
March 1998

A Structured Text ADT for Object-Relational Databases
L.J. Brown, M.P. Consens, I.J. Davis, C.R. Palmer, and F.W. Tompa

Centre for the New OED and Text Research,
Department of Computer Science,

University of Waterloo,
Waterloo, Ontario,
Canada N2L 3G1

ABSTRACT
There is a growing need to develop tools that are able to retrieve relevant textual
information rapidly, to present textual information in a meaningful way, and to
integrate textual information with related data retrieved from other sources. These
tools are critical to support applications within corporate intranets and across the
rapidly evolving World Wide Web.

This paper introduces a framework for modelling structured text and presents a small
set of operations that may be applied against such models. Using these operations
structured text may be selected, marked, fragmented, and transformed into relations
for use in relational and object-oriented database systems.

The extended functionality has been accepted for inclusion within the SQL/MM
standard, and a prototype database engine has been implemented to support SQL with
the proposed extensions. This prototype serves as a proof of concept intended to
address industrial concerns, and it demonstrates the power of the proposed abstract
data type for structured text.

1. The challenge
Database technology is essential to the operation of conventional business enterprises, and
it is becoming increasingly important in the development of distributed information
systems. However, most database systems, and in particular relational database systems,
provide few facilities for effectively managing the vast body of electronic information
embedded within text.

Many customers require that large texts be searched both vertically, with respect to their
internal structure, and horizontally, with respect to their textual content [Wei85]. Texts
often need to be fragmented at appropriate structural boundaries. Sometimes selected text
needs to be extracted as separate units, but often the appropriate context surrounding
selected text must be recovered, and thus the selected text needs to be marked in some
manner, so that it can be subsequently located within a potentially much larger context.

To support applications that manage large bodies of text, the SQL/MM standard provides
interfaces for the “Full Text” abstract data type for use within SQL3 [ISO96s]. Similar
approaches have been adopted by commercial systems such as Oracle Corporation’s

2 Brown, et al.

March 1998 Structured Text ADT

SQL*TextRetrieval [Ora92] and IDI’s BASISplus [Sey92]. However, there is no ability
to capitalize on the rich structure present in most texts nor to mark and extract subtexts as
part of a Full Text search specification.

A structured text is any text that has an identifiable internal structure. This structure may
be explicitly established by the inclusion of appropriate electronic markup [Coo87,
Tom89], possibly complemented by an external document type definition (DTD), or it may
be implied by the language contained within this text. HTML is an example of a text that
contains explicit structural markup used in association with a DTD [Rag97], whereas Java
source code is an example of text whose structure is determined by appropriately parsing
the language contained within the text [Fla96]. Elsewhere such data has been termed
“semi-structured” to distinguish it from rigidly structured business data as found in
relational databases [Abi97a, Suc97].

Recognizing that text retrieval is an important component of effective information
systems, Fulcrum Technologies Inc., Grafnetix Systems Inc., InContext Corporation (now
EveryWare Development Inc.), Megalith Technologies Inc., Open Text Corporation,
Public Sector Systems, SoftQuad Inc., and the University of Waterloo formed the
Canadian Strategic Software Consortium (CSSC) in 1993. CSSC’s goal was to pursue
pre-competitive research relating to the integration of relational databases and text-
intensive databases [CSSC94]. Commercial realities dictated that we explore how
relational database systems could be extended, so that they could effectively provide
access to structured text in a manner compatible with SQL. Early versions of our
proposals have been presented with examples [Bla94, Bla95].

Others have also proposed data models and languages that could be adopted to manage
structured text databases. HyQ[ISO97] and DSSSL [ISO96d] are two ISO standards
developed to query and manipulate structured text, but neither is integrated with a
database language. The Lore project and the Lorel query language are based on modelling
semistructured data as a rooted, directed, labelled graph [Abi97b], and a similar model
underlies the UnQL language [Bun96]. The database implementations underlying both
projects are based on storing materialized versions of the graphs. Unlike these
approaches, we insist that the text remain intact as the authoritative repository of text
data, and a graph-like view be defined over the text. The object-oriented language O2SQL
was extended to support SGML[Chr94] as was OSQL[Yan94], and many ideas in this
paper have evolved from similar considerations; one major extension we provide is to
maintain information about the context of selected text as well as extracting the subtext.
Closer to the relational model, Atlas was developed as a nested relational database system,
in order to maintain structured text in a single relational field, and an extended SQL
language was defined to provide text support [Sac95]. Our approach, unlike these others,
is to design operators that are naturally and efficiently supported by off-the-shelf text
search engines and easily integrated with standard SQL systems.

If text is to be embedded within conventional databases, we must be able to define views
over text that are accessible from those systems, without destroying the texts themselves
and without undesired duplication of data. What is initially required is a simple text
framework that is compatible with the rest of the database system’s model and
encapsulates most of the significant properties of structured text. The database query

Brown, et al. 3

Structured Text ADT March 1998

language must then be coupled with well-defined operations on texts that facilitate
effective query, retrieval and update of selected text fragments [Ray96a].

As well as pursuing research in language design and support, we were also interested in
how federated database systems might be constructed on top of existing database and text
searching systems, such as Oracle, IMS, DB2/6000, and PAT [Cob92, Zhu92]. We
therefore elected to build a prototype hybrid query processor capable of integrating
relational data (managed by relational database systems) and text (managed by text
engines) [Bri97]. The resulting system is similar in intent to TSIMMIS [Gar97] and other
mediator-based systems, except that the component interfaces are strictly ODBC [Mic92].

In this paper we describe the final text modelling framework that we developed to meet
the varied uses of structured text in a database environment. The semantics of our
proposed language have been formally defined [Dav96], and the extensions have been
adopted for inclusion within the SQL/MM standard [ISO96s]. Our proposed definition of
the structured text abstract data type is presented in Section 2. Section 3 describes a set
of related applications that illustrate the utility of such structured text objects. A brief
critique of the ADT and suggested extensions to explore are given in Section 4, and
conclusions follow in Section 5.

2. Structured text objects
In this section, we describe support for tree models for structured text, including
operations on such models that provide the functionality needed to select and extract
subtexts in an object-relational database environment. Because the text ADT is intended
to be used within a more general database environment, standard object-relational
operators that manage lists, sets, and tables are assumed to be defined, and these
complement the operators on text. Furthermore, access to related data that instantiate
datatypes other than text (or that result from converting small text fragments to other
types) is provided by other system components. Therefore the principal functionality to be
supported within the ADT is to locate and extract desired subtexts to form collections that
can be further manipulated by the database system.

The specific operators we developed for the structured text ADT were designed to be
compatible with text search engines, SQL3, and SQL/MM, and they have been influenced
by SQL’s syntax and semantics. Nevertheless, because the resulting ADT was designed to
meet the demands of our industrial partners familiar with commercial applications
involving structured text, it forms a useful type definition for any object-oriented or
object-relational database environment.

2.1. Tree models of structured text
A structured text subsumes a region of text that may itself contain well-formed
subordinate structured texts, such as a chapter containing paragraphs, footnotes, figures,
and subchapters. It is assumed that a structured text is finite and that an arbitrary ordering
of text may be associated with unordered fragments of text. For example, SGML
attributes are considered to be logically unordered [ISO86], and subtexts drawn from a
collection of works contained within a single text may have no logical ordering;

4 Brown, et al.

March 1998 Structured Text ADT

nevertheless the text is arbitrarily ordered in its presentation. Using these assumptions a
structured text can be conceptually represented as an ordered tree having nodes that
correspond to the various structures in the text [Mac92, Sal96]. Each node in this tree is
labelled with a string that identifies the structure that the node represents conceptually,
and each node contains as a second attribute the subtext subsumed by this structure.

To interoperate with texts, we introduce the first three functions of the text ADT:

Function Arguments Returns Description
string_to_text String , Method Text Parses a string to form a text
text_to_string Text , Method String Forms a string from a text
cast Text native type Casts a text as integer/double/date etc.

Figure 1. Text creation and interpretation

The function string_to_text takes as input two arguments. The first is a string containing
the sequence of characters to be parsed, and the second is a keyword (passed as a string in
SQL) identifying how this text is to be parsed (i.e., which parser and which grammar to
apply). If the input string is successfully parsed, the function returns the corresponding
instance of structured text, conforming to the model used by the parser. Two texts that are
parsed using identical arguments (i.e., equal input strings and identical methods) are said
to share the same provenance.

Complementing this, the function text_to_string produces a string from a text. A choice
of conversion methods is provided, since text can be linearized and presented in many
ways. For example, one converter might produce a tagged string, a second might omit all
tags, and a third might suppress particular subtexts.

Suitably encoded texts (cf. [Gon87]) can be directly cast into numeric integers, double
precision values and dates, without first being transformed into strings. This allows large
relations to be encoded within a text directly while continuing to be rapidly accessible.

Consider the fragment of the University of Waterloo calendar shown in Figure 2 [UW98].
This fragment could be encoded as a tagged string (Figure 3a) and interpreted by a parser
as a labelled tree (Figure 3b), where the text values subsumed by each node within the tree
are not shown. The text corresponding to Figure 3b may have been produced by applying
the string_to_text function to a string formed from a document type description (DTD)
appropriate for the calendar and the contexts of Figure 3a, passing the keyword “SGML”
as the second parameter. This text is not necessarily materialized, but rather represents a
view of the character string against which searches can be applied.

CS 370 F,W 3C 0.5
Numerical Computation
Principles and practices of basic numerical computation as a key aspect of scientific computation.
Visualization of results. Approximation by splines, fast Fourier transforms, solution of linear and
nonlinear equations, differential equations, floating point number systems, error, stability. Presented in
the context of specific applications to image processing, analysis of data, scientific modeling.
Prereq: MATH 235, 237 and one of CS 230, 246
Antireq: CS 337

Figure 2. Part of Chapter 16 of the University of Waterloo calendar

Brown, et al. 5

Structured Text ADT March 1998

<COURSE NAME=”CS370”><CNO>CS 370</CNO><CTERM>F,W</CTERM><CTYPE>3C
</CTYPE> <CWT>0.5</CWT>
<CTITLE>Numerical Computation</CTITLE>
<CDESC>
Principles and practices of basic numerical computation as a key aspect of scientific computation.
Visualization of results. Approximation by splines, fast Fourier transforms, solution of linear and
nonlinear equations, differential equations, floating point number systems, error, stability. Presented in
the context of specific applications to image processing, analysis of data, scientific modeling.</CDESC>

<CPREREQ CID=478><cxref xref=”MATH235”>MATH 235</cxref>, <cxref
xref=”MATH237”> 237</cxref> and one of <cxref xref= “CS230”>CS 230</cxref>, <cxref
xref=”CS246”>246</cxref> </CPREREQ>
<CANTIREQ CID=479> <cxref xref=”CS337”>CS
337</cxref></CANTIREQ>
</COURSE><p>

(a) Tagged encoding as a character string

<course>

:name

<cno> <cterm> <ctype> <cwt> <ctitle> <cdesc> <cprereq> <cantireq>

:cid <cxref>…<cxref>

:xref :xref

:cid <cxref>

:xref

(b) Schematic representation in the model

Figure 3. An encoding for a fragment of the calendar

In this sample model, labels in the tree are “typed” as being SGML generic identifiers
[ISO86] by the convention of using enclosing angle brackets, whereas attribute names are
preceded by a colon. A node representing a generic identifier subsumes the subtext within
the corresponding tags, and a node representing an attribute name subsumes the attribute’s
value. Note that not all text need be subsumed by leaf nodes: in the example, the text “and
one of” is subsumed by <course> and <cprereq>, but not by any <cxref> (nor any
other leaf). Furthermore, in this example some SGML markup has been ignored by the
modeller, as has the case used in the string for generic identifiers and attribute names.
Other SGML types (such as entity references) may be similarly encoded.

Continuing with the example, the four <cxref> course cross references that are cited as
prerequisites for course CS370, may be considered to form either a list or a set.
Applications that wish to treat such cross references as an unordered collection will avoid
attaching unwarranted significance to the ordering of these subtexts within the above
encoding. (Mechanisms to search for ordered and unordered text segments are described
in the next section.) However, applications must be careful to preserve the intended

6 Brown, et al.

March 1998 Structured Text ADT

semantics of the text. When considering results derived from the above encoding, for
example, even though CS370 lists four prerequisites, the text states that students need not
satisfy all four prerequisites prior to enrolling in CS370.

This framework allows the full generality of structured text models to be exploited by
diverse applications. Out of necessity, we have chosen one particular realization of the
framework for this example. In general, individual enterprise designers determine the
structures that are to be identified in the conceptual model and how type information is to
be encoded within node labels. No assumptions are made in the framework about what
constitutes structural information within an arbitrary text; this is imposed by the process
that parses a character string to interpret it as a structured text. Similarly, no assumptions
are made about how the physical structure within the text is stored, since such
assumptions would limit the usefulness of the model [Mac92]. Data providers choose the
mechanisms for encoding structured text as character strings and ensure the existence of
parsers that can be used to interpret strings’ values as structured text, and thus populate
the model. Through the use of standards such as SGML [ISO86], enterprise and
applications designers and data providers can ensure that the data stored within the model
exhibits the appropriate conceptual structures within a text. Thus the data provider
assumes responsibility for the management of physical texts, the model provides a
mechanism for describing how these physical texts may be accessed, and the data
consumer remains responsible for deciding how a text is to be interpreted and
manipulated.

An ordered hierarchical model for structured text seems an intuitive one, but may be
unduly restrictive. In practice many loosely structured texts (and particularly those on the
Web) violate the assumption that the markup within them is correctly nested. For example,
font changes may occur at arbitrary points within a text, rather than within well-defined
structural boundaries. The framework allows multiple hierarchical structures to be
encoded as independent substructures, but does not allow relationships between distinct
structural hierarchies to be modelled directly. For example, physical page boundaries
impose a secondary structure on many documents, but these physical boundaries cannot
readily be related to the logical document structure within our proposed framework. If the
ordered hierarchical model is considered too limited, it might be possible to generalize the
concept of containment and ordering used within the model, so that these concepts can be
applied to overlapping regions of text (see, for example, [ISO89, Spe94, Ray96b]) or to
texts that correspond to arbitrary directed graphs (cf. [Abi97b, Bun96]). We have found
in practice, however, that tree models are generally flexible enough for most commercial
applications.

2.2. Marking structured text
Previous proposals (such as [ATA91]) have recognized the importance of allowing
fragments of subtext to be marked so that, for instance, these fragments may be
highlighted when viewed. In environments that support update and storage of marked
subtexts, such marks may also be used to store the state necessary to support interactive
hierarchical text navigation and browsing, through a stateless SQL interface.

Brown, et al. 7

Structured Text ADT March 1998

To allow fragments of structured text to be identified within our framework, any node
within a text tree may be either marked or unmarked. Thus, an instance of structured text
not only identifies spans of subtexts, but also includes a set of zero or more marks that
identify selected structured subtexts.

The functions in Figure 4 allow marks within a structured text to be manipulated. Where
multiple texts are provided as parameters, they must share the same provenance (cf. union
compatibility in SQL); otherwise an appropriate exception is raised. For all six functions,
the text returned shares the same provenance as the text parameters.

Function Arguments Returns Description
mark_subtexts Text, Pattern Text Mark matched subtexts
union_marks Text, Text Text Combine marks from two instances
intersect_marks Text, Text Text Intersect marks from two instances
except_marks Text, Text Text Subtract marks from two instances
keep_marks Text, Int, Int Text Preserve subsequence of marks
aggregate_marks TextSet Text Union marks over set of instances

Figure 4. Functions that manipulate marks in a text

The function mark_subtexts takes as input an instance of text and a string containing
instructions about how the resulting text is to be marked (cf. [Kil93]). The structured text
pattern matching language used to encode these instructions within the string was
designed to be compact, yet expressive, and to be compatible with full-text searching as
defined for SQL [ISO96s]. The pattern language is illustrated in Figure 5, assuming the
text model implied by Figure 3. (Following SQL’s conventions, ‘%’ matches zero or more
consecutive characters within a text label. The hash mark ‘#’ identifies which nodes are to
be marked upon a successful match.) The language is formally defined using the BNF for
<pattern> in Figure 6. An alternative syntax using more descriptive function names
rather than the compact notation presented here has also been defined [Dav96].

Pattern Marks
<cref># Every <cref> node (cross-reference) in the text
<cref>[^%#] Every child of any <cref> node in the text
@<course>#[<cprereq>] Every marked course having a <cprereq> child
<course>#[<cprereq>[:xref{CS370}]] Every course that lists CS370 as a prerequisite
<c%req>#[:xref{CS230}&:xref{CS246}] Relations to both CS230 and CS246 in either order
@<course>#[<cwt>,<cterm>] Marked courses whose weight appears before term
<course>[:name{CS370}&<cwt>#] The course weight of CS370
%[<cno>#,<ctitle>#] Every pairing of <cno> followed by <ctitle>
^%# The root of the text (regardless of label)

Figure 5. Examples of how structured text patterns match a text

8 Brown, et al.

March 1998 Structured Text ADT

<pattern> ::= <node_rule> [<descendants>] | <node_rule>
<descendants> ::= <set> | <list>
<set> ::= <pattern> & <set> | <pattern>
<list> ::= <pattern> , <list> | <pattern>

<node_rule> ::= <rooted_rule>
<rooted_rule> ::= ^ <marked_rule> | <marked_rule>
<marked_rule> ::= @ <marking_rule> | <marking_rule>
<marking_rule> ::= <node_pattern> # | <node_pattern>
<node_pattern> ::= <node_label> { <text_expression> } | <node_label>

<node_label> ::= <characters>
<text_expression> ::= <characters>
<characters> ::= <characters> <character> | <character>
<character> ::= !! Any appropriately escaped character !!

Figure 6. The structured text pattern matching language

The <pattern> and <descendants> productions, allow a simple one-dimensional
representation of a partially ordered pattern tree to be expressed. Within this expression,
each <pattern> within a <list> (e.g., B, C, and D in the pattern ‘A[B,C,D]’) constitutes
an ordered descendant of the <node rule> immediately preceding this <list> within the
pattern; each <pattern> within a <set> constitutes an unordered descendant of the
immediately preceding <node rule>.

The structured text pattern matches a subset of the nodes in an instance of structured text
when

(a) every <node rule> is associated with exactly one distinct node in the structured text,
(b) every ancestor/descendant relationship between <node rule>s in the structured text

pattern holds between the corresponding matched nodes within the text,
(c) ordered lists of nodes within the pattern appear in the same order as the nodes that

they match within the text,
(d) any <node rule> containing the symbol ‘^’ matches a node whose parent node (if any)

is also simultaneously matched by its corresponding <node rule>,
(e) each <node rule> containing the symbol ‘@’ matches a marked node within the input

text,
(f) every <node label> agrees with the corresponding node label within the text, and
(g) the text subsumed by a matched node satisfies the <text_expression> (if present).

The function mark_subtexts identifies all possible matches (if any) between nodes in the
input text and the structured text pattern, and marks any node within the matched text that
corresponds to a <node rule> containing the hash symbol ‘#’.

The rules governing how node labels and subsumed text are matched against strings within
the pattern tree should be compatible with the environment within which the structured
text abstract type is supported. For SQL, a <node label> may use the symbols ‘%’ and
‘_’ as wildcards, such a <node label> is compared with structured text labels using the
SQL ‘like’ predicate [ISO92], and this comparison is case insensitive. Furthermore, the
<text_expression> must be a valid SQL/MM ‘contains’ clause [ISO96s]; when applied
against the subsumed text, it identifies structured text nodes matching this expression. As

Brown, et al. 9

Structured Text ADT March 1998

a possible extension, a <text expression> could be an arbitrary SQL predicate (potentially
containing more than just a Full Text search specification); this would increase the power
of the pattern matching language considerably, and it might simplify the detection of cases
where certain complex text operations could be optimized.

Because chain patterns are commonly used in text searching, the pattern matching
language is extended with two syntactic shorthands: A..B represents an ancestor-
descendant relationship (equivalent to A[B]), and A.B represents a parent-child
relationship (equivalent to A[^B]). For example, every course that lists CS370 as a pre-
requisite could be marked by the pattern <course>#.<cprereq>..:xref{CS370}.
Convenient notation to match descendants (as oppose to direct children only) reflects the
ability of text search engines to find contained strings efficiently.

The functions union_marks, intersect_marks and except_marks take as input two
instances of text with the same provenance and return a new text of that same provenance
having marks that are respectively the union, intersection, or set difference of the marks in
the input texts. For example,

intersect_marks(
mark_subtexts(calendar, ’<course>#.<cprereq>..:xref{CS370}’),
mark_subtexts(calendar, ’<course>#[<cwt>,<cterm>]’)
)

marks courses in the calendar that have CS370 as a prerequisite and list the course weight
before the term in which the course is offered.

The function keep_marks takes as input a text and an integer range (expressed as a start
position and a length). Marks in the input text are assigned ordinals (starting from 1)
consistent with the order that they would be visited by a pre-order traversal of the text
tree; those marks within the input text having ordinals lying in the specified range are
preserved in the resulting text. This function provides a simple mechanism to identify the
subtexts based on their order in the text (e.g., the second through fourth figures).

The function aggregate_marks takes as input a collection of texts having the same
provenance and returns a new instance of text having this provenance and containing the
union of all marks in the collection of input texts. This function may be applied as an
aggregation function in SQL, for example, after grouping related rows in a table.

Two other related functions are also defined to simplify the coding of applications, one to
test for matching text without marking and one to count marks in a text:

Function Arguments Returns Description
text_match Text, Pattern Boolean Matches text against a hierarchical tree pattern
count_marks Text Integer Counts the number of marks in a text

Figure 7. Other functions associated with structured text

Having marked a set of nodes in a text, these can be referenced in subsequent text patterns
through the flag @ to focus further matching. In the next section, we show how text
marked as a result of pattern matching and suitable combining of marks can be extracted
into tables for further manipulation as atomic entities outside the text ADT.

10 Brown, et al.

March 1998 Structured Text ADT

2.3. Extracting structured subtext
Both functions shown in Figure 8 extract from an input text a collection of subtexts,
returning a relation that contains the extracted subtexts.

Function Arguments Returns Description
isolate_subtexts Text Relation Extracts all marked subtexts within a text
extract_subtexts Text, Int, Pattern Relation Extracts subtexts matching a given pattern

Figure 8. Functions that extract subtexts from a text

The function isolate_subtexts creates a binary relation. It takes an instance of text as
input and, for each mark within this text, produces an output row. The first attribute
within each output row contains text having the same provenance as the input text, but
having only the solitary mark within this text that caused the row to be generated. The
second attribute in the row contains, as a new instance of text, the subtext rooted at this
mark. The mark on the root is removed from the resulting subtext, but all other marks
within the resulting subtext are preserved.

This form of output preserves the context of a match together with the isolated text on its
own. The pairing in a single row maintains the relationship between these two texts in a
manner that suits SQL’s value-based semantics. Subsequent operations in SQL can select
and project data from this relation to suit various applications’ needs.

The function extract_subtexts takes as input an instance of text, an integer, and a
structured text pattern as described for mark_subtexts above. It produces a multi-
column relation with one row for every possible complete match, as described below. The
number of columns in the resulting relation depends in principle on the text pattern, but
the string containing the text pattern can be constructed dynamically and the number not
known until runtime. In environments where this value must be known at compile time,
the middle parameter indicating the expected number of columns in the resulting relation
must be included. In SQL2, for example, this middle argument must be an integer
constant, and the function extract_subtexts will raise an appropriate exception if the
resulting relation does not contain exactly the number of columns indicated.

In the pattern, let the number of <node rule>s flagged with a hash mark be n. For every
distinct matching of the n flagged <node rule>s within the structured text pattern against
nodes in the structured text (matching the entire structured text pattern against the text in
at least one way) an output row is produced with n+1 columns. The first column contains
a text with the same provenance as the input text, while the remaining n columns contain
the extracted subtexts that matched the flagged <node rule>s, in the left to right order
(pre-order) that they occurred within the structured text pattern. Each subtext remains
marked in the innermost extracted ancestor within this tuple. No other marks are present
in the texts contained with the output tuple.

For example, if the operation:

extract_subtexts(calendar,3,’<course>[:name#, <cxref>..:xref#]’)

is applied to the subtext shown in Figure 3 the relational rows shown in Figure 9a are
returned in no specific order. (Within this figure marked subtexts within a text are printed

Brown, et al. 11

Structured Text ADT March 1998

in boldface and underlined.) This relation differs substantially from that returned by the
corresponding use of isolate_subtexts as shown in Figure 9b:

isolate_subtexts(
mark_subtexts(calendar,’<course>[:name#, <cxref>..:xref#]’)

)

<course name=”CS370”...
... <cxref xref=”MATH235”>MAT ... <p>

name=”CS370” xref=”MATH235”

<course name=”CS370”...
... <cxref xref=”MATH237”>237< ... <p>

name=”CS370” xref=”MATH237”

<course name=”CS370”...
... <cxref xref=”CS230”>CS 230< ... <p>

name=”CS370” xref=”CS230”

<course name=”CS370”...
... <cxref xref=”CS246”>246< ... <p>

name=”CS370” xref=”CS246”

(a) Result returned by extract_subtexts

<course name=”CS370” ... xref=”MATH235”>MAT ... <p> name=”CS370”
<course name=”CS370” ... xref=”MATH235”>MAT ... <p> xref=”MATH235”
<course name=”CS370” ... xref=”MATH237”>237< ... <p> xref=”MATH237”
<course name=”CS370” ... xref=”CS230”>CS 230< ... <p> xref=”CS230”
<course name=”CS370” ... xref=”CS246”>246< ... <p> xref=”CS246”

(b) Result returned by isolate_subtexts on a text marked using the same pattern

Figure 9. Comparison of text extraction operators

Applications that rely on correlated subtexts will require the approach based on
extract_subtexts, whereas the alternative is simpler to use when one part of an
application identifies interesting subtexts and another one manipulates them. In both
cases, the ability to extract a subtext while preserving the context within which it was
extracted is significant to meet the varied needs of diverse applications. Furthermore, it is
important to note that all elements of the relations returned are of type text and each can
be represented as an unmaterialized view over the originally parsed character string.

2.4. Associating a schema with text
Individuals and computer processes that access a data source may initially have little
knowledge about the information contained within this data. It is therefore important that
all data sources be self-descriptive.

The SQL2 standard requires the presence of an information schema, having a universally
understood data structure that contains meta-data providing detailed information about the
structure and content of each SQL2 database catalog. Because this information is
provided in a relational format it can be retrieved using appropriate SQL commands.
Using information recovered from the SQL2 information schema, it is possible (subject to
appropriate permissions being granted) to formulate, validate and initiate SQL2 operations
that manipulate or return information from any part of the described SQL2 database
catalog.

While it might be naively assumed that the structural schema associated with a text can be
deduced from an examination of the text directly, this is not true. Specific structural

12 Brown, et al.

March 1998 Structured Text ADT

elements may not be present within the text retrieved, and the structural layout for a
fragment of text would contain no reference to absent structural components.
Furthermore, one instance’s structure contains no record of the specific constraints
imposed by an underlying grammar.

The encoding shown in Figure 3b provides a conceptual model of the structure of the text
shown in Figure 1, but it fails to provide key information needed by a user who wishes to
access such text more generally. Such a user, and more importantly an application
program, may have no a priori knowledge about the node labels present in the encoding,
their interpretation, and the valid relationships between the various node labels within the
text encoding. It is not possible to deduce from Figure 3 that university courses may also
have corequisites associated with them, and nothing indicates if course cross references
occur elsewhere within the calendar, or potentially within the course descriptions
subsumed by nodes labelled <cdesc>. Thus, when a parser converts a string into a text
tree, it associates with this text the grammar that it used for parsing.

The schema shown in Figure 10 describes the actual information content present within
Chapter 16 of the University of Waterloo calendar, and constitutes part of the schema for
the calendar. This diagrammatic form is a visualization of the grammar, showing, for
example, that a <file> element contains an attribute :source and one or more
subelements having identifier <cdept>. (Repeating elements within this schema have
been marked with a ‘+’.) In summary, Chapter 16 is partitioned into source files, each
describing one or more departments. Departments have a name and associated courses.
Course listings may include many details, such as descriptions, ancillary information,
prerequisites, antirequisites and corequisites.

<chapter16>
>

<file>

:source <cdept>

<cdname> <course>

:name

<cno>

<cgno>

<cnono>

<cterm>

<cwt>

<ctitle>

<cdesc>

<cinfo>

<cprreq>

:cid <cxref>

:xref

+

+

<cantireq>

:cid <cxref>

:xref

+

<ccoreq>

:cid <cxref>

:xref

+

+

+

Figure 10. A schema for Chapter 16

Brown, et al. 13

Structured Text ADT March 1998

If such structural schemas were not available, users and applications would have little
ability to discern the hierarchy of structure contained within accessed texts and to
associate appropriate labels with structural components. As a consequence they will be
unable to formulate, validate, and initiate structured text operations against the data.

One can consider a grammar ADT to be a specialization of the structured text ADT.
Thus, if the schema is itself considered as structured text, the operators defined earlier in
this section can be applied to manipulate it. Furthermore, certain additional operators are
defined to simplify application code written to query a text’s grammar. Specifically, the
functions shown in Figure 11 provide rudimentary access to the grammar associated with
a text and enable programmatic access to the schematic information presented above.

Function Arguments Returns Description
text_to_grammar Text Grammar Returns the grammar for a given text
grammar_root Grammar String Extracts the name of the root of a grammar
grammar_elements Grammar Relation Returns element names with their descriptions
grammar_hierarchy Grammar Relation Returns child/descendant relationships
grammar_to_text Grammar Text Full textual description of a text’s grammar

Figure 11. Functions on the schema of a text

The function text_to_grammar returns a normalized grammar associated with a given
text. (Note that although all examples here use SGML, this is not a requirement imposed
by the model. However, in our implementation, the normalized grammar is automatically
extracted from a DTD when an SGML parser is applied to create a text through the
function string_to_text.)

The function grammar_root, when applied to such a grammar, returns the label of the
root of the schema for this grammar; this is a special case of text_to_string as applied to a
structured text that happens to represent a grammar. The function grammar_elements
(built on mark_subtexts and isolate_subtexts invocations that are tailored for a
grammar) returns a binary relation describing each distinct node label in the schema
associated with this grammar. For example, this function returns a table such as that
shown in Figure 12 when applied to the calendar schema; the descriptive information
forms part of the information to be provided to the parser (for example, as comments in a
DTD).

Element name Description
<chapter16> Chapter 16
:name Course name abbreviation
<cdept> Department course listings
<course> A course description
… …

Figure 12. Part of the relation returned by grammar_elements

The function grammar_hierarchy when applied to a grammar returns a relation
describing the transitive closure of all ancestor/descendant relationships within the
grammar schema. This function can be defined in terms of extract_subtexts, returning
the table shown in Figure 13 when applied to the calendar schema.

14 Brown, et al.

March 1998 Structured Text ADT

Ancestor Descendant Relationship
<chapter16> <file> Child
<chapter16> :name Descendant
<chapter16> <cdept> Descendant
<cdept> <cdname> Child
… … …

Figure 13. Part of the relation returned by grammar_hierarchy

As stated earlier, queries involving arbitrary descendants are more efficiently processed by
text engines than those involving direct descendants only. By including all descendants
explicitly in the grammar hierarchy, an application can determine which paths are legal in
text patterns without first having to call a potentially expensive transitive closure function
(which is also non-standard in SQL). For applications that desire direct descendants only,
a simple selection of tuples having Relationship=’Child’ produces the desired
result. Using the data in a table such as that shown in Figure 13, an application can build
interactive query interfaces for users or it can use the data directly to build meaning
pattern strings to be used to query and extract data from a text.

The grammar_to_text function is not the inverse of the text_to_grammar function, but
instead produces a structured text corresponding to a parsed string-form of the grammar.
For example, the text of the grammar associated with an SGML document corresponds to
the original document type definition (DTD) in its string form. If no such text exists, the
function returns null. Providing a textual representation of the grammar allows the full
power of the proposed text extensions to be employed not only against an arbitrary
structured text, or a particular abstract grammar, but against any textual description of the
grammar associated with a text.

It is important to note that the framework associates a grammatical schema with every
instance of text rather than merely with a collection of texts residing in a single relational
column or belonging to a particular set of text objects. Based on industrial practice, it is
unrealistic to demand that only texts having exactly the same grammatical schema can be
grouped into collections. Even in applications based exclusively on SGML, business
needs and practices evolve at a pace through which DTDs are modified almost as rapidly
as individual texts, and far more frequently than conventional database schemas.
Grammars obtained from an instance of text satisfy value-based semantics, and they can
therefore be independently compared, manipulated, stored, and retrieved. Thus, in
applications where tighter control need be exercised on the forms of related texts,
database designers may choose to impose constraints on text collections (e.g., all texts in
one column) to ensure that the grammars of included texts share certain features.
Furthermore, grammars can also be independently used to document and constrain texts
even before such texts are stored within a database.

Brown, et al. 15

Structured Text ADT March 1998

3. A sample application
We have developed and tested the ideas presented in Section 2 in the context of a
federated database environment created as part of the CSSC project [CSSC94, Bla95,
Bri97]. In brief, the implementation uses an architecture based on independently managed
data sources, wrappers that provide common interfaces to those sources, and a mediator
that serves as a hybrid query processor providing access to the data sources through their
wrappers and integrating the results (cf. TSIMMIS [Gar97]).

Wrappers have been written to translate the proposed text operations into native language
constructs supported by Open Text’s PAT 5.0 text engine [OTC95] and to those supported
by the MultiText text engine [Cla94]. Similar wrappers could be written to interact
appropriately with object-oriented database systems and with other structured text search
engines, using alternative native search languages.

The wrappers provide an SQL2 interface to the hybrid query processor, using ODBC for
communications [Mic92]. Within the mediator, subtexts output from these operations are
integrated with texts stored in a Fulcrum database [Ful94] and with relational data stored
in Oracle and DB2 databases. The resulting federated database system provides efficient
access to structured text and to relational data more generally [Ng97, UW97]. Extended
explanations and demonstrations can be viewed through the Web at
http://solo.uwaterloo.ca/trdbms/. In the remainder of this section, we illustrate the ideas
using one of the demonstration databases.

The University of Waterloo undergraduate calendar provides a considerable amount of
textual information about events, courses, awards, faculty members, departments and
university regulations. Each year this document is marked up using HTML and made
available on the World Wide Web [Ben98].

While some benefits result from making the raw material contained within the calendar
available on the Web, locating desired information within the calendar is often difficult,
since large volumes of text must be visually scanned, and few facilities exist to relate
complementary information within the calendar. Summary information can only be
derived by browsing through all relevant sections of the calendar, and relationships
between the calendar and alternative sources of information cannot be exploited.

We addressed the above limitations by developing a prototype web application that
provides alternative methods of accessing the calendar [UW97], while maintaining its text
intact. Thus, retrieved information can be read in its original written form, so that the
database does not obscure the intended semantics of the calendar’s contents (cf.
[Tom89]).

After automatically replacing the HTML tags in the calendar with more descriptive SGML
markup (as shown in Figure 3a), the resulting document was indexed so that it could be
rapidly searched by Open Text’s search engine. Front end Web applications were built to
demonstrate how context specific information can be retrieved by our hybrid query
processor, which also provided simultaneous access to additional resources (including
course schedule and personnel tables) stored in an Oracle database.

16 Brown, et al.

March 1998 Structured Text ADT

Those responsible for maintaining the calendar derived immediate benefit from having the
text managed as a database. Since we required that our input source texts conform to
HTML, we encouraged corrections in HTML pages that might otherwise have caused
client browsers to fail. Furthermore, the DTD describing the descriptive structure
associated with the various sections within the calendar formalized the implicit rules
governing how various departments prepare material for inclusion within the calendar. As
a result, the University moved closer to standardizing and automating the data entry
process associated with construction of a yearly calendar. These benefits, however,
accrue directly from adopting SGML for representing text [Coo87].

Having added descriptive markup to the text, database management made it possible to
validate textual information contained within the calendar more easily. A text view
corresponding to the complete calendar was created as a one-row, one-column relation
accessible through a wrapper interface to Open Text’s engine. Using the text operators
presented in Section 2, it was then easy to extract from the calendar the names, office
locations and phone numbers of all members of faculty listed as the contact people for
information relating to courses [UW97]. This information can be validated against
corresponding information in a current telephone directory stored within an Oracle
database. Alternatively, relational information derived from the calendar can serve as the
source data to be exported directly to conventional relational database systems for use in
alternative applications.

Making the calendar’s text available as a database made it possible to identify all members
of faculty within the university who hold one or more degrees from specific universities,
have specific positions, belong to specific departments, and/or perform given
administrative roles. The details of one such query are given in Appendix A (Query 1).
Of course, such queries can also be supported directly by structured text engines.
However, it is possible to perform very much more complex queries using the expressive
power inherent in SQL2 in conjunction with the structured text ADT described here.

For example, the Faculty of Mathematics was asked to provide information about the
number of members of faculty at different ranks by department, and to correlate this
information against the number of courses, and if possible, students taught. It was easy
using SQL extended with the text operators to derive a table from the calendar that
documented the number of members of faculty at various ranks by department; this would
not be possible through a conventional text search engine. Using conventional SQL, the
courses taught by a department in a particular term and the enrollment in these courses
could be as readily obtained from the course schedule information stored in an Oracle
database. The hybrid query processor could then integrate the collective information into
the desired relational tables, by joining the relations from the distributed data sources.

As a second example, we show in more detail how the text ADT has improved access to
the University of Waterloo calendar. A Waterloo student was interested in courses
relating to Ireland. Through a forms interface to the calendar database, he found that
History 255 “The Expansion of England” was the only course within the calendar to
include the word Ireland within its course description. With another click, he was then
able to recover the course schedule associated with this course (see Query 2 in Appendix
A). Figure 14 shows the screen output, with the course description for History 255 at the

Brown, et al. 17

Structured Text ADT March 1998

top of the screen matched with the corresponding course schedule information selected
from relational tables.

The Registrar’s office had long wanted to validate the relationships that exist between
course descriptions, but it had been previously unable to derive tables that summarize the
relationships between a course description and its internally documented prerequisites,
corequisites, and antirequisites. Upon learning of this, an unmaterialized relational view
course_associations, capturing all documented course pairings, was easily defined
using the extended text operators against the text of the calendar. A form providing
access to this view was quickly added to our demonstration and made available for use by
members of the Registrar’s office and others (Figure 15).

Figure 14. Output that relates structured text with relational data

18 Brown, et al.

March 1998 Structured Text ADT

Figure 15. Presenting course associations as a relation

The Student Awards office asked us to provide access to financial award information
contained within the calendar so that end users would be able to search for awards, grants
and scholarships, using various criteria, including numeric considerations associated with
an award. Having identified those fragments of text that describe applicable awards, it is
possible, for example, to select awards that cite some maximum, minimum, average or
total set of award amounts within them, or that include award amounts in (or not in) a
given numeric range. The advantages of accessing text through SQL over other
approaches is evident here: loading a database with summaries of the data in lieu of the
text itself will necessarily omit important descriptive information, and storing this data
redundantly is wasteful and error-prone; however, complex numeric processing and
aggregation is not supported by conventional text search engines. Full SQL access to text
is obviously an improvement.

Brown, et al. 19

Structured Text ADT March 1998

4. Critique of the Text ADT
The structured text ADT presented in Section 3 has been useful in supporting several
diverse applications. In fact, the SQL extensions for structured text have been accepted
for inclusion within the evolving SQL/MM standard [Dav96]. In spite of this success,
however, some extensions and variations of the ADT might be usefully defined.

At present SQL/MM’s Full Text specification uses the concepts of character, word,
sentence and paragraph within its own search language, without defining or explaining
how such concepts relate to the actual material contained within an arbitrary instance of
text [ISO96s]. These concepts should be viewed as specific instances of well-defined
structure associated with a structured text being searched. Ideally, full interplay should be
allowed between “horizontal” (Full Text) and “hierarchical” (structured text) searching
and marking, thus making the resulting language much more expressive. To accomplish
this, the SQL/MM Full Text specification must be augmented to allow marking of
identified substrings matching Full Text patterns. On the other side, the structured text
ADT should be augmented to allow the concept of proximity, which is well defined within
the Full Text proposal, to be applied to structured text.

In general, structures within a text may be arbitrarily complex. Regions of structured text
(i.e., instances of subtext spanning a well-defined textual region) may overlap, and
referential relationships between text may form complex interwoven networks both within
texts and across texts [Spe94]. These networks may themselves not be particularly well-
defined, since in some cases a reference will be translated into a request to include subtext
(cf. macro expansions), while in others it will establish a cross-reference to a separate
subtext (cf. function invocations). Operators to handle hypertexts may be found to be
useful additions to the proposed ADT. If such operators require that the data models be
extended to arbitrary directed graphs, it may be useful to interpret the graphs’ labels as
being on edges rather than nodes. Although labelling nodes or edges is equivalent for
trees, this change would allow labels to reflect the various roles played by the data in a
more general graph [Abi97b].

Structured subtexts may contain or reference heterogeneous objects such as image, sound,
video, spatial and other data types frequently found within existing multimedia documents,
and these objects may themselves contain or reference further instances of structured text.
The tree-structured model on which the proposed ADT is based can easily accommodate
multimedia objects in place of text at its nodes. Selection of these objects based on node
labels, matching objects’ contents using braced patterns appropriate to the objects’ types,
and extraction of the objects into relations is still applicable (with appropriate calls to cast
to realize the objects in their native types). Structured multimedia objects may also exist
as temporal objects, having differing manifestations at different times, all of which must be
accessible by specifying the appropriate temporal context. Again, suitably labelled trees
(or graphs) can model temporal variants, but we have not yet had experience with such
general hypermedia environments.

The proposed framework is well-suited to text that is physically present but considered
within some contexts to be logically absent (e.g., colour, white space, punctuation,
descriptive markup, versioning): some pieces can be ignored by the parser when the text

20 Brown, et al.

March 1998 Structured Text ADT

model is built, and other pieces can be ignored by the application user when subtexts are
extracted. However, certain text may be considered to be logically present while being
physically absent (e.g., SGML attribute values and C++ function parameters may be
assigned default values when absent). It is recommended that the parsers used to convert
strings to text build models that include default values in their text trees so that they can
be queried as if explicitly present. In practice, however, this implies that the texts
themselves be altered to include those values prior to being indexed by search engines or
that indexing technology that includes virtual terms be adopted by the engines.

One problem inherent in structured text databases is irregularity in the structure [Abi97a].
Therefore, applications often need to specify a structural pattern in which some of the
subtexts may be absent; it is desired that such optional components be marked if present
but their absence should be ignored. Using our operators, optional subtexts cannot be
marked concurrently with mandatory subtexts, since the tree pattern matching language is
based on performing an exact match against all described subtexts. For example, finding
all courses that list CS370 as a prerequisite and marking those courses and their co-
requisites if present requires a two-part query: optional subtexts must be marked and
extracted in a second phase, after mandatory subtexts have been extracted. This second
extraction phase is inefficient since it is applied separately to each grouping of mandatory
subtexts within a single tuple, rather than being applied during the construction of these
distinct tuples.

To make matters worse, the extracted subtexts corresponding to optional components
cannot be easily related to their contexts. In addition, the separation of subtext extraction
into multiple independent phases makes it difficult to enforce contextual relationships
between mandatory and optional subtexts that otherwise would have been readily
expressible within the structured text pattern matching language. In our applications, the
mandatory and optional subtexts are recombined through the use of an appropriately
constructed outer join, and absent subtexts are represented within such an extraction
process by null. Extensions to the proposed pattern matching language that would provide
direct support for optional matching of text should be considered (cf. optional matching in
the context of specific semistructured data in OEM-OQL [Abi97b]).

More generally, one often wants to recover structured text that approximates, but does
not exactly match, the search specification provided. There is a need to be able to rank
how well instances of subtexts match a given search specification, and to recover (in a
suitable order) those subtexts that exceed some specified ranking threshold. Such a
facility would also address the problem of optional subtext matching, since optional
components could be assigned a relatively small weight within the overall ranking scheme.
This direction needs further exploration.

Associating an appropriate grammatical structure with instances of extracted subtext is
difficult when the context from which these text has been extracted is lost, as is the case in
value-based semantics. Which of the schematic constraints still apply to extracted
subtexts? For example, if three paragraphs are extracted from a section that forbids the
inclusion of footnotes, perhaps the extracted paragraphs should no longer maintain the
exclusion. However, if in the original context the paragraphs were considered to be
ordered, this ordering constraint should likely still be enforced. Even maintaining the

Brown, et al. 21

Structured Text ADT March 1998

subtext’s tree model (as shown in Figure 3) might not be straightforward: if a page break
occurs between two of the three paragraphs in the original context, is this page break also
present within the resulting structure associated with the three extracted paragraphs?
Because the proposed ADT allows the relationship between a text and those subtexts
extracted from it to be preserved, it is possible to delegate application-specific
requirements pertaining to extracted subtexts to the application domain, where they can be
appropriately addressed.

Unfortunately, since the context is preserved in the containing text (by marking those
subtexts extracted from this text), it becomes difficult to identify precise context when
multiple concurrent extractions are performed against a single instance of text. This is
because it may be difficult to determine which mark within the containing text corresponds
to which instance of extracted subtext. For example, in the first column of the first tuple
in Figure 9a, two subtexts are marked; which mark belongs to the text in the second
column and which to the text in the third? In this case, the correspondence is easy to
determine, but if the pattern used ‘&’ in place of ‘,’ the matches could occur in either
order in the text instance and the extracted texts may not be so simple to distinguish from
each other. To address this problem, it is proposed that the <marking rule> production
shown in Figure 6 be augmented so that a second ‘#’ be allowed to immediately follow the
first. Subtexts extracted as a result of a ‘##’ operator would be immediately preceded
(within the output relation) by a column containing the original text in which only this
subtext was marked. We have not yet had experience with this operator, but we believe it
will prove to be a useful addition to the proposed standard.

Finally, the operators defined for the grammar subtype, while certainly useful, are by no
means complete. Additional functions can be implemented to provide further information
about the schema associated by the parser to a given text. For example, none of the
functions provide information about the order of nodes within the text schema, none
indicate whether ancestor/descendant relationships are optional or mandatory, and none
indicate which relationships are one-to-one and which are one-to-many.

5. Conclusions
This paper has described an abstract data type for structured text that can readily be
incorporated into existing text searching technology, object database technology, or
forthcoming SQL3 technology. This abstract data type can be used to perform complex
text- and relational-intensive queries in widely distributed heterogeneous environments,
such as those rapidly appearing on the World Wide Web.

Our text extensions have proven highly effective in allowing structured text to be queried,
retrieved, and integrated with relational information. The concept of allowing selected
subtexts within a text to be marked is a natural one, and it is powerful when coupled with
set-at-a-time processing, facilities to extract subtexts, and further pattern matching
operations.

The proposed text extensions allow easy definition and dynamic construction of relational
views of structured text derived from hierarchically structured text, marked subtexts,
and/or extracted subtexts. This allows naturally occurring relations within text to be easily

22 Brown, et al.

March 1998 Structured Text ADT

retrieved, without requiring that the text itself be stored within a relational system. Thus
diverse relational views can be superimposed on portions of the text without imposing a
single “master” relational view on the whole text. The use of a high-level, non-procedural
text pattern matching language simplifies the definition and construction of such relations,
while facilitating encapsulation and optimization of the software responsible for
integrating text and relational data. As a result, text can be retained in its original form
and still be subjected to expressive database operators.

The software we have implemented to support the structured text model performs well
when accessing both text and relational data. It has been used to construct a moderately
sophisticated suite of Web-based applications that allows integration of information
contained within the text of various chapters of the University of Waterloo Undergraduate
calendar with course schedules, phone lists, and other tabular data stored in relational
databases. The same system also provides relational access to other structured texts,
including The Oxford English Dictionary, The Collected Works of Shakespeare, The
Devil’s Dictionary, and The Bible [UW97].

The described SQL extensions for structured text are of immediate benefit to users who
wish to integrate textual information into their existing relational database systems, and to
users currently involved in text intensive searching or querying who wish to capitalize on
the expressive power of SQL. The text abstract data type is also suitable for inclusion in
object-oriented database systems. These structured text extensions are simple ones that
can be easily understood, and yet are surprisingly effective in selectively recovering and
consolidating relevant information from within the very complex structures that occur
naturally within many types of text. Thus, our experiences in designing and implementing
these text extensions should prove valuable to those who wish to extend relational and
object-oriented systems so that they accommodate structured text.

Our research is also of immediate benefit to text engine vendors, since it provides a very
easy method of integrating text engine technology with both SQL2 and SQL3. We have
shown that it is feasible to implement relational wrappers for several text search engines to
extend relational database systems so that they provide support for complex text
extensions. We have also shown that it is possible to integrate such extensions efficiently
into SQL, so that vendor-specific objects may be rapidly retrieved and manipulated using
standard SQL constructs. Furthermore, we demonstrated how the integrated text-
relational technology can be further integrated with Web technology.

Acknowledgments
This work has been carried out as part of the University’s participation in the Canadian
Strategic Software Consortium (CSSC), which also includes Fulcrum Technologies Inc.,
Grafnetix Systems Inc., InContext Corporation (now EveryWare Development Inc.),
Megalith Technologies Inc., Open Text Corporation, Public Sector Systems, and
SoftQuad Inc. CSSC was partially supported by Industry Canada’s Strategic Technologies
Program (STP).

Ideas expressed in this paper have been developed and refined in part through discussions
with members of CSSC’s Hybrid Query Processor (HQP) working group. Special

Brown, et al. 23

Structured Text ADT March 1998

acknowledgment is due to past contributors to the Text/Relational Database Management
Systems project, including Betty Blake, Gaston Gonnet, Pekka Kilpeläinen, Eila Kuikka,
Paul Larson, and Tim Snider. Financial assistance was provided by the University of
Waterloo and through grants from the Natural Sciences and Engineering Research Council
of Canada, Industry Canada, and Open Text.

References

[Abi97a] S. Abiteboul, “Querying Semistructured Data,” Proc. 6th Int. Conf. On Database Theory
(ICDT’97), Delphi, Greece (January 1997), Lecture Notes in Computer Science 1186,
Springer-Verlag, 1-18.

[Abi97b] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.Weiner, “The Lorel Query Language for
Semistructured Data,” Journal of Digital Libraries 1, 1 (April 1997) pp. 68-88.

[ATA91] Air Transportation Association, Advanced Retrieval Standard − SFQL: Structured Fulltext
Query Language. ATA-89-9C SFQL Committee, ATA specification 100, Rev 30, Version
2.2, Prerelease C, October 1991, 84 pp.

[Ben98] Bender, B.L. (ed.), Undergraduate Studies Calendar 1998-99, Undergraduate Recruitment
and Publications, University of Waterloo, (http://www.adm.uwaterloo.ca/infoucal).

[Bla94] G.E. Blake, M.P. Consens, P. Kilpelainen, P-Å. Larson, T. Snider, and F.W. Tompa,
“Text/Relational Database Management Systems: Harmonizing SQL and SGML,” Proc.
Application of Databases (ADB 94), Vadstena, Sweden (June 1994), Lecture Notes in
Computer Science 819, Springer-Verlag, pp. 267-280.

[Bla95] G.E. Blake, M.P. Consens, I.J. Davis, P. Kilpelainen, E. Kuikka, P-Å. Larson, T. Snider, and
F.W. Tompa, Text/Relational Database Management Systems: Overview and Proposed SQL
Extension. University of Waterloo Department of Computer Science Technical Report CS-95-
25 (June 1995).

[Bri97] M. Brisebois and I.J. Davis, “HQP: la gestion et l’intégration des données relationnelles et
textuelles,” L’expertise informatique 3, 1 (été 1997) pp. 8-13.

[Bun96] P. Buneman, S.B. Davidson, G.G. Hillebrand, D. Suciu, “A Query Language and
Optimization Techniques for Unstructured Data,” Proc. 1996 ACM Sigmod Int. Conf. on
Management of Data (Sigmod 96), Montreal, Canada (June 1996), Sigmod Record 25,2, pp.
505-516.

[Chr94] V. Christophides, S. Abiteboul, S. Cluet, M. Scholl:, “From Structured Documents to Novel
Query Facilities,” Proc.1994 ACM Sigmod Int. Conf. on Management of Data (Sigmod 94),
Minneapolis (May 1994), Sigmod Record 23,2, pp. 313-324.

[Cla94] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski, Fast Inverted Indexes with Online
Update. University of Waterloo Department of Computer Science Technical Report CS-94-40
(November 1994) 11 pp. See also http://multitext.uwaterloo.ca.

[Cob92] N. Coburn and P-Å. Larson, “Multidatabase Services: Issues and Architectural Design,”
Proc. 1992 CAS Conf. (CASCON), IBM, pp. 57-66.

[Coo87] J.H. Coombs, A.H. Renear, and S.J. de Rose, “Markup Systems and the Future of Scholarly
Text Processing,” Comm. ACM 30, 11 (November 1987) pp. 933-947.

[CSSC94] CSSC News Letter. Issue 1, December 19, 1994.

[Dav96] I.J. Davis, Adding structured text to SQL/MM Part 2: Full Text, A change proposal.
ISO/IEC JTC1/SC21/WG3 CAC N334R3, April 26, 1996.

24 Brown, et al.

March 1998 Structured Text ADT

[Fla96] D. Flanagan, Java in a Nutshell, O’Reilly and Associates, 1996.

[Ful94] Fulcrum Technologies Inc., Fulcrum SearchServer Version 2.0: Introduction to SearchServer,
1994.

[Gar97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J.
Widom. “The TSIMMIS Approach to Mediation: Data Models and Languages,” Journal of
Intelligent Information Systems 8,2 (March 1997) pp. 117-132.

[Gon87] G. H. Gonnet, “Extracting information from a Text Database. An example with dates and
numeric data,” Proc. Third Conf. UW Centre for the New Oxford English Dictionary,
Waterloo, Canada (November 9-10, 1987) pp. 89-96.

[ISO86] International Organization for Standardization, Information processing - text and office
systems - Standard Generalized Markup Language (SGML). ISO 8879: 1986.

[ISO89] International Organization for Standardization, Information processing - text and office
systems - Office Document Architecture (ODA). ISO 8613-2: 1989.

[ISO92] International Organization for Standardization, Information technology - Database languages
- SQL. ISO/IEC 9075: 1992.

[ISO96d] International Organization for Standardization, Document Style Semantics and Specification
Language. ISO/IEC 10179:1996, http://www.jclark.com/dsssl.

[ISO96s] International Organization for Standardization, SQL Multimedia and Application Packages.
Part 2: Full Text. ISO/IEC Working Draft, June 1996.

[ISO97] International Organization for Standardization, Hypermedia/Time-based Structuring
Language (HyTime) - 2d Edition. ISO/IEC 10744:1997.

[Kil93] P. Kilpeläinen and H. Mannila, “Retrieval from hierarchical texts by partial patterns,”
Sixteenth Int. ACM SIGIR Conf. on Research and Development in Information Retrieval
(1993) pp. 214-222.

[Mac92] I.A. Macleod, “Data Modelling Requirements for Document Management,” Proc. IFIP
TC8/WG8.1 Working Conference on Information System Concepts: Improving the
Understanding, Alexandria, April 1992, Elsevier (North-Holland) pp. 259-271.

[Mic92] Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide. Microsoft Press. 1992

[Ng97] K.-Y. Ng, The Use of a Combined Text/Relational Database System to Support Document
Management, University of Waterloo Department of Computer Science Technical Report CS-
96-07 (January 1996) 121 pp.

[Ora92] Oracle Corporation, SQL*TextRetrieval Version 2 Technical Overview, Oracle Corporation,
1992, 45 pp.

[OTC95] Open Text Corporation, Open Text 5 System Integration Guide and Database Administration
Guide, 1995.

[Rag97] D. Raggett, HTML 3.2 Reference Specification, The World Wide Web Consortium, REC-
html32, January 14, 1997 (http://www.w3.org/TR/REC-html32.html).

[Ray96a] D.R. Raymond, F.W. Tompa, and D. Wood, “From Data Representation to Data Model:
Meta-Semantic Issues in the Evolution of SGML,” Computer Standards and Interfaces 18
(1996) pp. 25-36.

[Ray96b] D.R. Raymond. Partial Order Databases. University of Waterloo Department of Computer
Science Technical Report CS-96-01 (March 1996).

Brown, et al. 25

Structured Text ADT March 1998

[Sac95] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J.A. Thom, , and J. Zobel, “Atlas: A Nested
Relational Database System for Text Applications.,” Trans. Knowledge and Data Engineering
7,3 (1995) pp. 454-470.

[Sal96] A. Salminen and F. W. Tompa. Grammars++ for Modelling Information in Text. University
of Waterloo Department of Computer Science Technical Report CS-96-40 (November 1996),
46 pp.

[Sey92] Seybold Publications, “IDI Pursues Document Management,” Report on Publishing Systems
21,16 (May 1992).

[Spe94] C.M. Sperberg-McQueen and L. Burnard (eds.), Guidelines for the Encoding and Interchange
of Machine-Readable Texts (TEI P3). Assoc. for Computing in the Humanities, Assoc. for
Computational Linguistics, and Assoc. for Linguistic and Literary Computing, April 1994
(http://www.uic.edu/orgs/tei/p3/).

[Suc97] D. Sucio (ed.), “Special Section On Management Of Semi-Structured Data,” Sigmod Record
26,4 (December 1997).

[Tom89] F.W. Tompa, “What is (tagged) text?” Dictionaries in the Electronic Age: Proc. 5th Conf. of
University of Waterloo Centre for the New OED, Oxford, UK (September 1989) pp. 81-93.

[UW97] University of Waterloo, The TRDBMS project: Integrating structured text and SQL,
http://solo.uwaterloo.ca/trdbms/index.html, Department of Computer Science, 1997.

[Wei85] E.S.C. Weiner, “The New OED: Problems in the Computerization of a Dictionary,”
University Computing 7 (1985) pp. 66-71.

[Yan94] T.W. Yan, J. Annevelink, “Integrating a Structured-Text Retrieval System with an Object-
Oriented Database System,” Proc. 20th Int. Conf.on Very Large Data Bases (VLDB ‘94),
Santiago de Chile (September 1994), Morgan Kaufmann, pp. 740-749.

[Zhu92] Q. Zhu, “Query Optimisation in Multidatabase Systems, Proc.1992 CAS Conference
(CASCON), IBM, pp. 111-127.

26 Brown, et al.

March 1998 Structured Text ADT

Appendix A
This appendix contains two complete queries illustrating the use of the structured text
abstract data type within the context of SQL. These queries operate against the University
of Waterloo calendar [UW96]. The calendar text is stored within a one-row table named
uwcalendar containing a single column named calendar. This table is accessed through
PAT, with the aid of a relational wrapper.

Query 1
List professors and their departments for professors who have some degree from Toronto
and an MBA from any institution.

Within the calendar text, the faculty is listed by department, as in the following snapshot:

Accounting

Professor, Director, School of Accountancy
J.H. Waterhouse, BSc, MBA (Alberta), PhD (Washington, Seattle)

Associate Professor, Acting Director, Director Professional Programs,
Gordon H. Cowperthwaite Professor of Accounting
H.M. Armitage, BSc (McGill), MBA (Alberta), PhD (Michigan State),
CMA, FCMA

Professor, Graduate Officer, The Ontario Chartered Accountant’s Chair
in Accounting
G. Richardson, BA (Toronto), MBA (York), PhD (Cornell), CA, FCA

Associate Professor, Undergraduate Officer
D.T. Carter, BComm, MBA (Windsor), CA, FCA

…
In the model for the calendar text, the department name is subsumed by a node labelled
<FDNAME>, the department members are subsumed by a node labelled <FGRP>, the
information for each professor is under a node labelled <FP>, and his/her degrees are
under a single node labelled <FQUAL>.

SELECT TEXT_TO_STRING (prof_info,’clear’), TEXT_TO_STRING (dept_name, ’clear’)
FROM (SELECT UNNEST
 EXTRACT_SUBTEXTS(
 calendar,
 3,
 ’<file>[<FDNAME>#&<FGRP>[<FP>#[<FQUAL>["Toronto"&"MBA"]]]]’
)
 FROM uwcalendar
) T1(marked_calendar, dept_name, prof_info)
WHERE prof_info IS NOT NULL

Brown, et al. 27

Structured Text ADT March 1998

The keyword unnest (in the nested select) represents a proprietary extension to SQL2,
which allows projected functions that return relational tables to be unnested [Bla95].
Within SQL3 it has been proposed that such an operation be replaced by one performing a
left join on a table containing the inputs to the projected function, with the specific
function. For this to be a viable method of performing the desired operation, the scope in
which variables are known has to be extended so that inputs on the left of a join remain
visible to functions used in producing the right component of the join. It is also necessary
that such a correlated join implicitly join each row produced by the left input with all rows
derived from this left row’s inputs.

Using this alternative construction, the unnest would be written as:

SELECT marked_calendar, dept_name, prof_info
FROM (

(SELECT calendar FROM uwcalendar)
 LEFT JOIN
 EXTRACT_SUBTEXTS(calendar, 3, '<file>[<FDNAME>…]]]]')

) T(calendar, marked_calendar, dept_name, prof_info)

Result 1
’G. Richardson BA (Toronto), MBA (York), PhD (Cornell), CA, FCA’ 'Accounting'

'W.M. Lemon BA (Western Ontario), MBA (Toronto), PhD (Texas at
 Austin), CA, FCA, CPA'

'Accounting'

'W.D. Poole BA (Toronto), MBA (York), MSc (London)' 'Drama and Speech Communication'

'J.H. Bookbinder MBA (Toronto), MS, PhD (California, San Diego)' 'Management Sciences'

Query 2
The second example presents the SQL query used to produce the Web page shown in
Figure 14. In this query, course schedules (located in an Oracle database as
schedule_courses) are joined with the course sections for that course (also located in an
Oracle database as schedule_sections). Then the appropriate subtexts for course
descriptions extracted from the calendar are joined to the schedule information, when
these descriptions exist. This query contains some redundancy introduced by the
application that formulated it, and makes assumptions about the nature of the data
returned. Formatting of the output records into a page suitable for the Web (with only one
course description presented for all four section records) was performed by an application
frontend. Nevertheless, a considerable amount of text within the query is concerned with
managing presentational issues that must be addressed by anyone wishing to make
information available on the World Wide Web.

This example illustrates the utility of wrapping structured text, such as that which might be
found on the Web, with relational interfaces, but it also demonstrates some of the
attention to detail that is demanded by traditional database languages when dealing with
missing values and in manipulating datatypes.

The query is shown on the next page, followed by two of the four records returned when the query
is executed.

28 Brown, et al.

March 1998 Structured Text ADT

SELECT cindex, cno, divsuf, cterm, cwt, requested, cenrolled, climit, notes, stype, sno,
senrolled,

slimit, smt, meet_time, locn, instructor,
 COALESCE(description,’’||cno||’ - No Description Available’),
 COALESCE(source,’’)
FROM (SELECT *
 FROM (SELECT cindex, cno, divsuf, cterm, cwt,
 CAST(requested AS VARCHAR(20)) AS requested,
 CAST(enrolled AS VARCHAR(20)) AS cenrolled,
 CAST(limit AS VARCHAR(20)) AS climit,
 note1|| ’ ’ ||note2|| ’ ’ ||note3 AS notes
 FROM SCHEDULE_COURSES
 WHERE cno LIKE UPPER(’HIST %’) AND cno LIKE ’% 255%’
)
 NATURAL JOIN
 (SELECT cindex, cno, stype, sno,
 CAST(enrolled AS VARCHAR(20)) AS senrolled,
 CAST(limit AS VARCHAR(20)) AS slimit,
 smt, meet_time, meet_bldg||’ ’||meet_room AS locn,

first_name ||’ ’||’<A HREF=/cgi-bin/nph-cgiint?__file__=calendar%
2Fgeneral%2Ffaculty.in&dept_name=&ftype_position=any&
ftype_role=none%2Fany&mode=Submit+Query&

 back=calendar/general/schedule.in&flnm=’ || last_name || ’>’ ||
last_name

|| ’’ AS instructor
 FROM SCHEDULE_SECTIONS
 WHERE cno LIKE UPPER(’HIST %’) AND cno LIKE ’% 255%’
)
)

 NATURAL LEFT JOIN
 (SELECT CASE position(’&’ in TEXT_TO_STRING(cno, ’clear’))
 WHEN 0 THEN TEXT_TO_STRING(cno, ’clear’)
 ELSE substring(TEXT_TO_STRING(cno, ’clear’) from 1 for
 position(’&’ in TEXT_TO_STRING(cno, ’clear’))) ||
 substring(TEXT_TO_STRING(cno, ’clear’) from
 position(’&’ in TEXT_TO_STRING(cno, ’clear’))+5)
 END as cno,
 TEXT_TO_STRING (KEEP_MARKS(course,0,0), ’tagged’) as description,
 ’<CAL>’ || TEXT_TO_STRING (source, ’clear’) || ’</CAL>’ as source
 FROM (SELECT UNNEST
 EXTRACT_SUBTEXTS
 (calendar, 4,
’<file>[:source#&<COURSE>#[<CNO>#]]’)
 AS (marked_calendar, source, course, cno)
 FROM uwcalendar
)
 WHERE UPPER(TEXT_TO_STRING(cno, 'insensitive’')) like UPPER('HIST%')
 AND TEXT_TO_STRING(cno, 'insensitive') LIKE '% 255%'
)

ORDER BY cno, cindex, stype, sno, smt ASC

Brown, et al. 29

Structured Text ADT March 1998

Result 2

RECORD 1
cindex: ’01131’ cno: ’HIST 255’
divsuf: ’ ’ cterm: ’F’
cwt: ’.50’ crequested: ’62’
cenrolled: ’53’ climit: ’54’
notes: ’ ’ stype: ’C’
sno: ’01’ senrolled: ’53’
slimit: ’54’ smt: ’01’
meet_time: ’11:30TR’ locn: ’AL 124’
instructor: ’M Craton’
description: ’<Tagged><COURSE NAME="HIST255">

<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudor seadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>’

source: ’<CAL>COURSE/course-HIST.html</CAL>’

RECORD 2
cindex: ’01131’ cno: ’HIST 255’
divsuf: ’ ’ cterm: ’F’
cwt: ’.50’ crequested: ’62’
cenrolled: ’53’ climit: ’54’
notes: ’ ’ stype: ’D’
sno: ’01’ senrolled: ’19’
slimit: ’18’ smt: ’01’
meet_time: ’12:30T’ locn: ’ES1 353’
instructor: ’M Craton’
description: ’<Tagged><COURSE NAME="HIST255">

<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudor seadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>’

source: ’<CAL>COURSE/course-HIST.html</CAL>’

…

