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Self Organizing Linear Search and Binary Search Trees: Unit2 
 
 
We will consider searching under the comparison model 
 
Binary tree –    lg n  upper and lower bounds  

This also holds in “average case”  
Updates also in O(lg n) 

 
Linear search – worst case n   

If all elements have equal probability of search, expected time is  (n+1)/2 in 
successful case (n for unsuccessful search) 

 
Real Questions: 
 
1. What if probabilities of access differ?  How well can we do under stochastic model?   

(Easiest example: pi is probability of requesting element i, probabilities are independent) 
 
2. What if these (independent) probabilities are not given? 
 
3. How do these methods compare with the best we could do? 

- given the frequencies (and later – given the sequence of requests)  
 
      This leads to issues of 
 

- expected behaviour (given independent probabilities) 
 

- what if probabilities change 
 

- amortized behaviour (running versus an adversary so we are considering worst-case but 
for a sequence of operations) 

 
- amortized or expected cost could be compared with but possible for the given 

probabilities/sequence … perhaps compare with optimal static structure 
 

- consider our structures that will adapt, (self-adjust, though perhaps on-line and compare 
with the optimal adjusting structure that knows the sequence in advance (off-line) 

 
   Model is a key issue 
 
4.  How can we develop self-adjusting data structures? – Adapt to changing probabilities. 
 

Self Organizing Linear Search 
 
Start with linear search. As noted 
 
 Worst case  n (succ);  also amortized  
 “Average” (all equal probabilities)  (n+1)/2 
 
– it doesn’t matter how you change the structure for worst case or for all probabilities same and 
independent. 
 
But 



1) Start with  {Pi}  i = 1,n   Pi > Pi+1  independent (Stochastic process) 
 

2,3) Clearly the best order is .aa n1    Expected cost would be ∑
n

1=i
ip i=Sopt   

         Clearly, we could count accesses and converge  
  – But count and “chase” probability changes. 
 
4) How can we adapt to changes in probability or “self adjust” to do better?  --  other than 

count 
 
Move elements forward as accessed 
 
 - Move to Front             MTF 
 
 - Transpose  TR 
 
 - Move halfway  --- 
 
Theorem: Under the model in which the probabilities of access are independent, and fixed, the 
transpose rule performs better than move to front unless 

– n ≤ 2  or 
– all  pi’s  are the same, in which case the rules have the same expected performance 

(Rivest, CACM ’76)  
 

Theorem:  Under the model in which probabilities of access are independent (and fixed) the 
move to front gives an expected behaviour asymptotically of < 2 Σ i pi,  i.e. less than a factor of  
2  of the optimal  (Rivest, CACM ’76). 
 
Can this be improved? 
 
If all probabilities equal MTF = Sopt, the actual result is harder (much). 
 
With Pi = i-2 /(π2/6)  as  n → ∞               (π2/6 –  fudge factor)  
 
MTF/Sopt = π/2  (Gonnet, Munro, Suwanda  SICOMP ’81)   
 
and that is the worst case (Chung, Hajela, Seymour  JCSS ’88)  (uses Hilbert’s inequalities) 
 
But how about – an amortized result, comparing these with Sopt in worst case. Note Sopt takes 
into account the frequencies 
 
Transpose is a problem: alternate request for last 2 values  -  n  is cost;  MTF uses only 2 . 
 
Move to Front – although “disaster” may be better 
 
But how do we handle the “startup”  

– note Rivest result asymptotic.  
 
Bentley-McGeough (CACM ’85). 
 
The model: 
 Start with empty list 
 Scan for element requested, if not present,  
  Insert (and charge) as if found at end of list (then apply heuristic) 
 
Theorem:  Under the “insert on first request” startup model, the cost of MTF is  ≤  2 Sopt for 
any sequence of requests. 



 
Proof. Consider an arbitrary list, but focus only on searches for b and for c, and “unsuccessful” 
comparisons where we compare query value “b or  c” versus the other “c or b”.  
 
Assume sequence has k  b’s 
   and m c’s k   ≤  m 
 
Sopt order is cb   
and there are k “unsuccessful comparisons” 
 
What order of requests maximizes this number under MTF?  Clearly 
 

kkm )bc(c −  
 

So there are 2k  “unssuccessful compares” (one for each  b  & one for each of the last  k  c’s) 
 
Now observe that this holds in any list for any pair of elements. 
 
Sum over all 
 
  Cost ≤ 2 Sopt       
Note:  This bound is tight.   
Given   a1, a2, …, an,  repeatedly ask for last in list, so all requested equally often. 
 
Cost is n per search 
Whereas “do nothing” = Sopt ≈ (n+1)/2 
 
Note again Transpose is a disaster if we always ask for the last in its list. 
 
Observe, for some sequences we do a lot better than static optimal an
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Next – Suppose you are given the entire sequence in advance.  Sleator & Tarjan (1985). 
 
The model we will discuss may or may not be realistic, but it is a benchmark. 
We consider the idea of a  “dynamic offline” method. The issue is: 
 
on line:  Must respond as requests come 
vs 
offline:  Get to see entire schedule an determine how to move values 
 

 timeOffline Optimal
Alg of  timeOnline of CaseWorst Alg of Ratio eCompetitiv ≡  

 
A method is “competitive” if this ratio is a constant. 
 



But the model becomes extremely important 
 
Basics – Search for or change element in position i:   scan to location i at cost i. 
 
Unpaid exchange – can move element i closer to front of list free (keep others in same order) 
 
Paid –  can  swap adjacent pairs at cost 1 
 Borodin and El-Yaniv prohibit going past location i   
 Sleator-Tarjan proof seems ok though. 
 
Issues –  Long/Short scan (ie passing location i) 
   Exchanging only adjacent values 
 
Further 
 Access   costs  i  if element in position  i 
 
 Delete    costs  i  if element in position   i 
 
 Insert      costs  n+1  if  n  elements already there.   
 
      After any we can apply update. 
 
Theorem:  Under  the model described,  MTF  is within a factor of  2 of offline optimal  i.e. is  
2-competitive. 
 
Let A denote any algorithm, and MF denote the move to front heuristic. 
 
We will consider the situation in which we deal with a sequence, S, having a total of M queries 
and a maximum of n data values.  By convention we start with the empty list.  The cost model 
for a search that ends by finding the element in position i is  
 
 i + # paid exchanges 
 
Recall the element sought may be moved forward in the list at no charge (free exchange) while 
any other moves must be made by exchanging adjacent values. 
 
Notation 
 
 CA(S) = total cost of all operations in S with algorithm A 
  
 XA(S) = # paid exchanges 
 
 FA(S) = # free exchanges 
 
Note:   XMF(S) = XT(S) = XFC(S) = 0 
 
 (T denotes the transpose heuristic, FC denotes frequency count) 
 
 FA(S) ≤ CA(S) – M 
 
 (Since after accessing the ith element there are at most i-1 free exchanges) 



 
Theorem: CMF(S) ≤ 2CA(S) + XA(S) – FA(S) – M, for any algorithm A starting with the empty 
set. 
 
Proof:  The key idea is the use of a potential function Φ.  We run algorithm A and MF,  in 
parallel, on the same sequence,  S. 
 
Φ maps the configuration of the current status of the two methods onto the reals. 
 
Running an operation (or sequence) maps Φ  to Φ’ and the amortized time of the operation is 
 
 T + Φ’- Φ 
(i.e. amortized time = real time + ∆Φ) 
(so we will aim at amortized time as an overestimate) 
The jth operation takes actual time (cost)  tj  and amortized cost  aj 
 
 Σj tj = Φ − Φ’ + Σj aj 
 
where Φ  is the initial potential and Φ’, the final. 
 
Φ  is defined as the number of inversions between the status of A and MF, at the given time. 
 
So  Φ ≤ n (n-1) / 2 
 
We want to prove that the amortized time to access element i in A’s list is at most 2i - 1 in MF’s. 
 
Similarly inserting in position i+1 has amortized cost 2(i+1) – 1.  (Deletions are similar). 
 
Furthermore:  we can make the amortized time charged to MF when A does an exchange  
 
 -1 for free exchanges 
 at most +1 for paid exchanges 
 
Initial configuration – empty; so  Φ = 0 
 
Final value of Φ is nonnegative 
 
So actual MF cost ≤  Σ  amortized time   ≤  our bound 
 
   { access or insertion amortized time  ≤  2CA – 1;   
  amortized delete time ≤ 2CA – 1.   
  The  -1’s,  one per operation, sum to  -M } 
 
Now we must bound the amortized times of operations.   
 



Consider access by A to position i and assume we go to position  k  in  MF. 
 
 xi = # items preceding it in  MF,  but not in  A 
 
 so  # items preceding it in both is  (k – 1 - xi) 
 
Moving  it  to front in  MF  creates 
 
 k – 1 – xi  inversions 
 
and destroys xi  others 
 
so amortized time is  
 
 k + (k – 1 - xi) - xi  =  2 (k - xi) – 1 
 
But  (k - xi) < i  as  k-1  items precede  it  in  MF  and only  i-1  in  A. 
 
So amortized time  ≤  2 i - 1. 
 
The same argument goes through for insert and delete.  
 
An exchange by  A  has zero cost to  MF,   
so amortized time of an exchange is just increase in # inversions caused by exchange,   
i.e. 1 for paid, -1 for free.   
 
Extension 
 
Let  MF(d) (d ≥ 1)  be a rule by which the element inserted or accessed in position  k  is moved 
at least  k/d – 1  units closer to the front.  Then 
 
 CMF(d)(S)   ≤  d ( 2CA(S) + XA(S) - FA(S) – M ) 
 
{ eg. MF ≡  MF(1) } 
 
Also 
 
Theorem:  Given any algorithm  A  running on a sequence  S,  there exists another algorithm for  
S  that is no more expensive and does no paid exchanges. 
 
Proof Sketch:  Move elements only after an access, to corresponding position.  There are details 
to work through. 
 
Further applications can be made to paging. 
 
However – there is a question about the model. 



 
Given the sequence 
 
 1   →  2   →  •••  →   n/2   →  n/2+1  →   •••  →   n 
 
suppose we want to convert it to 
 
 n/2 → ••• → n →  1  →   •••   n/2 
 
what “should” I  pay?  
Observe that all only 3 pointers are changed, though presumably I have to scan the list  (Θ(n)). 
 
Sleator and Tarjan model says Θ(n2), perhaps Θ(n) is a fairer charge. 
 
So for an offline algorithm:  To search for element in position i, we probe up to position k (k ≥ i) 
and can reorder elements in positions 1 through k.  Cost is k. 
J.I. Munro: On the Competitiveness of Linear Search. ESA ‘00 (LNCS 1879 pp 338-345) 
 
Consider the following rule, Order by Next Request (ONR): 

To search for element in position  i,  continue scan to position  2 lg i  . 
Then reorder these 2 lg i  elements according to the time until their next requests.   
(The next of these to be accessed goes in position 1) 

 
 Cost 2 lg i   = Θ(i) 
 
How does this do?  First try a permutation, say  1, …, n (let  n = 16)  and assume  1  is initially in 
the last half). 
(To simplify diagram we move requested value to front) 
 
Request Cost New Ordering 
1 16 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 
2 2 2  1  •   •  
3 4 3  4  1  2  •   • 
4 2 4  3  •   • 
5 8 5  6  7  8  1  2  3  4  •  • 
6 2 6  5  •   • 
7 4 7  8  5  6  •  • 
8 2 8  7  •   • 
9 16 9 10 11 12 13 13 14 15 16 1  2  3  4  5  6  7    8   
 
 
Clearly the same cost applies to any permutation  
 
Under our model this cost is ~ n lg n. 
 

http://db.uwaterloo.ca/%7Eimunro/competlin.ps


Optimal and Self Organizing Binary Search Trees 
  
The same questions can be asked in binary search trees.   
 
Given a sequence of access queries, what is the best way to organize the search tree [reference:  
Cormen Leiserson, Rivest and Stein] 
 
Worst case behaviour:   Θ(lg n)  upper and lower bounds. 
 
Model:  Searches must start at root of a binary search tree.  Charge for each node inspected. 
 
Static optimal binary search tree:  easy dynamic programming. 
 
Given: ip  = prob. of access for  ),1( niAi =  
   iq  = prob. of access for value between  iA   and  ),0(1 niAi =+  
   ]0[ 10 == +npp   
 

=],[ jiT  root of optimal tree on range  1−iq   to jq  
 

=],[ jiC  cost of tree rooted at ],[ jiT ; this cost is the probability of looking for one of the values 
(or gaps) in the range times the expected cost of doing in that tree. 
 
Algorithm computes R’s and C’s by increasing size, i.e. by increasing value of (j-i). 
 
So  root]  thebemust it  so range, in the key valueonly   theis  tion,Initializa[],[ iiiiT =  
   iii qpqiiC ++= −1],[ [the probability of searching in this tree with one internal node]  
 
If  r = root;  L = left subtree;  R = right subtree;  
W[tree] = probability of being in tree = probability of accessing root.  
 
Then 
   C[tree rooted at r] = W[tree] + C[L] + C[R] 
 
It will clearly be handy to have W[i,j],  the probability of accessing any node  ji qq ,,1 −   or  

.,, ji pp   
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These are easy to compute in    Θ(n2 )  time by computing 11],[  as ]1,[ ++ +++ jj qpjiWjiW . 
In our description, if  ],[ jiT   is defined, take that value, otherwise compute it recursively as:   
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Clearly we do this by memoing, if a value of ],[or  ],[ jiCjiT  has been computed ... use it; 
otherwise compute it and remember it.  
 
Hence an  )( 3nO   algorithm as each of the )( 2nO  values takes )(nO  time to compute given 
values on smaller ranges. 
 
But one more thing – 
Do we have to check entire i,j range for a root? 
 
Check just from ],1[  to]1,[ jiTjiT +−  
 
Lemma: ],[ jiT  cannot be to the right of ],1[ jiT +   (similarly not to the left of ]1,[ −jiT )   
 
Proof:  Induction on range size (Basis 2 node trees) 
 
Hence key loop is “shorter” if we just go between the subtree roots. 
 
And indeed 
 
Runtime of improved to   )( 2nO   [working through some series telescope … essentially a  
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Fact – after almost 50 years still best 
 
 space and time)( 2nΘ  
Now known polynomial time  )( 2 ∈−Θ n  space method. 
 
How good is the tree? Clearly the expected cost can be as high as lg n. 
Definition: The entropy of a probability distribution x1,.. xk is given by 
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Theorem: The expected cost, C, of the optimal binary search tree satisfies the inequalities: 
    1lglg +−−≥ eHHC  
  and   .3+≤ HC  
  
It is interesting to note these bounds can essentially be achieved for the same set of p’s and q’s 
by simply permuting the probabilities. 
 
We also note that the optimal tree is expensive to compute and ask whether it can be 
approximated more cheaply. A natural greedy algorithm would be to put the key with the largest 
probability at the root. This can be a serious problem, even if all qi values are 0. Suppose, for 
example, that all pi values are virtually the same, but that pi>pi+1. Then the heuristic suggested 
will give a tree rooted at node 1, in which each node (except the last) has a right child but no left 
child. The search cost will be linear; whereas the optimal tree is balanced, with expected cost lg 
n. 
A different approach is to try to balance the load at each node. That is to choose as root a node so 
that less than half the weight of the tree is in the left subtree and less than half is in the right. 
Clearly this is not always possible. For example, consider the case in which p1=.2 and p2=.2 and 
the q values are also .2. We must choose one of the internal nodes as root, so the weight of one 
subtree will be .6 while the other is .2. An achievable version of this approach is to choose as 
root the internal node that minimizes the weight of the largest subtree, or that minimizes the 
difference between the weights of the two subtrees. Ties are broken arbitrarily. Both approaches 
are effective. The bounds quoted above for the optimal tree also apply to these approximate 
solutions. Furthermore, while is may seem tat the minmax approach is the better of the two, it is 
easy to construct example in which this is not the case. 
 
It is natural to ask to ask whether a binary search tree can be made to adapt to an unknown 
distribution, or to do well in a competitive sense with an offline approach. 
 
The first results in this direction come from Allen and Munro (JACM 1978). Given the success 
of the simple exchange algorithm in the case of linear search given a fixed independent 
distribution of inputs, one may be inclined to try swapping the requested value with its parent as 
shown below when y is requested. 
 



Unfortunately, this appealing scheme can be quite a disaster. If all key values have the same 

probability of request, then all binary trees are generated with the same probability. 
Unfortunately, most binary trees are very bad and the average search cost becomes )( 2/1nΘ . 
[Note that this distribution is very different from what we would get by inserting elements into a binary 
tree in random order, in which situation the average search cost )(lg nΘ .] 
The next thing to try is to move the element requested to the root by a sequence of swaps with its newly 
acquired parent. This meets with much more success, and the expected cost ids within a factor or 2 ln 2 
[about 1.38..] of the optimal static tree. The method, however, can be shown to do poorly on an amortized 
basis. The key reason for this is that on access, the requested element is moved to the root and each 
element on its path is moved down one level. 
This led to the splay tree of Sleator and Tarjan, which takes a slightly more complex approach. 
On accessing a node, we again move it to the root by a sequence of local moves. 
 
Splaying: 

• If the element requested is the root, leave it as is. 
• If the element requested is the child of the root, simply swap the two as indicated above 

(a single rotation, as per the AVL tree). The terminating single rotation is called a zig 
step. 

• If the element requested is the left child of a left child (similarly right child of right 
child), the element is moved up in a manner that can be viewed as a single rotation 
between the parent and the grandparent of the accessed node, followed by a roation 
between the accessed node and its parent. This is called the zig-zig step, as shown below 
as z is accessed. Note that it does not correspond to either the single or double rotation of 
the AVL tree. 

 

 A 

x 

x y 
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 B  B 
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 C 



 
• Finally we have the case in which the requested element is an “inside” grandchild, either 

the left child of a right child or the right child of a left child. This zig-zag step is shown 
below when y is accessed, and corresponds to the double rotation of AVL trees. 

 
On insertion or access to an element in the tree, we splay the node in question to the root. If the 
node requested is not present, we simply splay the lower of its neighbours to the root. (This is the 
node at which we discover our value is absent.) Deletions involve splitting he tree at the node in 
question and performing splays to put it back together. (We omit the details.) 
 
Splay tree give a guarantee of )(lgnO behaviour without and extra space constraints on the tree. 
We can use a pointer reversal trick to avoid the space of the stack as we go down the tree. Much 
more important, however, is how the structure does on a “distorted” distribution of inputs, as a 
function of the number of “other elements” requested since the last time the current one was 
sought, and ideally its competitive behaviour. 
 
The proof are based on a potential function argument so we have Φ−Φ+= 'ta , where a is the 
amortized time for an operation, t  is the actual time, 'Φ is the potential after the operation and 
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Φ is the potential before the operation. So the total cost of all m operations is given by 
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Each item i has a weight w(i). The size of node x, s(x) is the sum of the weights of the nodes in 
the subtree weighted at x, and the rank r(x) is lg s(x). The potential of a tree is the sum of he 
ranks of all nodes. The following lemma gives a bound on the cost of splaying, charging 1 per 
rotation and 1 if there are no rotations. 
 
Access Lemma: The amortized time to splay a tree with root t at a node x is at most 

s(x)))O(lg(s(t)/1r(x)-3(r(t) =+ . 
Proof: omitted 
 
This leads directly to several interesting theorems: 
Static Optimality Theorem: If every item is accessed at least once, then the total access time is 

))(/lg((
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n

i
i∑

=

+  where )(iq denotes the access frequency of element i. 

Working Set Theorem: The total access time is ))1)(lg(lg(
1

∑
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+++
m

j
jtmnnO  where t(j) denotes 

the number of distinct items accessed since the last access of element ij. 
 
Scanning Theorem: Given an arbitrary n-node splay tree, the total time to splay once at each of 
the nodes, in increasing order, is O(n). 
 
There are many variants of these results. However, the main open question is whether or not the 
approach is competitive. 
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