A Worst Case, Constant
Time Priority Queue:

Beating a Lower Bound

lan Munro
University of Waterloo

Joint work with

e Andrej Brodnik (Ljubljana & Lulea)

e Svante Carlsson (Blekinge Inst. Tech.)
e Johan Karlsson (Lulea)

Lower Bounds:
What do they mean?

e |If upper and lower bounds match, the problem is solved.
e If lower bound exceeds the time you can take ... give up

Lower Bounds:
What do they mean?

e |If upper and lower bounds match, the problem is solved.
e If lower bound exceeds the time you can take ... give up

e Lower bounds, and upper bounds, are proven under a
model.

e So if you have to “get under” a lower bound -focus on the
operations the model does not permit

e It's time to become imaginative in terms of permitted operations

Beating Lower Bounds:
Examples

e Searching: Ig n lower bound on comparisons, so hash
e |g n time becomes constant

e Sorting: n Ig n lower bound on comparisons, so use
variants of bucketing

 n Ig n time easily linear on average
 nlg n time becomes n Ig Ig n even in worst case

Beating the Lower Bound
... Another Case

Self organizing linear search...

- Move to front heuristic (= rheuistic) is within a
constant factor of offline optimal for linear search,
amortized cost of searching is ~ 1/p; under “exchange
adjacent” model

. Butcosts O(n?)

e Under “exchange any two” model offline cost is
~Ig(1/p;) ... comparable to splay trees

The Problem at hand.:
Extended Priority Queue

van Emde Boas (SWAT i.e. FOCS 1975)
Universe integers [1,..m] {n of which are present}
Operations: Insert / delete

find least value > x (or greatest <)
Bound: O(lg Ig m) time
Space: Improved to O(m) bits
Model: Standard RAM, with bit twiddling

Some Subsequent Work

Kurt Mehlhorn, Stephan Naher and Helmut Alt (SiComp
‘88): VEB Is optimal -
Lower bound Q(lg Ilg m) on pointer machine
Peter Miltersen (STOC ‘94):
Lower bound Q(V Ig Ig m) on a RAM
Paul Beame and Faith Fich (STOC ‘99):
parameterization by number of values present

matching upper & lower bounds- ©(NIg n/ Ig Ig n)

Ram model is rather powerful, how can we extend it for
our problem?

Another Model: Rambo

e Random Access Machine with Byte Overlap
Mike Fredman and Dan Willard
e Several words can share bits:

OO0OO0O|0j]OO0 OO
OO0OO|l0ojJOO OO
OO0 O0O|0J]OO OO
OO0OO|l0o)]OO OO
OO0OO0O|l0o)]OO OO
OO0OO|0][OO0O OO
OO0OO|0]OO0O OO
OO0OO|0|IOO0O OO

Can we do better under
this model?

 Elements are at leaves; an internal node is flagged if it
has a descendant

e |g n bit RAMBO word at leaf
flags on path to root

e Can find lowest
ancestor In

takes bit pattern of

The vEB Stratified Tree

Internal node keeps track g
“outside” bottom
elements

<<()~(¢/

A Problem

Any individual leaf may be referred to by many
ancestors

So one insertion/deletion can require up to 2ig n
reference changes

Modify the approach

Split Tagged Tree

Keep track of left / right
inside leaf ... if different @

from parent’s
)

)
%

U O O O O U
Each leaf can be referred to by at most two ancestors

So what do we have?

e Constant time “extended priority queue” ... two memory
accesses for search, three for update on our model

e How much space do we need?
 2m + O(lg m) bits of ordinary RAM

e m bits of RAMBO memory in a particular
configuration we call Yggdrasil

e and it has been implemented in hardware

