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General Motivation

In Many Computations ... 
Storage Costs of Pointers and Other 
Structures Dominate that of Real Data

Often this information is not “just random 
pointers”

How do we encode a combinatorial 
object (e.g. a tree) of specialized 
information … even a static one 
in a small amount of space & still 
perform queries in constant time ???
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Representation of a combinatorial object:

Space requirement of representation “close 
to” information theoretic lower bound

and
Time for operations required of the data 

type comparable to that of representation 
without such space constraints (O(1))

Succinct Data Structure



Example : Static Bounded Subset

Given: Universe [m]= 0,…,m-1 and n
arbitrary elements from this universe
Create: Static data structure to support 
“member?” in constant time in  the  lg m bit 
RAM model
Using: Close to information theory lower 
bound space, i.e. about  bits

(Brodnik & M)
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Beame-Fich: Find largest less than i is tough 
in some ranges of m(e.g. m≈2 √lg n)

But OK if i is present this can be added 
(Raman, Raman, Rao etc)

Careful .. Lower Bounds
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Focus on Trees

.. Because Computer Science is .. Arborphilic
Directories (Unix, all the rest)
Search trees (B-trees, binary search trees, 

digital trees or tries)
Graph structures (we do a tree based search)

and a key application
Search indices for text (including DNA)
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Preprocess Text for Search
A Big Patricia Trie/Suffix Trie

Given a large text file; treat it as bit vector
Construct a trie with leaves pointing to unique 

locations in text that “match” path in trie (paths 
must start at character boundaries) 

Skip the nodes where there is no branching ( n-1 
internal nodes)

1 0 0 0 1 1

0 1

0

1



So the basic story on text search

A suffix tree (40 years old last year) permits 
search for any arbitrary query string in time 
proportional to the query string. But the 
usual space for the tree can be prohibitive
Most users, especially in Bioinformatics as 
well as Open Text and Manber & Myers went 
to suffix arrays instead.
Suffix array: reference to each index point 
in order by what is pointed to
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The Issue

Suffix tree/ array methods remain 
extremely effective, especially for single 
user, single machine searches.
So, can we represent a tree (e.g. a binary 
tree) in substantially less space?
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Abstract data type: binary tree
Size: n-1 internal nodes, n leaves
Operations: child, parent, subtree size, leaf data
Motivation: “Obvious” representation of an n 

node tree takes about 6 n lg n bit words 
(up, left, right, size, memory manager, 
leaf reference)

i.e. full suffix tree takes about 5 or 6 times 
the space of suffix array (i.e. leaf 
references only)

Space for Trees



Succinct Representations of Trees

Start with Jacobson, then others:
Catalan number
= # ordered rooted forests
Or # binary trees

= ଵ
௡ାଵ

௡ ଷ/ଶ

So lower bound on specifying is 
about bits
What are natural representations?
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Use parenthesis notation
Represent the tree

As the binary string (((())())((())()())):
traverse tree as “(“ for node, then 
subtrees, then “)”

Each node takes 2 bits … but operations?

Arbitrary Order Trees
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Only 1 heap (shape) on n nodes
Balanced tree, 
bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

What you learned about Heaps

1

2 3

4 5 6 7

8 9 10



Succinct Data Structures 14

Only 1 heap (shape) on n nodes
Balanced tree, 
bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

Data: Parent value > child
This gives an implicit data structure for 

priority queue

What you learned about Heaps
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Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here we don’t know size of subtrees; can be overcome. Could 

use isomorphism to flip between notations)

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

Generalizing: Heap-like Notation 
for ANY Binary Tree
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How do we Navigate?

Jacobson’s key suggestion:
Operations on a bit vector

rank(x) = # 1’s up to & including x
select(x) = position of xth 1

So in the binary tree

leftchild(x) = 2 rank(x)
rightchild(x) = 2 rank(x) + 1
parent(x) = select(x/2)
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Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here don’t know size of subtrees; can be overcome. Could use 

isomorphism to flip between notations)

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

Heap-like Notation for a Binary Tree

Rank 5

Node 11
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Rank & Select

Rank: Auxiliary storage ~ 2nlglg n / lg n bits

#1’s up to each (lg n)2 rd bit
#1’s within these too each ½  lg nth bit
Table lookup after that

Select: More complicated (especially to get 
this lower order term) but similar notions

Key issue: Rank & Select take O(1) time with lg n 
bit word (M. et al)… as detailed on the board
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Lower Bound: for Rank & for Select

Theorem (Golynski): Given a bit vector of length n
and an “index” (extra data) of size r bits, let t be 
the number of bits probed to perform rank (or 
select) then: r=Ω(n (lg t)/t).

Proof idea: Argue to reconstructing the entire string 
with too few rank queries (similarly for select)

Corollary (Golynski): Under the lg n bit RAM model, 
an index of size (n lglg n/ lg n) is necessary and 
sufficient to perform the rank and the select 
operations in O(lg n) bit probes, so in) O(1) time.
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Planar Graphs (Jacobson; Lu et al; Barbay
et al)

Subset of [n] (Brodnik & M)
Permutations [n]→ [n]

Or more generally
Functions [n] → [n] But what operations?

Clearly π(i), but also π -1(i)
And then π k(i) and π -k(i)

Other Combinatorial Objects



More Data Types

Suffix Arrays (special permutations; 
references to positions in text sorted 
lexicographically) in linear space … after all 
writing the string takes only linear space.
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“Arbitrary” Classes of Trees 

Consider classes of trees where “all small 
subtrees” are members of the class.
(e.g. ordinal trees of degree at most 2)
We can represent such trees in “near 
optimal space” and navigate in constant 
time.  Even if we don’t know the space 
lower bound!
(Arash and M)
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Partial Orders

Partial order … the transitive closure of a 
directed graph.
What is the ITLB?
Represent as upper triangular 0-1 matrix. n2/2
But all most of these not “transitive closures”
Right answer n2/4
Can achieve this bound
(Nicholson & M)
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Arbitrary Graphs/Digraphs

n vertices and m edges, support adjacency 
and degree queries
Lower bound: impossible to answer such 
queries in constant time (per node) …
In information theory lower bound (unless 
the graph is very sparse (m=o(nδ) for any 
constant δ>.0) or (similarly) too dense.
But in space (1+ε)ITLB, we can do it.
(Farzan &M)
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But first … how about integers

Of “arbitrary” size
Clearly lg n bits … if we take n as an upper 
bound
But what if we have “no idea”
Elias: lglg n 0’s, lg n in lglg n bits, n in lg n bits

Can we do better?
A useful trick in many representations
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Dictionary over n elements [m]

Brodnik & M
Fredman, Komlós & Szemerédi (FKS)
Hashing gives constant search using 
“keys” plus n lg m + o() bits

B&M approach: Information theory lower 
bound is lg

Spare and dense cases
Sparse: can afford n bits as initial index
… several cases for sparse and for dense
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More on Trees

“Two” types of trees … ordinal and cardinal
i.e. 1st 2nd 3rd versus 1,2,3

Cardinal trees:       e.g. Binary trees are 
cardinal trees of degree 2, each location 
“taken or not”. Number of k-ary trees 

	

So ITLB ≈ bits
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Ordinal Trees

Children ordered, no bound on number of 
children, ith cannot exist without i-1st

These correspond to balanced parentheses 
expressions, Catalan number of forests on n 
nodes
A variety of representations …..
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But first we need:
Indexable Dictionaries

Getting that “n” down if there are few 1’s
S = n elements for [m]
Rank(i,S) gives # elements ≤i
Select(i,S) gives ith smallest

in ITLB =B = … or so

A problem … Atai lower bound Ω(lg lg n)
Sidestep by only asking for Rank(i,S) if iS
Raman, Raman & Rao
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Trees

Key rule … nodes numbered 1 to n, but data 
structure gets to choose “names” of nodes
Would like ordinal operations:
parent, ith child, degree, subtree size
Plus child i for cardinal
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Ordinals

Many orderings: LevelOrderUnaryDegreeSequence

Node: d 1’s (child birth announcements)
then a 0 (death of the node)

Write in level order: root has a “1 in the 
sky”, then birth order = death order

Gives O(1) time for parent, ith child, degree
Balanced parents gives others, DFUDS … all
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
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Another approach


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More on Trees

Dynamic trees: Tough going, mainly memory 
management
M, Storm and Raman and Raman, Raman & Rao

Other classes: Decomposition into big tree (o(n) 
nodes); minitrees hanging off (again o(n) in total); 
and microtrees (most nodes here) microtrees small 
enough to be coded in table of size o(n)
If micotrees have “special feature”, encoding can be 
optimal.. Even if you don’t know what that means.
(Farzan & M)
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Permutations and Functions

Permutation π, write in natural form:
π(i) i = 1,…n: space n lg n bits, good!
Great for computing π, but how about 
π-1 or πk

Other option: write in cycles, mildly 
worse for space, much worse for any 
calculations above
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Let P be a simple array giving π; P[i] = π[i]
Also have B[i] as a pointer t positions back

in (the cycle of) the permutation; 
B[i]= π-t[i] .. But only define B for every 
tth position in cycle. (t is a constant; 
ignore cycle length “round-off”)

So array representation
P = [8  4 12  5 13  x  x 3  x 2  x 10 1] 

1       2      3       4       5       6     7      8     9   10    11    12    13 

2 4 5 13 1 8 3 12 10

Permutations: a Shortcut Notation
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In a cycle there is a B every t positions …
But these positions can be in “arbitrary” order

Which i’s have a B, and how do we store it?
Keep a vector of all positions: 0 = no B 1 = B
Rank gives the position of B[“i”] in B array
So: π(i) & π-1(i) in O(1) time & (1+ε)n lg n bits

Theorem: Under a pointer machine model with 
space (1+ ε) n references, we need time 1/ε
to answer π and π-1 queries; i.e. this is as 
good as it gets … in the pointer model.

Representing Shortcuts
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This is the best we can do for O(1) operations
But using Benes networks:
1-Benes network is a 2 input/2 output switch
r+1-Benes network … join tops to tops
#bits(n)=2#bits(n/2)+n=n lg n-n+1=min+(n)
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R-Benes Network

R-Benes Network

Getting it n lg n Bits



Succinct Data Structures 39

Realizing the permutation (std π(i) notation)
π = (5 8 1 7 2 6 3 4) ; π-1 = (3 5 7 8 1 6 4 2)
Note: (n) bits more than “necessary”
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A Benes Network
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Divide into blocks of lg lg n gates … encode 
their actions in a word. Taking advantage 
of regularity of address mechanism

and also
Modify approach to avoid power of 2 issue
Can trace a path in time O(lg n/(lg lg n)
This is the best time we are able get for π

and π-1 in nearly minimum space.

What can we do with it?
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Observe: This method “violates” the pointer 
machine lower bound by using 
“micropointers”.

But …
More general Lower Bound (Golynski): Both 

methods are optimal for their respective 
extra space constraints

Both are Best
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Consider the cycles of π
( 2  6  8)( 3  5  9  10)( 4  1  7)
Bit vector indicates start of each cycle
( 2 6  8    3 5  9  10   4 1  7)
Ignore parens, view as new permutation, ψ.
Note: ψ-1(i) is position containing i …
So we have ψ and ψ-1 as before
Use ψ-1(i) to find i, then n bit vector (rank, 

select) to find πk or π-k

Back to the main track: Powers of π
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Now consider arbitrary functions [n]→[n]
“A function is just a hairy permutation”
All tree edges lead to a cycle

Functions
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Essentially write down the components in a 
convenient order and use the n lg n bits to 
describe the mapping (as per 
permutations)

To get fk(i):
Find the level ancestor (k levels up) in a 

tree
Or
Go up to root and apply f the remaining 

number of steps around a cycle

Challenges here
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There are several level ancestor techniques 
using 

O(1) time and  O(n) WORDS.
Adapt Bender & Farach-Colton to work in 

O(n) bits

But going the other way …

Level Ancestors
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Moving Down the tree (toward 
leaves) requires care

f-3(  ) = (  )
The trick:
Report all nodes on a given 

level of a tree in time 
proportional to the number of 
nodes, and 

Don’t waste time on trees with 
no answers

Level Ancestors
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Given an arbitrary function f: [n]→[n]
With an n lg n + O(n) bit representation we 

can compute fk(i) in O(1) time and f-k(i) in 
time O(1 + size of answer).

f & f-1 are very useful in several 
applications

… then on to binary relations (HTML markup)

Final Function Result


