
Succinct Data Structures 1

Succinct Data Structures

Ian Munro

Succinct Data Structures 2

General Motivation

In Many Computations ...
Storage Costs of Pointers and Other
Structures Dominate that of Real Data

Often this information is not “just random
pointers”

How do we encode a combinatorial
object (e.g. a tree) of specialized
information … even a static one
in a small amount of space & still
perform queries in constant time ???

Succinct Data Structures 3

Representation of a combinatorial object:

Space requirement of representation “close
to” information theoretic lower bound

and
Time for operations required of the data

type comparable to that of representation
without such space constraints (O(1))

Succinct Data Structure

Example : Static Bounded Subset

Given: Universe [m]= 0,…,m-1 and n
arbitrary elements from this universe
Create: Static data structure to support
“member?” in constant time in the lg m bit
RAM model
Using: Close to information theory lower
bound space, i.e. about bits

(Brodnik & M)

Succinct Data Structures 4

Succinct Data Structures 5

Beame-Fich: Find largest less than i is tough
in some ranges of m(e.g. m≈2 √lg n)

But OK if i is present this can be added
(Raman, Raman, Rao etc)

Careful .. Lower Bounds

Succinct Data Structures 6

Focus on Trees

.. Because Computer Science is .. Arborphilic
Directories (Unix, all the rest)
Search trees (B-trees, binary search trees,

digital trees or tries)
Graph structures (we do a tree based search)

and a key application
Search indices for text (including DNA)

Succinct Data Structures 7

Preprocess Text for Search
A Big Patricia Trie/Suffix Trie

Given a large text file; treat it as bit vector
Construct a trie with leaves pointing to unique

locations in text that “match” path in trie (paths
must start at character boundaries)

Skip the nodes where there is no branching (n-1
internal nodes)

1 0 0 0 1 1

0 1

0

1

So the basic story on text search

A suffix tree (40 years old last year) permits
search for any arbitrary query string in time
proportional to the query string. But the
usual space for the tree can be prohibitive
Most users, especially in Bioinformatics as
well as Open Text and Manber & Myers went
to suffix arrays instead.
Suffix array: reference to each index point
in order by what is pointed to

Succinct Data Structures 8

The Issue

Suffix tree/ array methods remain
extremely effective, especially for single
user, single machine searches.
So, can we represent a tree (e.g. a binary
tree) in substantially less space?

Succinct Data Structures 9

Succinct Data Structures 10

Abstract data type: binary tree
Size: n-1 internal nodes, n leaves
Operations: child, parent, subtree size, leaf data
Motivation: “Obvious” representation of an n

node tree takes about 6 n lg n bit words
(up, left, right, size, memory manager,
leaf reference)

i.e. full suffix tree takes about 5 or 6 times
the space of suffix array (i.e. leaf
references only)

Space for Trees

Succinct Representations of Trees

Start with Jacobson, then others:
Catalan number
= # ordered rooted forests
Or # binary trees

= ଵ
ାଵ

 ଷ/ଶ

So lower bound on specifying is
about bits
What are natural representations?
Succinct Data Structures 11

Succinct Data Structures 12

Use parenthesis notation
Represent the tree

As the binary string (((())())((())()())):
traverse tree as “(“ for node, then
subtrees, then “)”

Each node takes 2 bits … but operations?

Arbitrary Order Trees

Succinct Data Structures 13

Only 1 heap (shape) on n nodes
Balanced tree,
bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

What you learned about Heaps

1

2 3

4 5 6 7

8 9 10

Succinct Data Structures 14

Only 1 heap (shape) on n nodes
Balanced tree,
bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

Data: Parent value > child
This gives an implicit data structure for

priority queue

What you learned about Heaps

18

12 16

6 15 4

1

10

95

1

2 3

4 5 6 7

8 9 10

Succinct Data Structures 15

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here we don’t know size of subtrees; can be overcome. Could

use isomorphism to flip between notations)

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

Generalizing: Heap-like Notation
for ANY Binary Tree

Succinct Data Structures 16

How do we Navigate?

Jacobson’s key suggestion:
Operations on a bit vector

rank(x) = # 1’s up to & including x
select(x) = position of xth 1

So in the binary tree

leftchild(x) = 2 rank(x)
rightchild(x) = 2 rank(x) + 1
parent(x) = select(x/2)

Succinct Data Structures 17

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here don’t know size of subtrees; can be overcome. Could use

isomorphism to flip between notations)

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

Heap-like Notation for a Binary Tree

Rank 5

Node 11

Succinct Data Structures 18

Rank & Select

Rank: Auxiliary storage ~ 2nlglg n / lg n bits

#1’s up to each (lg n)2 rd bit
#1’s within these too each ½ lg nth bit
Table lookup after that

Select: More complicated (especially to get
this lower order term) but similar notions

Key issue: Rank & Select take O(1) time with lg n
bit word (M. et al)… as detailed on the board

Succinct Data Structures 19

Lower Bound: for Rank & for Select

Theorem (Golynski): Given a bit vector of length n
and an “index” (extra data) of size r bits, let t be
the number of bits probed to perform rank (or
select) then: r=Ω(n (lg t)/t).

Proof idea: Argue to reconstructing the entire string
with too few rank queries (similarly for select)

Corollary (Golynski): Under the lg n bit RAM model,
an index of size (n lglg n/ lg n) is necessary and
sufficient to perform the rank and the select
operations in O(lg n) bit probes, so in) O(1) time.

Succinct Data Structures 20

Planar Graphs (Jacobson; Lu et al; Barbay
et al)

Subset of [n] (Brodnik & M)
Permutations [n]→ [n]

Or more generally
Functions [n] → [n] But what operations?

Clearly π(i), but also π -1(i)
And then π k(i) and π -k(i)

Other Combinatorial Objects

More Data Types

Suffix Arrays (special permutations;
references to positions in text sorted
lexicographically) in linear space … after all
writing the string takes only linear space.

Succinct Data Structures 21

“Arbitrary” Classes of Trees

Consider classes of trees where “all small
subtrees” are members of the class.
(e.g. ordinal trees of degree at most 2)
We can represent such trees in “near
optimal space” and navigate in constant
time. Even if we don’t know the space
lower bound!
(Arash and M)

Succinct Data Structures 22

Partial Orders

Partial order … the transitive closure of a
directed graph.
What is the ITLB?
Represent as upper triangular 0-1 matrix. n2/2
But all most of these not “transitive closures”
Right answer n2/4
Can achieve this bound
(Nicholson & M)

Succinct Data Structures 23

Arbitrary Graphs/Digraphs

n vertices and m edges, support adjacency
and degree queries
Lower bound: impossible to answer such
queries in constant time (per node) …
In information theory lower bound (unless
the graph is very sparse (m=o(nδ) for any
constant δ>.0) or (similarly) too dense.
But in space (1+ε)ITLB, we can do it.
(Farzan &M)

Succinct Data Structures 24

But first … how about integers

Of “arbitrary” size
Clearly lg n bits … if we take n as an upper
bound
But what if we have “no idea”
Elias: lglg n 0’s, lg n in lglg n bits, n in lg n bits

Can we do better?
A useful trick in many representations

Succinct Data Structures 25

Dictionary over n elements [m]

Brodnik & M
Fredman, Komlós & Szemerédi (FKS)
Hashing gives constant search using
“keys” plus n lg m + o() bits

B&M approach: Information theory lower
bound is lg

Spare and dense cases
Sparse: can afford n bits as initial index
… several cases for sparse and for dense
Succinct Data Structures 26

More on Trees

“Two” types of trees … ordinal and cardinal
i.e. 1st 2nd 3rd versus 1,2,3

Cardinal trees: e.g. Binary trees are
cardinal trees of degree 2, each location
“taken or not”. Number of k-ary trees

	

So ITLB ≈ bits

Succinct Data Structures 27

Ordinal Trees

Children ordered, no bound on number of
children, ith cannot exist without i-1st

These correspond to balanced parentheses
expressions, Catalan number of forests on n
nodes
A variety of representations …..

Succinct Data Structures 28

But first we need:
Indexable Dictionaries

Getting that “n” down if there are few 1’s
S = n elements for [m]
Rank(i,S) gives # elements ≤i
Select(i,S) gives ith smallest

in ITLB =B = … or so

A problem … Atai lower bound Ω(lg lg n)
Sidestep by only asking for Rank(i,S) if iS
Raman, Raman & Rao
Succinct Data Structures 29

Trees

Key rule … nodes numbered 1 to n, but data
structure gets to choose “names” of nodes
Would like ordinal operations:
parent, ith child, degree, subtree size
Plus child i for cardinal

Succinct Data Structures 30

Ordinals

Many orderings: LevelOrderUnaryDegreeSequence

Node: d 1’s (child birth announcements)
then a 0 (death of the node)

Write in level order: root has a “1 in the
sky”, then birth order = death order

Gives O(1) time for parent, ith child, degree
Balanced parents gives others, DFUDS … all

Succinct Data Structures 31

Succinct Data Structures 32

Another approach

Succinct Data Structures 33

More on Trees

Dynamic trees: Tough going, mainly memory
management
M, Storm and Raman and Raman, Raman & Rao

Other classes: Decomposition into big tree (o(n)
nodes); minitrees hanging off (again o(n) in total);
and microtrees (most nodes here) microtrees small
enough to be coded in table of size o(n)
If micotrees have “special feature”, encoding can be
optimal.. Even if you don’t know what that means.
(Farzan & M)

Succinct Data Structures 34

Permutations and Functions

Permutation π, write in natural form:
π(i) i = 1,…n: space n lg n bits, good!
Great for computing π, but how about
π-1 or πk

Other option: write in cycles, mildly
worse for space, much worse for any
calculations above
Succinct Data Structures 35

Succinct Data Structures 36

Let P be a simple array giving π; P[i] = π[i]
Also have B[i] as a pointer t positions back

in (the cycle of) the permutation;
B[i]= π-t[i] .. But only define B for every
tth position in cycle. (t is a constant;
ignore cycle length “round-off”)

So array representation
P = [8 4 12 5 13 x x 3 x 2 x 10 1]

1 2 3 4 5 6 7 8 9 10 11 12 13

2 4 5 13 1 8 3 12 10

Permutations: a Shortcut Notation

Succinct Data Structures 37

In a cycle there is a B every t positions …
But these positions can be in “arbitrary” order

Which i’s have a B, and how do we store it?
Keep a vector of all positions: 0 = no B 1 = B
Rank gives the position of B[“i”] in B array
So: π(i) & π-1(i) in O(1) time & (1+ε)n lg n bits

Theorem: Under a pointer machine model with
space (1+ ε) n references, we need time 1/ε
to answer π and π-1 queries; i.e. this is as
good as it gets … in the pointer model.

Representing Shortcuts

Succinct Data Structures 38

This is the best we can do for O(1) operations
But using Benes networks:
1-Benes network is a 2 input/2 output switch
r+1-Benes network … join tops to tops
#bits(n)=2#bits(n/2)+n=n lg n-n+1=min+(n)

1

2

3

4

5

6

7

8

3

5

7

8

1

6

4

2

R-Benes Network

R-Benes Network

Getting it n lg n Bits

Succinct Data Structures 39

Realizing the permutation (std π(i) notation)
π = (5 8 1 7 2 6 3 4) ; π-1 = (3 5 7 8 1 6 4 2)
Note: (n) bits more than “necessary”

1

2

3

4

5

6

7

8

3

5

7

8

1

6

4

2

A Benes Network

Succinct Data Structures 40

Divide into blocks of lg lg n gates … encode
their actions in a word. Taking advantage
of regularity of address mechanism

and also
Modify approach to avoid power of 2 issue
Can trace a path in time O(lg n/(lg lg n)
This is the best time we are able get for π

and π-1 in nearly minimum space.

What can we do with it?

Succinct Data Structures 41

Observe: This method “violates” the pointer
machine lower bound by using
“micropointers”.

But …
More general Lower Bound (Golynski): Both

methods are optimal for their respective
extra space constraints

Both are Best

Succinct Data Structures 42

Consider the cycles of π
(2 6 8)(3 5 9 10)(4 1 7)
Bit vector indicates start of each cycle
(2 6 8 3 5 9 10 4 1 7)
Ignore parens, view as new permutation, ψ.
Note: ψ-1(i) is position containing i …
So we have ψ and ψ-1 as before
Use ψ-1(i) to find i, then n bit vector (rank,

select) to find πk or π-k

Back to the main track: Powers of π

Succinct Data Structures 43

Now consider arbitrary functions [n]→[n]
“A function is just a hairy permutation”
All tree edges lead to a cycle

Functions

Succinct Data Structures 44

Essentially write down the components in a
convenient order and use the n lg n bits to
describe the mapping (as per
permutations)

To get fk(i):
Find the level ancestor (k levels up) in a

tree
Or
Go up to root and apply f the remaining

number of steps around a cycle

Challenges here

Succinct Data Structures 45

There are several level ancestor techniques
using

O(1) time and O(n) WORDS.
Adapt Bender & Farach-Colton to work in

O(n) bits

But going the other way …

Level Ancestors

Succinct Data Structures 46

Moving Down the tree (toward
leaves) requires care

f-3() = ()
The trick:
Report all nodes on a given

level of a tree in time
proportional to the number of
nodes, and

Don’t waste time on trees with
no answers

Level Ancestors

Succinct Data Structures 47

Given an arbitrary function f: [n]→[n]
With an n lg n + O(n) bit representation we

can compute fk(i) in O(1) time and f-k(i) in
time O(1 + size of answer).

f & f-1 are very useful in several
applications

… then on to binary relations (HTML markup)

Final Function Result

