieval

There is a (small) catch.

In real applications, labels are strings.

For exact match, simply add a (succinct) suffix tree S.
For sub-string match, each query label corresponds to

a subtree of the suffix tree S;
i.e. an interval in the pre-order traversal of S.

Can we extend rank and select to intervals of labels?

J. Barbay, A. Golynski, J. Ian Munro, S. S. Rao Adaptive Searching in Succinctly Encoded Binary Relations and Tree-Structured Documents


	Introduction
	Succinct Data Structures
	Adaptive Algorithms

	Our Results
	Binary Relations
	Intersection Algorithm
	(Multi-)Labeled Trees
	Path Query Algorithm

	Conclusion
	Appendix
	Main References
	Efficient Child Queries
	Entropy and Compression
	XPath Index
	Information Retrieval


