
4

Cache-Oblivious Algorithms
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This article presents asymptotically optimal algorithms for rectangular matrix transpose, fast Fourier trans-
form (FFT), and sorting on computers with multiple levels of caching. Unlike previous optimal algorithms,
these algorithms are cache oblivious: no variables dependent on hardware parameters, such as cache size
and cache-line length, need to be tuned to achieve optimality. Nevertheless, these algorithms use an op-
timal amount of work and move data optimally among multiple levels of cache. For a cache with size M
and cache-line length B where M = �(B2), the number of cache misses for an m × n matrix transpose
is �(1 + mn/B). The number of cache misses for either an n-point FFT or the sorting of n numbers is
�(1 + (n/B)(1 + logM n)). We also give a �(mnp)-work algorithm to multiply an m× n matrix by an n× p
matrix that incurs �(1 + (mn + np + mp)/B + mnp/B√M) cache faults.

We introduce an “ideal-cache” model to analyze our algorithms. We prove that an optimal cache-oblivious
algorithm designed for two levels of memory is also optimal for multiple levels and that the assumption of
optimal replacement in the ideal-cache model can be simulated efficiently by LRU replacement. We offer
empirical evidence that cache-oblivious algorithms perform well in practice.
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1. INTRODUCTION

Resource-oblivious algorithms that nevertheless use resources efficiently offer advan-
tages of simplicity and portability over resource-aware algorithms whose resource
usage must be programmed explicitly. In this article, we study cache resources, specif-
ically, the hierarchy of memories in modern computers. We exhibit several “cache-
oblivious” algorithms that use cache as effectively as “cache-aware” algorithms. An
early version of this article appeared as Frigo et al. [1999].
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Fig. 1. The ideal-cache model.

Before discussing the notion of cache obliviousness, we first introduce the (M,B)
ideal-cache model to study the cache complexity of algorithms. This model, which
is illustrated in Figure 1, consists of a computer with a two-level memory hierarchy
consisting of an ideal (data) cache of M words and an arbitrarily large main memory.
Because the actual size of words in a computer is typically a small, fixed size (4 bytes,
8 bytes, etc.), we shall assume that word size is constant; the particular constant does
not affect our asymptotic analyses. The cache is partitioned into cache lines, each
of which can store a cache block consisting of B consecutive words which are always
moved together between cache and main memory. Cache designers typically use B > 1,
banking on spatial locality to amortize the overhead of moving the cache block. We
shall generally assume in this article that the cache is tall:

M = �(B2) , (1)

which is usually true in practice.
The processor can only reference words that reside in the cache. If the referenced

word belongs to a block already in cache, a cache hit occurs, and the word is delivered
to the processor. Otherwise, a cache miss occurs, and the block is fetched into the
cache. The ideal cache is fully associative [Hennessy and Patterson 1996, Ch. 5]: cache
blocks can be stored anywhere in the cache. If the cache is full, a cache block must be
evicted. The ideal cache uses the optimal offline strategy of replacing the cache block
whose next access is furthest in the future [Belady 1966], and thus it exploits temporal
locality perfectly.

Unlike various other hierarchical-memory models [Aggarwal et al. 1987a, 1987b;
Alpern et al. 1990; Bilardi and Peserico 2001] in which algorithms are analyzed in
terms of a single measure, the ideal-cache model uses two measures. An algorithm
with an input of size n is measured by its work complexity W(n)—its conventional
running time in a RAM model [Aho et al. 1974]—and its cache complexity Q(n;M,B)—
the number of cache misses it incurs as a function of the size M and line length B of
the ideal cache. When M and B are clear from context, we denote the cache complexity
simply as Q(n) to ease notation.

We define an algorithm to be cache aware if it contains parameters (set at ei-
ther compile-time or runtime) that can be tuned to optimize the cache complexity
for the particular cache size and length of cache block. Otherwise, the algorithm is
cache oblivious. Historically, good performance has been obtained using cache-aware
algorithms, but we shall exhibit several optimal1 cache-oblivious algorithms.

1For simplicity in this article, we use the term “optimal” as a synonym for “asymptotically optimal,” since
all our analyses are asymptotic.
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Fig. 2. Layout of a 16×16 matrix in (a) row major, (b) column major, (c) 4×4-tiled, and (d) bit-interleaved
layouts.

To illustrate the notion of cache awareness, consider the problem of multiplying
two n× n matrices A and B to produce their n× n product C. We assume that the
three matrices are stored in row-major order, as shown in Figure 2(a). We further
assume that n is “big,” that is, n > B, in order to simplify the analysis. The conven-
tional way to multiply matrices on a computer with caches is to use a tiled (or blocked)
algorithm [Golub and van Loan 1989, p. 45]. The idea is to view each matrix M as
consisting of (n/s)× (n/s) submatrices Mij (the tiles), each of which has size s× s, where
s is a tuning parameter. The following algorithm implements this strategy.

ALGORITHM: TILED-MULT(A , B, C, n)

1 for i← 1 to n/s
2 do for j← 1 to n/s
3 do for k← 1 to n/s
4 do ORD-MULT(Aik, Bkj, Cij, s)

The ORD-MULT(A , B, C, s) subroutine computes C← C+A B on s×s matrices using the
ordinary O(s3) algorithm. (This algorithm assumes for simplicity that s evenly divides
n, but in practice s and n need have no special relationship, yielding more complicated
code in the same spirit.)

Depending on the cache size of the machine on which TILED-MULT is run, the
parameter s can be tuned to make the algorithm run fast, and thus TILED-MULT
is a cache-aware algorithm. To minimize the cache complexity, we choose s to be
the largest value such that the three s × s submatrices simultaneously fit in cache.
An s × s submatrix is stored on �(s + s2/B) cache lines. From the tall-cache as-
sumption (1), we can see that s = �(

√M). Thus, each of the calls to ORD-MULT
runs with at most M/B = �(s2/B) cache misses needed to bring the three matri-
ces into the cache. Consequently, the cache complexity of the entire algorithm is
�(1 + n2/B + (n/

√M)3(M/B)) = �(1 + n2/B + n3/B√M), since the algorithm has to
read n2 elements, which reside on

⌈
n2/B⌉ cache lines.
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The same bound can be achieved using a simple cache-oblivious algorithm that re-
quires no tuning parameters such as the s in BLOCK-MULT. We present such an al-
gorithm, which works on general rectangular matrices, in Section 2. The problems of
computing a matrix transpose and of performing an FFT also succumb to remarkably
simple algorithms, which are described in Section 3. Cache-oblivious sorting poses a
more formidable challenge. In Sections 4 and 5, we present two sorting algorithms,
one based on mergesort and the other on distribution sort, both of which are optimal
in both work and cache misses.

The ideal-cache model makes the perhaps-questionable assumptions that there are
only two levels in the memory hierarchy, that memory is managed automatically by an
optimal cache-replacement strategy, and that the cache is fully associative. We address
these assumptions in Section 6, showing that to a certain extent, these assumptions
entail no loss of generality. Finally, Section 8 discusses related work.

2. MATRIX MULTIPLICATION

This section describes and analyzes a cache-oblivious algorithm for multiplying an
m× n matrix by an n× p matrix cache-obliviously using �(mnp) work and incurring
�(m + n + p + (mn + np + mp)/B + mnp/B√M) cache misses. These results require
the tall-cache assumption (1) for matrices stored in row-major layout format, but the
assumption can be relaxed for certain other layouts. We also show that Strassen’s
algorithm [Strassen 1969] for multiplying n× n matrices, which uses �(nlg 7) work,2
incurs �(n + n2/B + nlg 7/BM(lg 7)/2−1) cache misses.

In Blumofe et al. [1996] with others, two of the present authors analyzed an optimal
divide-and-conquer algorithm for n×n matrix multiplication that contained no tuning
parameters, but we did not study cache-obliviousness per se. That algorithm can be
extended to multiply rectangular matrices, yielding the REC-MULT algorithm that we
now describe.

REC-MULT assigns C ← C + A B, where A is a m× n matrix, B is a n× p matrix,
and C is a m× p matrix. If C is initialized to 0 prior to the invocation of REC-MULT,
the algorithm computes the matrix product of A and B.

If m = n = p = 1, REC-MULT performs the scalar multiply-add C ← C + A B.
Otherwise, depending on the relative sizes of m, n, and p, we have three cases.

(1) If m≥ max {n, p}, we split the range of m according to the formula(
C1

C2

)
=

(
A1

A2

)
B =

(
A1 B
A2 B

)
. (2)

The algorithm recurs twice to compute C1 = C1 + A1B and C2 = C2 + A2B.
(2) If n≥ max {m, p}, we split the range of n according to the formula

C =
(
A1 A2

)(B1

B2

)
= A1 B1 + A2B2 . (3)

Specifically, the algorithm first computes C ← C + A1B1 recursively, and then
it computes C ← C + A2 B2, also recursively. In particular, we do not allocate
temporary storage for the intermediate products implied by Eq. (3).

(3) If p ≥ max {m, n}, we split the range of p according to the formula(
C1 C2

)
= A

(
B1 B2

)
=
(
A B1 A B2

)
. (4)

2We use the notation lg to denote log2.
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The algorithm recurs twice to compute C1 = C1 + A B1 and C2 = C2 + A B2.

If more than one case applies (e.g. if m = n = p), the tie can be broken arbitrarily.
Although this straightforward divide-and-conquer algorithm contains no tuning pa-

rameters, it uses cache optimally. To analyze the REC-MULT algorithm, we assume
that the three matrices are stored in row-major order, as shown in Figure 2(a). Intu-
itively, REC-MULT uses the cache effectively, because once a subproblem fits into the
cache, its smaller subproblems can be solved in cache with no further cache misses.

THEOREM 2.1. The REC-MULT algorithm uses �(mnp) work and incurs �(m + n +
p + (mn + np + mp)/B + mnp/B√M) cache misses when multiplying an m× n matrix by
an n× p matrix.

PROOF. It can be shown by induction that the work of REC-MULT is �(mnp). To
analyze the cache misses, let α > 0 be the largest constant sufficiently small that
three submatrices of sizes m′ × n′, n′ × p′, and m′ × p′, where max

{
m′, n′, p′

} ≤ α
√M,

all fit completely in the cache. We distinguish four cases depending on the initial size
of the matrices.

Case I. m, n, p > α
√M. This case is the most intuitive. The matrices do not fit in

cache, since all dimensions are “big enough.” The cache complexity can be described
by the recurrence

Q(m, n, p) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�((mn + np + mp)/B) if m, n, p ∈ [α
√M/2, α

√M] ,

2Q(m/2, n, p) + O(1) otherwise if m≥ n and m ≥ p ,

2Q(m, n/2, p) + O(1) otherwise. if n > m and n≥ p ,

2Q(m, n, p/2) + O(1) otherwise .

The base case arises as soon as all three submatrices fit in cache. The total number of
lines used by the three submatrices is �((mn+ np+ mp)/B). The only cache misses that
occur during the remainder of the recursion are the �((mn + np + mp)/B) cache misses
required to bring the matrices into cache. In the recursive cases, when the matrices do
not fit in cache, we pay for the cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O(1) cache misses for the overhead of manipulating
submatrices. The solution to this recurrence is Q(m, n, p) = �(mnp/B√M).

Case II. (m ≤ α
√M and n, p > α

√M) or (n ≤ α
√M and m, p > α

√M) or (p ≤
α
√M and m, n > α

√M). Here, we shall present the case where m ≤ α
√M and

n, p > α
√M. The proofs for the other cases are only small variations of this proof. The

REC-MULT algorithm always divides n or p by 2 according to Eqs. (3) and (4). At some
point in the recursion, both are small enough that the whole problem fits into cache.
The number of cache misses can be described by the recurrence

Q(m, n, p) ≤

⎧⎪⎨
⎪⎩

�(1 + n + np/B + m) if n, p ∈ [α
√M/2, α

√M] ,

2Q(m, n/2, p) + O(1) otherwise if n≥ p ,

2Q(m, n, p/2) + O(1) otherwise ;
(5)

whose solution is Q(m, n, p) = �(np/B + mnp/B√M).

Case III. (n, p ≤ α
√M and m > α

√M) or (m, p ≤ α
√M and n > α

√M) or (m, n ≤
α
√M and p > α

√M). In each of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where n, p ≤ α

√M and m > α
√M.
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The other cases can be proved similarly. The REC-MULT algorithm always divides
m by 2 according to Eq. (2). At some point in the recursion, m falls into the range
α
√M/2 ≤ m ≤ α

√M, and the whole problem fits in cache. The number cache misses
can be described by the recurrence

Q(m, n) ≤
{

�(1 + m) if m ∈ [α
√M/2, α

√M] ,

2Q(m/2, n, p) + O(1) otherwise ;
(6)

whose solution is Q(m, n, p) = �(m + mnp/B√M).

Case IV. m, n, p ≤ α
√M. From the choice of α, all three matrices fit into cache.

The matrices are stored on �(1 + mn/B + np/B + mp/B) cache lines. Therefore, we have
Q(m, n, p) = �(1 + (mn+ np + mp)/B).

We require the tall-cache assumption (1) in these analyses, because the matrices
are stored in row-major order. Tall caches are also needed if matrices are stored in
column-major order (Figure 2(b)), but the assumption that M = �(B2) can be relaxed
for certain other matrix layouts. The s× s-tiled layout (Figure 2(c)), for some tuning
parameter s, can be used to achieve the same bounds with the weaker assumption that
the cache holds at least some sufficiently large constant number of cache blocks. The
cache-oblivious bit-interleaved layout (Figure 2(d)) has the same advantage as the tiled
layout, but no tuning parameter need be set, since submatrices of size O(

√B)×O(
√B)

are cache-obliviously stored on O(1) cache lines. The advantages of bit-interleaved and
related layouts have been studied in Chatterjee et al. [1999a, 1999b] and Frens and
Wise [1997]. One of the practical disadvantages of bit-interleaved layouts is that index
calculations on conventional microprocessors can be costly, a deficiency we hope that
processor architects will remedy.

For square matrices, the cache complexity Q(n) = �(n + n2/B + n3/B√M) of the
REC-MULT algorithm is the same as the cache complexity of the cache-aware BLOCK-
MULT algorithm and also matches the lower bound by Hong and Kung [1981]. This
lower bound holds for all algorithms that execute the �(n3) operations given by the
definition of matrix multiplication

cij =
n∑

k=1

aikbkj .

No tight lower bounds for the general problem of matrix multiplication are known.
By using an asymptotically faster algorithm, such as Strassen’s algorithm [Strassen

1969] or one of its variants [Winograd 1970], both the work and cache complexity can
be reduced. When multiplying n× n matrices, Strassen’s algorithm, which is cache
oblivious, requires only 7 recursive multiplications of n/2×n/2 matrices and a constant
number of matrix additions, yielding the recurrence

Q(n) ≤
{

�(1 + n + n2/B) if n2 ≤ αM ,

7Q(n/2) + O(n2/B) otherwise ;
(7)

where α is a sufficiently small constant. The solution to this recurrence is �(n+ n2/B +
nlg 7/BM(lg 7)/2−1). A subtlety in implementing Strassen’s algorithm is that the tempo-
rary matrices it requires must be stack allocated, or if they are heap allocated, storage
must be reused in a stack-like fashion. An allocator that does not recycle memory can
cause the algorithm to incur nearly as many “cold” cache misses as its running time,
which is far from optimal.
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3. MATRIX TRANSPOSITION AND FFT

This section describes a recursive cache-oblivious algorithm for transposing an m× n
matrix which uses O(mn) work and incurs O(1+mn/B) cache misses, which is optimal.
Using matrix transposition as a subroutine, we convert a variant [Vitter and Shriver
1994b] of the “six-step” fast Fourier transform (FFT) algorithm [Bailey 1990] into an
optimal cache-oblivious algorithm. This FFT algorithm uses O(n lg n) work and incurs
O
(
1 + (n/B)

(
1 + logM n

))
cache misses.

The problem of matrix transposition is defined as follows. Given an m× n matrix
stored in a row-major layout, compute and store AT into an n×m matrix B also stored
in a row-major layout. The straightforward algorithm for transposition that employs
doubly nested loops incurs �(mn) cache misses on one of the matrices when m�M/B
and n�M/B, which is suboptimal.

Optimal work and cache complexities can be obtained with a divide-and-conquer
strategy, however. If n≥ m, the REC-TRANSPOSE algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)

and recursively executes REC-TRANSPOSE(A1, B1) and REC-TRANSPOSE(A2, B2).
Otherwise, it divides matrix A horizontally and matrix B vertically and likewise per-
forms two transpositions recursively. The next two lemmas provide upper and lower
bounds on the performance of this algorithm.

LEMMA 3.1. The REC-TRANSPOSE algorithm involves O(mn) work and incurs O(1+
mn/B) cache misses for an m× n matrix.

PROOF. That the algorithm does O(mn) work is straightforward. For the cache anal-
ysis, let Q(m, n) be the cache complexity of transposing an m× n matrix. We assume
that the matrices are stored in row-major order, the column-major layout having a
similar analysis.

Let α be a constant sufficiently small such that two submatrices of size m× n and
n×m, where max {m, n} ≤ αB, fit completely in the cache even if each row is stored in
a different cache line. We distinguish the three cases.

Case I. max {m, n} ≤ αB. Both the matrices fit in O(1) + 2mn/B lines. From the
choice of α, the number of lines required is at most M/B. Therefore, Q(m, n) = O(1 +
mn/B).

Case II. m ≤ αB < n or n ≤ αB < m. Suppose first that m ≤ αB < n. The REC-
TRANSPOSE algorithm divides the greater dimension n by 2 and performs divide and
conquer. At some point in the recursion, n falls into the range αB/2 ≤ n ≤ αB, and the
whole problem fits in cache. Because the layout is row-major, at this point the input
array has n rows and m columns, and it is laid out in contiguous locations, requiring at
most O(1+nm/B) cache misses to be read. The output array consists of nm elements in
m rows, where in the worst case every row lies on a different cache line. Consequently,
we incur at most O(m + nm/B) for writing the output array. Since n ≥ αB/2, the total
cache complexity for this base case is O(1+m). These observations yield the recurrence

Q(m, n) ≤
{

O(1 + m) if n ∈ [αB/2, αB] ,

2Q(m, n/2) + O(1) otherwise ;

whose solution is Q(m, n) = O(1 + mn/B).
The case n≤ αB < m is analogous.
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Case III. m, n > αB. As in Case II, at some point in the recursion both n and m fall
into the range [αB/2, αB]. The whole problem fits into cache and can be solved with at
most O(m+n+mn/B) cache misses. The cache complexity thus satisfies the recurrence

Q(m, n) ≤

⎧⎪⎨
⎪⎩

O(m + n + mn/B) if m, n ∈ [αB/2, αB] ,

2Q(m/2, n) + O(1) if m≥ n ,

2Q(m, n/2) + O(1) otherwise;
(8)

whose solution is Q(m, n) = O(1+mn/B).

THEOREM 3.2. The REC-TRANSPOSE algorithm exhibits optimal cache complexity.

PROOF. For an m × n matrix, the algorithm must write to mn distinct elements,
which occupy at least 	mn/B
 = �(1 + mn/B) cache lines.

As an example of an application of this cache-oblivious transposition algorithm,
in the rest of this section we describe and analyze a cache-oblivious algorithm for
computing the discrete Fourier transform of a complex array of n elements, where
n is an exact power of 2. The basic algorithm is the well-known “six-step” variant
[Bailey 1990; Vitter and Shriver 1994b] of the Cooley-Tukey FFT algorithm [Cooley
and Tukey 1965]. Using the cache-oblivious transposition algorithm, however, the
FFT becomes cache-oblivious, and its performance matches the lower bound by Hong
and Kung [1981].

Recall that the discrete Fourier transform (DFT) of an array X of n complex numbers
is the array Y given by

Y [i] =
n−1∑
j=0

X [ j]ω−ij
n , (9)

where ωn = e2π
√−1/n is a primitive nth root of unity, and 0 ≤ i < n. Many algorithms

evaluate Eq. (9) in O(n lg n) time for all integers n [Duhamel and Vetterli 1990]. In
this article, however, we assume that n is an exact power of 2, and we compute Eq. (9)
according to the Cooley-Tukey algorithm, which works recursively as follows. In the
base case where n = O(1), we compute Eq. (9) directly. Otherwise, for any factorization
n = n1n2 of n, we have

Y [i1 + i2n1] =
n2−1∑
j2=0

⎛
⎝
⎛
⎝n1−1∑

j1=0

X [ j1n2 + j2]ω−i1 j1
n1

⎞
⎠ω−i1 j2

n

⎞
⎠ω−i2 j2

n2
. (10)

Observe that both the inner and outer summations in Eq. (10) are DFT’s. Opera-
tionally, the computation specified by Eq. (10) can be performed by computing n2 trans-
forms of size n1 (the inner sum), multiplying the result by the factors ω

−i1 j2
n (called the

twiddle factors [Duhamel and Vetterli 1990]), and finally computing n1 transforms of
size n2 (the outer sum).

We choose n1 to be 2	lg n/2
 and n2 to be 2�lg n/2�. The recursive step then operates as
follows.

(1) Pretend that input is a row-major n1 × n2 matrix A. Transpose A in place, that is,
use the cache-oblivious REC-TRANSPOSE algorithm to transpose A onto an auxil-
iary array B, and copy B back onto A. Notice that if n1 = 2n2, we can consider the
matrix to be made up of records containing two elements.
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(2) At this stage, the inner sum corresponds to a DFT of the n2 rows of the transposed
matrix. Compute these n2 DFT’s of size n1 recursively. Observe that, because of
the previous transposition, we are transforming a contiguous array of elements.

(3) Multiply A by the twiddle factors, which can be computed on the fly with no extra
cache misses.

(4) Transpose A in place, so that the inputs to the next stage are arranged in contigu-
ous locations.

(5) Compute n1 DFT’s of the rows of the matrix recursively.
(6) Transpose A in place so as to produce the correct output order.

It can be proved by induction that the work complexity of this FFT algorithm is
O(n lg n). We now analyze its cache complexity. The algorithm always operates on
contiguous data, by construction. Thus, by the tall-cache assumption (1), the trans-
position operations and the twiddle-factor multiplication require at most O(1 + n/B)
cache misses. Thus, the cache complexity satisfies the recurrence

Q(n) ≤
{

O(1 + n/B), if n≤ αM ,

n1Q(n2) + n2 Q(n1) + O(1 + n/B) otherwise ;
(11)

where α > 0 is a constant sufficiently small that a subproblem of size αM fits in cache.
This recurrence has solution

Q(n) = O
(
1 + (n/B)

(
1 + logM n

))
,

which is optimal for a Cooley-Tukey algorithm, matching the lower bound by Hong
and Kung [1981] when n is an exact power of 2. As with matrix multiplication, no
tight lower bounds for cache complexity are known for the general DFT problem.

4. FUNNELSORT

Existing cache-oblivious sorting algorithms, for example the familiar two-way merge
sort, are not optimal with respect to cache misses. The M-way mergesort suggested by
Aggarwal and Vitter [1988] has optimal cache complexity, but although it apparently
works well in practice [LaMarca and Ladner 1997], it is cache aware. This section
describes a cache-oblivious sorting algorithm called “funnelsort.” This algorithm has
optimal O(n lg n) work complexity, and optimal O(1+(n/B)(1+logM n)) cache complexity.

Funnelsort is similar to mergesort. In order to sort a (contiguous) array of n ele-
ments, funnelsort performs the following two steps.

(1) Split the input into n1/3 contiguous arrays of size n2/3, and sort these arrays
recursively.

(2) Merge the n1/3 sorted sequences using a n1/3-merger, which is described in this
section.

Funnelsort differs from mergesort in the way the merge operation works. Merging is
performed by a device called a k-merger, which inputs k sorted sequences and merges
them. A k-merger operates by recursively merging sorted sequences that become pro-
gressively longer as the algorithm proceeds. Unlike mergesort, however, a k-merger
suspends work on a merging subproblem when the merged output sequence becomes
“long enough” and resumes work on another merging subproblem.

This complicated flow of control makes a k-merger a bit tricky to describe.
Figure 3 shows a representation of a k-merger, which has k sorted sequences as in-
puts. Throughout its execution, the k-merger maintains the following invariant.
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Fig. 3. Illustration of a k-merger. A k-merger is built recursively out of
√

k “left”
√

k-mergers L 1, L 2, . . .,
L√ k, a series of buffers, and one “right”

√
k-merger R.

Invariant. Each invocation of a k-merger outputs the next k3 elements of the sorted
sequence obtained by merging the k input sequences.

A k-merger is built recursively out of
√

k-mergers in the following way. The k in-
puts are partitioned into

√
k sets of

√
k elements, which form the input to the

√
k√

k-mergers L1, L2, . . . , L√k in the left part of the figure. The outputs of these mergers
are connected to the inputs of

√
k buffers. Each buffer is a FIFO queue that can hold

2k3/2 elements. Finally, the outputs of the buffers are connected to the
√

k inputs of
the
√

k-merger R in the right part of the figure. The output of this final
√

k-merger
becomes the output of the whole k-merger. The intermediate buffers are overdimen-
sioned, since each can hold 2k3/2 elements, which is twice the number k3/2 of elements
output by a

√
k-merger. This additional buffer space is necessary for the correct be-

havior of the algorithm, as will be explained below. The base case of the recursion is a
k-merger with k = 2, which produces k3 = 8 elements whenever invoked.

A k-merger operates recursively in the following way. In order to output k3 elements,
the k-merger invokes R k3/2 times. Before each invocation, however, the k-merger fills
all buffers that are less than half full, that is, all buffers that contain less than k3/2

elements. In order to fill buffer i, the algorithm invokes the corresponding left merger
Li once. Since Li outputs k3/2 elements, the buffer contains at least k3/2 elements after
Li finishes.

It can be proven by induction that the work complexity of funnelsort is O(n lg n).
We will now analyze the cache complexity. The goal of the analysis is to show that
funnelsort on n elements requires at most Q(n) cache misses, where

Q(n) = O(1 + (n/B)(1 + logM n)) .

In order to prove this result, we need three auxiliary lemmas. The first lemma bounds
the space required by a k-merger.

LEMMA 4.1. A k-merger can be laid out in O(k2) contiguous memory locations.
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PROOF. A k-merger requires O(k2) memory locations for the buffers, plus the space
required by the

√
k-mergers. The space S(k) thus satisfies the recurrence

S(k) ≤ (
√

k + 1)S(
√

k) + O(k2) ,

whose solution is S(k) = O(k2).

In order to achieve the bound on Q(n), the buffers in a k-merger must be maintained
as circular queues of size k. This requirement guarantees that we can manage the
queue cache-efficiently, in the sense stated by the next lemma.

LEMMA 4.2. Performing r insert and remove operations on a circular queue causes
in O(1 + r/B) cache misses as long as two cache lines are available for the buffer.

PROOF. Associate the two cache lines with the head and tail of the circular queue.
If a new cache block is read during an insert (delete) operation, the next B − 1 insert
(delete) operations do not cause a cache miss.

The next lemma bounds the cache complexity of a k-merger.

LEMMA 4.3. If M = �(B2), then a k-merger operates with at most

Qmerge(k) = O(1 + k + k3/B + (k3 logM k)/B)

cache misses.

PROOF. There are two cases: either k < α
√M or k > α

√M, where α is a sufficiently
small constant.

Case I. k < α
√M. By Lemma 4.1, the data structure associated with the k-merger

requires at most O(k2) = O(M) contiguous memory locations, and therefore it fits into
cache. The k-merger has k input queues from which it loads O(k3) elements. Let
ri be the number of elements extracted from the ith input queue. Since k < α

√M
and the tall-cache assumption (1) implies that B = O(

√M), there are at least M/B =
�(k) cache lines available for the input buffers. Lemma 4.2 applies, whence the total
number of cache misses for accessing the input queues is

k∑
i=1

O(1 + ri/B) = O(k + k3/B) .

Similarly, Lemma 4.1 implies that the cache complexity of writing the output queue
is O(1 + k3/B). Finally, the algorithm incurs O(1 + k2/B) cache misses for touching its
internal data structures. The total cache complexity is therefore Qmerge(k) = O(1 + k +
k3/B).

Case I. k > α
√M. We prove by induction on k that whenever k > α

√M, we have

Qmerge(k) ≤ ck3 logM k/B − A(k) , (12)

where A(k) = k(1 + (2c logM k)/B) = o(k3). This particular value of A(k) will be justified
at the end of the analysis.

The base case of the induction consists of values of k such that αM1/4 < k < α
√M.

(It is not sufficient only to consider k = �(
√M), since k can become as small as �(M1/4)

in the recursive calls.) The analysis of the first case applies, yielding Qmerge(k) = O(1 +
k + k3/B). Because k2 > α

√M = �(B) and k = �(1), the last term dominates, which
implies Qmerge(k) = O(k3/B). Consequently, a big enough value of c can be found that
satisfies Inequality (12).
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For the inductive case, suppose that k > α
√M. The k-merger invokes the

√
k-

mergers recursively. Since αM1/4 <
√

k < k, the inductive hypothesis can be used to
bound the number Qmerge(

√
k) of cache misses incurred by the submergers. The “right”

merger R is invoked exactly k3/2 times. The total number l of invocations of “left”
mergers is bounded by l < k3/2 + 2

√
k. To see why, consider that every invocation of a

left merger puts k3/2 elements into some buffer. Since k3 elements are output and the
buffer space is 2k2, the bound l < k3/2 + 2

√
k follows.

Before invoking R, the algorithm must check every buffer to see whether it is empty.
One such check requires at most

√
k cache misses, since there are

√
k buffers. This

check is repeated exactly k3/2 times, leading to at most k2 cache misses for all checks.
These considerations lead to the recurrence

Qmerge(k) ≤
(

2k3/2 + 2
√

k
)

Qmerge(
√

k) + k2 .

Application of the inductive hypothesis and the choice A(k) = k(1+(2c logM k)/B) yields
Inequality (12) as follows:

Qmerge(k) ≤
(

2k3/2 + 2
√

k
)

Qmerge(
√

k) + k2

≤ 2
(

k3/2 +
√

k
)(ck3/2 logM k

2B − A(
√

k)
)

+ k2

≤ (ck3 logM k)/B + k2 (1 + (c logM k)/B)− (2k3/2 + 2
√

k
)

A(
√

k)

≤ (ck3 logM k)/B − A(k) .

THEOREM 4.4. To sort n elements, funnelsort incurs O(1 + (n/B)(1 + logM n)) cache
misses.

PROOF. If n < αM for a small enough constant α, then the algorithm fits into cache.
To see why, observe that only one k-merger is active at any time. The biggest k-merger
is the top-level n1/3-merger, which requires O(n2/3) < O(n) space. The algorithm thus
can operate in O(1 + n/B) cache misses.

If N > αM, we have the recurrence

Q(n) = n1/3 Q(n2/3) + Qmerge(n1/3) .

By Lemma 4.3, we have Qmerge(n1/3) = O(1 + n1/3 + n/B + (n logM n)/B).
By the tall-cache assumption (1), we have n/B = �(n1/3). Moreover, we also have

n1/3 = �(1) and lg n = �(lgM). Consequently, Qmerge(n1/3) = O((n logM n)/B) holds, and
the recurrence simplifies to

Q(n) = n1/3 Q(n2/3) + O((n logM n)/B) .

The result follows by induction on n.

This upper bound matches the lower bound stated by the next theorem, proving that
funnelsort is cache-optimal.

THEOREM 4.5. The cache complexity of any sorting algorithm is Q(n) = �(1 +
(n/B)(1 + logM n)).
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PROOF. Aggarwal and Vitter [1988] show that there is an �((n/B) logM/B(n/M))
bound on the number of cache misses made by any sorting algorithm on their “out-
of-core” memory model, a bound that extends to the ideal-cache model. The theorem
can be proved by applying the tall-cache assumption M = �(B2) and the trivial lower
bounds of Q(n) = �(1) and Q(n) = �(n/B).

5. DISTRIBUTION SORT

In this section, we describe another cache-oblivious optimal sorting algorithm based
on distribution sort. Like the funnelsort algorithm from Section 4, the distribution-
sorting algorithm uses O(n lg n) work to sort n elements, and it incurs O(1 + (n/B)
(1 + logM n)) cache misses. Unlike previous cache-efficient distribution-sorting algo-
rithms [Aggarwal and Vitter 1988; Aggarwal et al. 1987a; Nodine and Vitter 1993;
Vitter and Nodine 1993; Vitter and Shriver 1994b], which use sampling or other tech-
niques to find the partitioning elements before the distribution step, our algorithm
uses a “bucket splitting” technique to select pivots incrementally during the distribu-
tion step.

Given an array A (stored in contiguous locations) of length n, the cache-oblivious
distribution sort operates as follows.

(1) Partition A into
√

n contiguous subarrays of size
√

n. Recursively sort each
subarray.

(2) Distribute the sorted subarrays into q buckets B1, . . . , Bq of size n1, . . . , nq, respec-
tively, such that
(a) max {x | x ∈ Bi} ≤ min {x | x ∈ Bi+1} for i = 1, 2, . . . , q− 1.
(b) ni ≤ 2

√
n for i = 1, 2, . . . , q.

(See below for details.)
(3) Recursively sort each bucket.
(4) Copy the sorted buckets to array A.

A stack-based memory allocator is used to exploit spatial locality.
The goal of Step (2) is to distribute the sorted subarrays of A into q buckets

B1, B2, . . . , Bq. The algorithm maintains two invariants. First, at any time each
bucket holds at most 2

√
n elements, and any element in bucket Bi is smaller than

any element in bucket Bi+1. Second, every bucket has an associated pivot. Initially,
only one empty bucket exists with pivot∞.

The idea is to copy all elements from the subarrays into the buckets while main-
taining the invariants. We keep state information for each subarray and bucket. The
state of a subarray consists of the index next of the next element to be read from the
subarray and the bucket number bnum where this element should be copied. By con-
vention, bnum = ∞ if all elements in a subarray have been copied. The state of a
bucket consists of the pivot and the number of elements currently in the bucket.

We would like to copy the element at position next of a subarray to bucket bnum. If
this element is greater than the pivot of bucket bnum, we would increment bnum until
we find a bucket for which the element is smaller than the pivot. Unfortunately, this
basic strategy has poor caching behavior, which calls for a more complicated procedure.

The distribution step is accomplished by the recursive procedure DIS-
TRIBUTE(i, j, m) which distributes elements from the ith through (i + m − 1)th sub-
arrays into buckets starting from B j. Given the precondition that each subarray
i, i + 1, . . . , i + m− 1 has its bnum ≥ j, the execution of DISTRIBUTE(i, j, m) enforces
the postcondition that subarrays i, i + 1, . . . , i + m− 1 have their bnum ≥ j + m. Step 2
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of the distribution sort invokes DISTRIBUTE(1, 1,
√

n). The following is a recursive
implementation of DISTRIBUTE:

ALGORITHM: DISTRIBUTE(i, j, m)

1 if m = 1
2 then COPYELEMS(i, j)
3 else DISTRIBUTE(i, j, m/2)
4 DISTRIBUTE(i + m/2, j, m/2)
5 DISTRIBUTE(i, j + m/2, m/2)
6 DISTRIBUTE(i + m/2, j + m/2, m/2)

In the base case, the procedure COPYELEMS(i, j) copies all elements from subarray i
that belong to bucket j. If bucket j has more than 2

√
n elements after the insertion,

it can be split into two buckets of size at least
√

n. For the splitting operation, we use
the deterministic median-finding algorithm [Cormen et al. 1990, p. 189] followed by a
partition.

LEMMA 5.1. The median of n elements can be found cache-obliviously using O(n)
work and incurring O(1 + n/B) cache misses.

PROOF. See Cormen et al. [1990, p. 189] for the linear-time median finding algo-
rithm and the work analysis. The cache complexity is given by the same recurrence as
the work complexity with a different base case.

Q(m) =

{
O(1 + m/B) if m≤ αM ,

Q(	m/5
) + Q(7m/10 + 6) + O(1 + m/B) otherwise ;

where α is a sufficiently small constant. The result follows.

In our case, we have buckets of size 2
√

n + 1. In addition, when a bucket splits, all
subarrays whose bnum is greater than the bnum of the split bucket must have their
bnum’s incremented. The analysis of DISTRIBUTE is given by the following lemma.

LEMMA 5.2. The distribution step involves O(n) work, incurs O(1 + n/B) cache
misses, and uses O(n) stack space to distribute n elements.

PROOF. In order to simplify the analysis of the work used by DISTRIBUTE, assume
that COPYELEMS uses O(1) work for procedural overhead. We will account for the
work due to copying elements and splitting of buckets separately. The work of DIS-
TRIBUTE is described by the recurrence

T(c) = 4T(c/2) + O(1) .

It follows that T(c) = O(c2), where c =
√

n initially. The work due to copying elements
is also O(n).

The total number of bucket splits is at most
√

n. To see why, observe that there are at
most

√
n buckets at the end of the distribution step, since each bucket contains at least√

n elements. Each split operation involves O(
√

n) work and so the net contribution
to the work is O(n). Thus, the total work used by DISTRIBUTE is W(n) = O(T(

√
n)) +

O(n) + O(n) = O(n).
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For the cache analysis, we distinguish two cases. Let α be a sufficiently small con-
stant such that the stack space used fits into cache.

Case I. n≤ αM. The input and the auxiliary space of size O(n) fit into cache using
O(1 + n/B) cache lines. Consequently, the cache complexity is O(1 + n/B).

Case II. n > αM. Let R(c, m) denote the cache misses incurred by an invocation of
DISTRIBUTE(a, b , c) that copies m elements from subarrays to buckets. We first prove
that R(c, m) = O(B + c2/B + m/B), ignoring the cost splitting of buckets, which we shall
account for separately. We argue that R(c, m) satisfies the recurrence

R(c, m) ≤

⎧⎪⎨
⎪⎩

O(B + m/B) if c ≤ αB ,
4∑

i=1

R(c/2, mi) otherwise ;
(13)

where
∑4

i=1 mi = m, whose solution is R(c, m) = O(B + c2/B + m/B). The recursive
case c > αB follows immediately from the algorithm. The base case c ≤ αB can be
justified as follows. An invocation of DISTRIBUTE(a, b , c) operates with c subarrays
and c buckets. Since there are �(B) cache lines, the cache can hold all the auxiliary
storage involved and the currently accessed element in each subarray and bucket. In
this case, there are O(B + m/B) cache misses. The initial access to each subarray
and bucket causes O(c) = O(B) cache misses. Copying the m elements to and from
contiguous locations causes O(1 + m/B) cache misses.

We still need to account for the cache misses caused by the splitting of buckets.
Each split causes O(1 +

√
n/B) cache misses due to median finding (Lemma 5.1) and

partitioning of
√

n contiguous elements. An additional O(1+
√

n/B) misses are incurred
by restoring the cache. As proved in the work analysis, there are at most

√
n split

operations. By adding R(
√

n, n) to the split complexity, we conclude that the total
cache complexity of the distribution step is O(B+ n/B +

√
n(1 +

√
n/B)) = O(n/B).

The analysis of distribution sort is given in the next theorem. The work and cache
complexity match lower bounds specified in Theorem 4.5.

THEOREM 5.3. Distribution sort uses O(n lg n) work and incurs O(1 +
(n/B)

(
1 + logM n

)
) cache misses to sort n elements.

PROOF. The work done by the algorithm is given by

W(n) =
√

nW(
√

n) +
q∑

i=1

W(ni) + O(n) ,

where each ni ≤ 2
√

n and
∑

ni = n. The solution to this recurrence is W(n) = O(n lg n).
The space complexity of the algorithm is given by

S(n) ≤ S(2
√

n) + O(n) ,

where the O(n) term comes from Step 2. The solution to this recurrence is S(n) = O(n).
The cache complexity of distribution sort is described by the recurrence

Q(n) ≤
{

O(1 + n/B) if n≤ αM ,√
nQ(
√

n) +
∑q

i=1 Q(ni) + O(1 + n/B) otherwise ;

where α is a sufficiently small constant such that the stack space used by a sorting
problem of size αM, including the input array, fits completely in cache. The base case
n ≤ αM arises when both the input array A and the contiguous stack space of size
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S(n) = O(n) fit in O(1 + n/B) cache lines of the cache. In this case, the algorithm incurs
O(1+n/B) cache misses to touch all involved memory locations once. In the case where
n > αM, the recursive calls in Steps 1 and 3 cause Q(

√
n)+

∑q
i=1 Q(ni) cache misses and

O(1 + n/B) is the cache complexity of Steps 2 and 4, as shown by Lemma 5.2. The the-
orem follows by solving the recurrence.

6. THEORETICAL JUSTIFICATIONS FOR THE IDEAL-CACHE MODEL

How reasonable is the ideal-cache model for algorithm design? The model incorporates
four major assumptions that deserve scrutiny:

— optimal replacement,
— exactly two levels of memory,
— automatic replacement,
— full associativity.

Designing algorithms in the ideal-cache model is easier than in models lacking these
properties, but are these assumptions too strong? In this section, we show that cache-
oblivious algorithms designed in the ideal-cache model can be efficiently simulated by
weaker models.

The first assumption that we shall eliminate is that of optimal replacement. Our
strategy for the simulation is to use an LRU (least-recently used) replacement strategy
[Hennessy and Patterson 1996, p. 378] in place of the optimal and omniscient replace-
ment strategy. We start by proving a lemma that bounds the effectiveness of the LRU
simulation. We then show that algorithms whose complexity bounds satisfy a simple
regularity condition (including all algorithms heretofore presented) can be ported to
caches incorporating an LRU replacement policy.

LEMMA 6.1. Consider an algorithm that causes Q∗(n;M,B) cache misses on a prob-
lem of size n using a (M,B) ideal cache. Then, the same algorithm incurs Q(n;M,B) ≤
2Q∗(n;M/2,B) cache misses on a (M,B) cache that uses LRU replacement.

PROOF. Sleator and Tarjan [1985] have shown that the cache misses on a (M,B)
cache using LRU replacement are (M/B)/((M−M∗)/B + 1)-competitive with optimal
replacement on a (M∗,B) ideal cache if both caches start empty. It follows that the
number of misses on a (M,B) LRU-cache is at most twice the number of misses on a
(M/2,B) ideal-cache.

COROLLARY 6.2. For any algorithm whose cache-complexity bound Q(n;M,B) in
the ideal-cache model satisfies the regularity condition

Q(n;M,B) = O(Q(n; 2M,B)) , (14)

the number of cache misses with LRU replacement is �(Q(n;M,B)).

PROOF. Follows directly from (14) and Lemma 6.1.

The second assumption we shall eliminate is the assumption of only two levels of
memory. Although models incorporating multiple levels of caches may be necessary
to analyze some algorithms, for cache-oblivious algorithms, analysis in the two-level
ideal-cache model suffices. Specifically, optimal cache-oblivious algorithms also per-
form optimally in computers with multiple levels of LRU caches. We assume that the
caches satisfy the inclusion property [Hennessy and Patterson 1996, p. 723], which
says that the values stored in cache i are also stored in cache i + 1 (where cache 1 is
the cache closest to the processor). We also assume that if two elements belong to the
same cache line at level i, then they belong to the same line at level i+ 1. Moreover, we
assume that cache i + 1 has strictly more cache lines than cache i. These assumptions
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ensure that cache i + 1 includes the contents of cache i plus at least one more cache
line.

The multilevel LRU cache operates as follows. A hit on an element in cache i is
served by cache i and is not seen by higher-level caches. We consider a line in cache i+1
to be marked if any element stored on the line belongs to cache i. When cache i misses
on an access, it recursively fetches the needed block from cache i+1, replacing the least-
recently accessed unmarked cache line. The replaced cache line is then brought to the
front of cache (i + 1)’s LRU list. Because marked cache lines are never replaced, the
multilevel cache maintains the inclusion property. The next lemma asserts that even
though a cache in a multilevel model does not see accesses that hit at lower levels, it
nevertheless behaves like the first-level cache of a simple two-level model, which sees
all the memory accesses.

LEMMA 6.3. A (Mi,Bi)-cache at a given level i of a multilevel LRU model always
contains the same cache blocks as a simple (Mi,Bi)-cache managed by LRU that serves
the same sequence of memory accesses.

We prove this lemma by induction on the cache level. Cache 1 trivially satisfies the
above lemma. Now, we can assume that cache i satisfies Lemma 6.3.

Assume that the contents of cache i (say A) and hypothetical cache (say B) are
the same up to access h. If access h + 1 is a cache hit, contents of both caches remain
unchanged. If access h+1 is a cache miss, B replaces the least-recently used cache line.
Recall that we make assumptions to ensure that cache i + 1 can include all contents
of cache i. According to the inductive assumption, since cache i holds the cache blocks
most recently accessed by the processor, B cannot replace a cache line that is marked
in A. Therefore, B replaces the least-recently used cache line that is not marked in A.
The unmarked cache lines in A are held in the order in which cache lines from B are
thrown out. Again, from the inductive assumption, B rejects cache lines in the LRU
order of accesses made by the processor. Thus, A also replaces the least-recently used
line that is not marked, which completes the induction.

LEMMA 6.4. An optimal cache-oblivious algorithm whose cache complexity satisfies
the regularity condition (14) incurs an optimal number of cache misses on each level3

of a multilevel cache with LRU replacement.

PROOF. Let cache i in the multilevel LRU model be a (Mi,Bi) cache. Lemma 6.3
says that the cache holds exactly the same elements as a (Mi,Bi) cache in a two-level
LRU model. From Corollary 6.2, the cache complexity of a cache-oblivious algorithm
working on a (Mi,Bi) LRU cache lower-bounds that of any cache-aware algorithm for
a (Mi,Bi) ideal cache. A (Mi,Bi) level in a multilevel cache incurs at least as many
cache misses as a (Mi,Bi) ideal cache when the same algorithm is executed.

Finally, we remove the two assumptions of automatic replacement and full associa-
tivity. Specifically, we shall show that a fully associative LRU cache can be maintained
in ordinary memory with no asymptotic loss in expected performance.

LEMMA 6.5. A (M,B) LRU-cache can be maintained using O(M) memory locations
such that every access to a cache block in memory takes O(1) expected time.

3Alpern et al. [1990] show that optimality on each level of memory in the UMH model does not necessarily
imply global optimality. The UMH model incorporates a single cost measure that combines the costs of
work and cache faults at each of the levels of memory. By analyzing the levels independently, our multilevel
ideal-cache model remains agnostic about the various schemes by which work and cache faults might be
combined.
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Fig. 4. Average time to transpose an N× N matrix, divided by N2.

PROOF. Given the address of the memory location to be accessed, we use a 2-
universal hash function [Motwani and Raghavan 1995, p. 216] to maintain a hash
table of cache blocks present in the memory. The M/B entries in the hash table point
to linked lists in a heap of memory that contains M/B records corresponding to the
cache lines. The 2-universal hash function guarantees that the expected size of a chain
is O(1). All records in the heap are organized as a doubly linked list in the LRU or-
der. Thus, the LRU policy can be implemented in O(1) expected time using O(M/B)
records of O(B) words each.

THEOREM 6.6. An optimal cache-oblivious algorithm whose cache-complexity
bound satisfies the regularity condition (14) can be implemented optimally in expec-
tation in multilevel models with explicit memory management.

PROOF. Combine Lemma 6.4 and Lemma 6.5.

COROLLARY 6.7. The recursive cache-oblivious algorithms for matrix multiplica-
tion, matrix transpose, FFT, and sorting are optimal in multilevel models with explicit
memory management.

PROOF. Their complexity bounds satisfy the regularity condition (14).

It can also be shown [Prokop 1999] that cache-oblivious algorithms satisfying (14)
are also optimal (in expectation) in the previously studied SUMH [Alpern et al. 1990;
Vitter and Nodine 1993] and HMM [Aggarwal et al. 1987a] models. Thus, all the
algorithmic results in this article apply to these models, matching the best bounds
previously achieved.

Other simulation results can be shown. For example, by using the copying technique
of Lam et al. [1991], cache-oblivious algorithms for matrix multiplication and other
problems can be designed that are provably optimal on direct-mapped caches.

7. EMPIRICAL RESULTS

The theoretical work presented in this article was motivated by the practical concerns
of programming computers with hierarchical memory systems. This section presents
empirical results for matrix transpose and matrix multiplication showing that cache-
oblivious algorithms can indeed obtain high performance in practice.

Figure 4 compares per-element time to transpose a matrix using the naive iterative
algorithm employing a doubly nested loop with the recursive cache-oblivious REC-
TRANSPOSE algorithm from Section 3. The two algorithms were evaluated on a 450
megahertz AMD K6III processor with a 32-kilobyte 2-way set-associative L1 cache, a
64-kilobyte 4-way set-associative L2 cache, and a 1-megabyte L3 cache of unknown
associativity, all with 32-byte cache lines. The code for REC-TRANSPOSE was the same
as presented in Section 3, except that the divide-and-conquer structure was modified
to produce exact powers of 2 as submatrix sizes wherever possible. In addition, the
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Fig. 5. Average time taken to multiply two N× N matrices, divided by N3.

base cases were “coarsened” by inlining the recursion near the leaves to increase their
size and overcome the overhead of procedure calls. (A good research problem is to
determine an effective compiler strategy for coarsening base cases automatically.)

Although these results must be considered preliminary, Figure 4 strongly indicates
that the recursive algorithm outperforms the iterative algorithm throughout the range
of matrix sizes. Moreover, the iterative algorithm behaves erratically, apparently due
to so-called “conflict” misses [Hennessy and Patterson 1996, p. 390], where limited
cache associativity interacts with the regular addressing of the matrix to cause sys-
tematic interference. Blocking the iterative algorithm should help with conflict misses
[Lam et al. 1991], but it would make the algorithm cache aware. For large matrices,
the recursive algorithm executes in less than 70% of the time used by the iterative
algorithm, even though the transpose problem exhibits no temporal locality.

Figure 5 makes a similar comparison between the naive iterative matrix-
multiplication algorithm, which uses three nested loops, with the O(n3)-work recursive
REC-MULT algorithm described in Section 2. This problem exhibits a high degree of
temporal locality, which REC-MULT exploits effectively. As the figure shows, the aver-
age time used per integer multiplication in the recursive algorithm is almost constant,
which for large matrices, is less than 50% of the time used by the iterative variant. A
similar study for Jacobi multipass filters can be found in Prokop [1999].

8. RELATED WORK

In this section, we discuss the origin of the notion of cache-obliviousness. We also give
an overview of other hierarchical memory models.

Our research group at MIT noticed as far back as 1994 that divide-and-conquer
matrix multiplication was a cache-optimal algorithm that required no tuning, but
we did not adopt the term “cache-oblivious” until 1997. This matrix-multiplication
algorithm, as well as a cache-oblivious algorithm for LU-decomposition without piv-
oting, eventually appeared in Blumofe et al. [1996]. Shortly after leaving our re-
search group, Toledo [1997] independently proposed a cache-oblivious algorithm for
LU-decomposition with pivoting. For n × n matrices, Toledo’s algorithm uses �(n3)
work and incurs �(1 + n2/B + n3/B√M) cache misses. Our group has produced an FFT
library called FFTW [Frigo 1999; Frigo and Johnson 1998], which employs a register-
allocation and scheduling algorithm inspired by our cache-oblivious FFT algorithm.
The general idea that divide-and-conquer enhances memory locality has been known
for a long time [Singleton 1969]. Other researchers [Chatterjee et al. 1999b; Frens and
Wise 1997] have also observed that recursive algorithms exhibit performance advan-
tages over iterative algorithms for computers with caches.

Previous theoretical work on understanding hierarchical memories and the I/O-
complexity of algorithms has been studied in cache-aware models lacking an automatic
replacement strategy, although Carter and Gatlin [1998] and Sen et al. [2002] are ex-
ceptions. Hong and Kung [1981] use the red-blue pebble game to prove lower bounds
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on the I/O-complexity of matrix multiplication, FFT, and other problems. The red-blue
pebble game models temporal locality using two levels of memory. The model was ex-
tended by Savage [1995] for deeper memory hierarchies. Aggarwal and Vitter [1988]
introduced spatial locality and investigated a two-level memory in which a block of P
contiguous items can be transferred in one step. They obtained tight bounds for ma-
trix multiplication, FFT, sorting, and other problems. The hierarchical memory model
(HMM) by Aggarwal et al. [1987a] treats memory as a linear array, where the cost
of an access to element at location x is given by a cost function f (x). The BT model
[Aggarwal et al. 1987b] extends HMM to support block transfers. The UMH model
by Alpern et al. [1990] is a multilevel model that allows I/O at different levels to pro-
ceed in parallel. Vitter and Shriver introduce parallelism, and they give algorithms for
matrix multiplication, FFT, sorting, and other problems in both a two-level model [Vit-
ter and Shriver 1994a] and several parallel hierarchical memory models [Vitter and
Shriver 1994b]. Vitter [1999] provides a comprehensive survey of external-memory
algorithms.

Since 1999, when the conference version [Frigo et al. 1999] of this article was pub-
lished, nearly 1500 papers have appeared that reference the term “cache-oblivious,”
according to Google Scholar. Seminal among them is the paper by Bender et al. [2000]
on cache-oblivious B-trees, which sparked a flurry of research into data structures
that use hierarchical memory near optimally despite having no dependence on hard-
ware parameters. Excellent surveys on cache-oblivious algorithms and data structures
include [Arge et al. 2005; Brodal 2004; Demaine 2002].
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