

1

 CS 840 Fall 2018
Self-Organizing Binary Search Trees: Unit 3

The same questions can be asked in binary search trees.

Given a sequence of access queries, what is the best way to organize the search tree [reference:
Cormen Leiserson, Rivest and Stein]

Worst case behaviour: (lg n) upper and lower bounds.

Model: Searches must start at root of a binary search tree. Charge for each node inspected.

Static optimal binary search tree: easy dynamic programming.

Given: ip = prob. of access for),1(niAi 

 iq = prob. of access for value between iA and),0(1 niAi 

]0[10  npp

],[jiT root of optimal tree on range 1iq to jq

],[jiC cost of tree rooted at],[jiT ; this cost is the probability of looking for one of the values

(or gaps) in the range times the expected cost of doing in that tree.

Algorithm computes R’s and C’s by increasing size, i.e. by increasing value of (j-i).

So root] thebemust it so range, in the key valueonly theis tion,Initializa[],[iiiiT 

 iii qpqiiC  1],[[the probability of searching in this tree with one internal node]

If r = root; L = left subtree; R = right subtree;
W[tree] = probability of being in tree = probability of accessing root.

Then
 C[tree rooted at r] = W[tree] + C[L] + C[R]

It will clearly be handy to have W[i,j], the probability of accessing any node ji qq ,,1  or

.,, ji pp 

So 



j

ik
k

j

ik
k qpjiW

1

],[

These are easy to compute in (n2) time by computing 11],[as]1,[  jj qpjiWjiW .

In our description, if],[jiT is defined, take that value, otherwise compute it recursively as:

end

rjiT

trjiC

begin

theni,jCtr if

,jrC p +i,rC +i,jt = Wr

dojir

ijiCqjiWjiC

ijiT

r

i

],[

cos],[

][cos

]1[][][cos

later} editted be willline this..it takeroot,better a isr {if to1for

}root as with e{initializ],1[],[],[

],[

1














Clearly we do this by memoing, if a value of],[or],[jiCjiT has been computed ... use it;
otherwise compute it and remember it.

Hence an)(3nO algorithm as each of the)(2nO values takes)(nO time to compute given
values on smaller ranges.

But one more thing –
Do we have to check entire i,j range for a root?

Check just from],1[to]1,[jiTjiT 

Lemma:],[jiT cannot be to the right of],1[jiT  (similarly not to the left of]1,[jiT)

Proof: Induction on range size (Basis 2 node trees)

Hence key loop is “shorter” if we just go between the subtree roots.

And indeed

Runtime of improved to)(2nO [working through some series telescope … essentially a

01
1

1)(CostCostCostCost ni

n

i
i  


]

Fact – after almost 50 years still best

 space and time)(2n

Now known polynomial time)(2  n space method.

How good is the tree? Clearly the expected cost can be as high as lg n.
Definition: The entropy of a probability distribution x1,.. xk is given by

3





k

i
iik xxxxH

1
1)/1lg(),...,(

Hence the entropy of our distribution is 



n

i
ii

n

i
iinn qqppqqppH

01
01)/1lg()/1lg(),...,,...,(

Theorem: The expected cost, C, of the optimal binary search tree satisfies the inequalities:
 1lglg  eHHC
 and .3 HC

It is interesting to note these bounds can essentially be achieved for the same set of p’s and q’s
by simply permuting the probabilities.

We also note that the optimal tree is expensive to compute and ask whether it can be
approximated more cheaply. A natural greedy algorithm would be to put the key with the largest
probability at the root. This can be a serious problem, even if all qi values are 0. Suppose, for
example, that all pi values are virtually the same, but that pi>pi+1. Then the heuristic suggested
will give a tree rooted at node 1, in which each node (except the last) has a right child but no left
child. The search cost will be linear; whereas the optimal tree is balanced, with expected cost lg
n.
A different approach is to try to balance the load at each node. That is to choose as root a node so
that less than half the weight of the tree is in the left subtree and less than half is in the right.
Clearly this is not always possible. For example, consider the case in which p1=.2 and p2=.2 and
the q values are also .2. We must choose one of the internal nodes as root, so the weight of one
subtree will be .6 while the other is .2. An achievable version of this approach is to choose as
root the internal node that minimizes the weight of the largest subtree, or that minimizes the
difference between the weights of the two subtrees. Ties are broken arbitrarily. Both approaches
are effective. The bounds quoted above for the optimal tree also apply to these approximate
solutions. Furthermore, while is may seem tat the minmax approach is the better of the two, it is
easy to construct example in which this is not the case.

It is natural to ask to ask whether a binary search tree can be made to adapt to an unknown
distribution, or to do well in a competitive sense with an offline approach.

The first results in this direction come from Allen and Munro (JACM 1978). Given the success
of the simple exchange algorithm in the case of linear search given a fixed independent
distribution of inputs, one may be inclined to try swapping the requested value with its parent as
shown below when y is requested.

Unfortunately, this appealing scheme can be quite a disaster. If all key values have the same

probability of request, then all binary trees are generated with the same probability.
Unfortunately, most binary trees are very bad and the average search cost becomes)(2/1n .
[Note that this distribution is very different from what we would get by inserting elements into a binary
tree in random order, in which situation the average search cost)(lg n .]
The next thing to try is to move the element requested to the root by a sequence of swaps with its newly
acquired parent. This meets with much more success, and the expected cost ids within a factor or 2 ln 2
[about 1.38..] of the optimal static tree. The method, however, can be shown to do poorly on an amortized
basis. The key reason for this is that on access, the requested element is moved to the root and each
element on its path is moved down one level.
This led to the splay tree of Sleator and Tarjan, which takes a slightly more complex approach.
On accessing a node, we again move it to the root by a sequence of local moves.
Splaying:

 If the element requested is the root, leave it as is.
 If the element requested is the child of the root, simply swap the two as indicated above

(a single rotation, as per the AVL tree). The terminating single rotation is called a zig
step.

 If the element requested is the left child of a left child (similarly right child of right
child), the element is moved up in a manner that can be viewed as a single rotation
between the parent and the grandparent of the accessed node, followed by a roation
between the accessed node and its parent. This is called the zig-zig step, as shown below
as z is accessed. Note that it does not correspond to either the single or double rotation of
the AVL tree.

A

x

x y

y

 A

 B B

 C

 C

5

 Finally we have the case in which the requested element is an “inside” grandchild, either

the left child of a right child or the right child of a left child. This zig-zag step is shown
below when y is accessed, and corresponds to the double rotation of AVL trees.

On insertion or access to an element in the tree, we splay the node in question to the root. If the
node requested is not present, we simply splay the lower of its neighbours to the root. (This is the
node at which we discover our value is absent.) Deletions involve splitting he tree at the node in
question and performing splays to put it back together. (We omit the details.)

Splay tree give a guarantee of)(lgn behaviour without and extra space constraints on the tree.
We can use a pointer reversal trick to avoid the space of the stack as we go down the tree. Much
more important, however, is how the structure does on a “distorted” distribution of inputs, as a
function of the number of “other elements” requested since the last time the current one was
sought, and ideally its competitive behaviour.

The proof are based on a potential function argument so we have  'ta , where a is the
amortized time for an operation, t is the actual time, ' is the potential after the operation and

A

x

x

yy

 A

 B

B

 C

D

z

 C

z

 D

y

z

A

x

 B C D

 A

y

x

 B C

z

D

 is the potential before the operation. So the total cost of all m operations is given by

m

m

j
jjj

m

j
j

m

j
j aat  





0

1
1

11

)(.

Each item i has a weight w(i). The size of node x, s(x) is the sum of the weights of the nodes in
the subtree weighted at x, and the rank r(x) is lg s(x). The potential of a tree is the sum of he
ranks of all nodes. The following lemma gives a bound on the cost of splaying, charging 1 per
rotation and 1 if there are no rotations.

Access Lemma: The amortized time to splay a tree with root t at a node x is at most

s(x)))O(lg(s(t)/1r(x)-3(r(t)  .
Proof: omitted

This leads directly to several interesting theorems:
Static Optimality Theorem: If every item is accessed at least once, then the total access time is

))(/lg((
1

iqmqmO
n

i
i



 where)(iq denotes the access frequency of element i.

Working Set Theorem: The total access time is))1)(lg(lg(
1




m

j

jtmnnO where t(j) denotes

the number of distinct items accessed since the last access of element ij.

Scanning Theorem: Given an arbitrary n-node splay tree, the total time to splay once at each of
the nodes, in increasing order, is O(n).

There are many variants of these results. However, the main open question is whether or not the
approach is competitive.

