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      CS 840 Fall 2018  
Self-Organizing Binary Search Trees: Unit 3 

 
The same questions can be asked in binary search trees.   
 
Given a sequence of access queries, what is the best way to organize the search tree [reference:  
Cormen Leiserson, Rivest and Stein] 
 
Worst case behaviour:   (lg n)  upper and lower bounds. 
 
Model:  Searches must start at root of a binary search tree.  Charge for each node inspected. 
 
Static optimal binary search tree:  easy dynamic programming. 
 
Given: ip  = prob. of access for  ),1( niAi   

   iq  = prob. of access for value between  iA   and  ),0(1 niAi   

   ]0[ 10  npp   

 
],[ jiT  root of optimal tree on range  1iq   to jq  

 
],[ jiC  cost of tree rooted at ],[ jiT ; this cost is the probability of looking for one of the values 

(or gaps) in the range times the expected cost of doing in that tree. 
 
Algorithm computes R’s and C’s by increasing size, i.e. by increasing value of (j-i). 
 
So  root]  thebemust it  so range, in the key valueonly   theis  tion,Initializa[],[ iiiiT   

   iii qpqiiC  1],[ [the probability of searching in this tree with one internal node]  

 
If  r = root;  L = left subtree;  R = right subtree;  
W[tree] = probability of being in tree = probability of accessing root.  
 
Then 
   C[tree rooted at r] = W[tree] + C[L] + C[R] 
 
It will clearly be handy to have W[i,j],  the probability of accessing any node  ji qq ,,1    or  

.,, ji pp   
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These are easy to compute in    (n2 )  time by computing 11],[  as ]1,[   jj qpjiWjiW . 

In our description, if  ],[ jiT   is defined, take that value, otherwise compute it recursively as:   
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Clearly we do this by memoing, if a value of ],[or  ],[ jiCjiT  has been computed ... use it; 
otherwise compute it and remember it.  
 
Hence an  )( 3nO   algorithm as each of the )( 2nO  values takes )(nO  time to compute given 
values on smaller ranges. 
 
But one more thing – 
Do we have to check entire i,j range for a root? 
 
Check just from ],1[  to]1,[ jiTjiT   
 
Lemma: ],[ jiT  cannot be to the right of ],1[ jiT    (similarly not to the left of ]1,[ jiT )   
 
Proof:  Induction on range size (Basis 2 node trees) 
 
Hence key loop is “shorter” if we just go between the subtree roots. 
 
And indeed 
 
Runtime of improved to   )( 2nO   [working through some series telescope … essentially a  
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Fact – after almost 50 years still best 
 
 space and time)( 2n  

Now known polynomial time  )( 2  n  space method. 
 
How good is the tree? Clearly the expected cost can be as high as lg n. 
Definition: The entropy of a probability distribution x1,.. xk is given by 
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Hence the entropy of our distribution is 
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Theorem: The expected cost, C, of the optimal binary search tree satisfies the inequalities: 
    1lglg  eHHC  
  and   .3 HC  
  
It is interesting to note these bounds can essentially be achieved for the same set of p’s and q’s 
by simply permuting the probabilities. 
 
We also note that the optimal tree is expensive to compute and ask whether it can be 
approximated more cheaply. A natural greedy algorithm would be to put the key with the largest 
probability at the root. This can be a serious problem, even if all qi values are 0. Suppose, for 
example, that all pi values are virtually the same, but that pi>pi+1. Then the heuristic suggested 
will give a tree rooted at node 1, in which each node (except the last) has a right child but no left 
child. The search cost will be linear; whereas the optimal tree is balanced, with expected cost lg 
n. 
A different approach is to try to balance the load at each node. That is to choose as root a node so 
that less than half the weight of the tree is in the left subtree and less than half is in the right. 
Clearly this is not always possible. For example, consider the case in which p1=.2 and p2=.2 and 
the q values are also .2. We must choose one of the internal nodes as root, so the weight of one 
subtree will be .6 while the other is .2. An achievable version of this approach is to choose as 
root the internal node that minimizes the weight of the largest subtree, or that minimizes the 
difference between the weights of the two subtrees. Ties are broken arbitrarily. Both approaches 
are effective. The bounds quoted above for the optimal tree also apply to these approximate 
solutions. Furthermore, while is may seem tat the minmax approach is the better of the two, it is 
easy to construct example in which this is not the case. 
 
It is natural to ask to ask whether a binary search tree can be made to adapt to an unknown 
distribution, or to do well in a competitive sense with an offline approach. 
 
The first results in this direction come from Allen and Munro (JACM 1978). Given the success 
of the simple exchange algorithm in the case of linear search given a fixed independent 
distribution of inputs, one may be inclined to try swapping the requested value with its parent as 
shown below when y is requested. 
 



 

 

Unfortunately, this appealing scheme can be quite a disaster. If all key values have the same 

probability of request, then all binary trees are generated with the same probability. 
Unfortunately, most binary trees are very bad and the average search cost becomes )( 2/1n . 
[Note that this distribution is very different from what we would get by inserting elements into a binary 
tree in random order, in which situation the average search cost )(lg n .] 
The next thing to try is to move the element requested to the root by a sequence of swaps with its newly 
acquired parent. This meets with much more success, and the expected cost ids within a factor or 2 ln 2 
[about 1.38..] of the optimal static tree. The method, however, can be shown to do poorly on an amortized 
basis. The key reason for this is that on access, the requested element is moved to the root and each 
element on its path is moved down one level. 
This led to the splay tree of Sleator and Tarjan, which takes a slightly more complex approach. 
On accessing a node, we again move it to the root by a sequence of local moves. 
Splaying: 

 If the element requested is the root, leave it as is. 
 If the element requested is the child of the root, simply swap the two as indicated above 

(a single rotation, as per the AVL tree). The terminating single rotation is called a zig 
step. 

 If the element requested is the left child of a left child (similarly right child of right 
child), the element is moved up in a manner that can be viewed as a single rotation 
between the parent and the grandparent of the accessed node, followed by a roation 
between the accessed node and its parent. This is called the zig-zig step, as shown below 
as z is accessed. Note that it does not correspond to either the single or double rotation of 
the AVL tree. 
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 Finally we have the case in which the requested element is an “inside” grandchild, either 

the left child of a right child or the right child of a left child. This zig-zag step is shown 
below when y is accessed, and corresponds to the double rotation of AVL trees. 

 
On insertion or access to an element in the tree, we splay the node in question to the root. If the 
node requested is not present, we simply splay the lower of its neighbours to the root. (This is the 
node at which we discover our value is absent.) Deletions involve splitting he tree at the node in 
question and performing splays to put it back together. (We omit the details.) 
 
Splay tree give a guarantee of )(lgn behaviour without and extra space constraints on the tree. 
We can use a pointer reversal trick to avoid the space of the stack as we go down the tree. Much 
more important, however, is how the structure does on a “distorted” distribution of inputs, as a 
function of the number of “other elements” requested since the last time the current one was 
sought, and ideally its competitive behaviour. 
 
The proof are based on a potential function argument so we have  'ta , where a is the 
amortized time for an operation, t  is the actual time, ' is the potential after the operation and 
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 is the potential before the operation. So the total cost of all m operations is given by 
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Each item i  has a weight w(i). The size of node x, s(x) is the sum of the weights of the nodes in 
the subtree weighted at x, and the rank r(x) is lg s(x). The potential of a tree is the sum of he 
ranks of all nodes. The following lemma gives a bound on the cost of splaying, charging 1 per 
rotation and 1 if there are no rotations. 
 
Access Lemma: The amortized time to splay a tree with root t at a node x is at most 

s(x)))O(lg(s(t)/1r(x)-3(r(t)  . 
Proof: omitted 
 
This leads directly to several interesting theorems: 
Static Optimality Theorem: If every item is accessed at least once, then the total access time is 
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  where )(iq denotes the access frequency of element i. 

Working Set Theorem: The total access time is ))1)(lg(lg(
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jtmnnO  where t(j) denotes 

the number of distinct items accessed since the last access of element ij. 
 
Scanning Theorem: Given an arbitrary n-node splay tree, the total time to splay once at each of 
the nodes, in increasing order, is O(n). 
 
There are many variants of these results. However, the main open question is whether or not the 
approach is competitive. 

 


