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Abstract — Predicting future behavior reliably and efficiently 

is key for systems that manage virtual services; such systems 

must be able to balance loads within a cloud environment to 

ensure that service level agreements (SLAs) are met at a 

reasonable expense. In principle accurate predictions can be 

achieved by mining a variety of data sources, which describe the 

historic behavior of the services, the requirements of the 

programs running on them, and the evolving demands placed on 

the cloud by end users.  Of particular importance is accurate 

prediction of maximal loads likely to be observed in the short 

term. However, standard approaches to modeling system 

behavior, by analyzing the totality of the observed data, tend to 

predict average rather than exceptional system behavior and 

ignore important patterns of change over time.  In this paper, we 

study the ability of a simple multivariate linear regression for 

forecasting of peak CPU utilization (storms) in an industrial 

cloud environment. We also propose several modifications to the 

standard linear regression to adjust it for storm prediction. 

Index Terms— Regression, time-series, prediction, cloud 

environments 

I. INTRODUCTION 

Infrastructure as a Service (IaaS) is becoming a norm in 

large scale IT systems and virtualization in these environments 

is common. One of the main difficulties of such virtualization 

is the placing of virtual machines (VMs) and balancing the 

load. If the demands placed on the infrastructure exceed its 

capabilities, thrashing will occur, response times will rise, and 

customer satisfaction will plummet.  Therefore it is essential 

[1] to ensure that the placing and balancing is done properly [2-

4]. 

Proper balancing and capacity planning in such cloud 

environments requires forecasting of future workload and 

resource consumptions. Without good forecasts, cloud 

managers are forced to over-configure their pools of resources 

to achieve required availability, in order to honor service level 

agreements (SLAs). This is expensive, and can still fail to 

consistently satisfy SLAs. Absent good forecasts, cloud 

managers tend to operate in a reactive mode and can become 

ineffective and even disruptive.  

Several workload forecast techniques based on time series 

analysis have been introduced over the years [5] that can be 

applied in the cloud settings as well. The bottom-line of such 

literature is that there is no “silver bullet” technique for 

forecasting. Depending on the nature of the data and 

characteristics of the services and the workload, different 

statistical techniques and machine learning algorithms may 

perform better than the others. In some cases even the simplest 

techniques such as linear regression may perform better than 

the more complex competitors [6].  

To understand the practicality of such prediction techniques 

on industrial size problems, we set up a series of case studies 

where we apply different forecasting techniques on data 

coming from our industrial collaborator, CA Technologies [7]. 

CA Technologies is a cloud provider for several large scale 

organizations. They provide IaaS to their clients and monitor 

their usage. Their cloud manager system basically is 

responsible for balancing the workload by placing the virtual 

machines on the physical infrastructure.  

In this paper, we report our experience on applying a basic 

multivariate linear regression (MVLR) technique to predict the 

CPU utilization of virtual machines, in the context of one of the 

CA clients. However, unlike many existing prediction 

techniques, where they minimize the average prediction errors 

or maximize average likelihoods, we are more interested in 

predicting extreme cases rather than averages. The motivation 

comes from the type of workload we are facing in our case 

study, which is not very uncommon for other cloud-based 

applications, as well. In our case, the average utilization across 

all VMs was at most 20%, but the maximum utilization was 

almost invariably very close to 100%. Applying MVLR in such 

data (most of the time very low utilization but occasionally 

reaching to peaks), we realized that though the average 

predictions are very accurate but the forecast for large values 

(storms) are drastically poor.   

To cope with this problem, we introduce several 

modifications to the basic MVLR to adjust it for predicting 

peak values. The results show that subtracting seasonalities 

extracted by Fourier transform and then using a weighted 

MVLR provides our best observed results for storm prediction. 

In the following sections, we describe the details of each 

modified MVLR and report its results. 

II. SUBJECT OF STUDY 

We were provided with a substantive body of performance 

data relating to a single large cloud computing environment 

running a large number of virtual services over a six month 

period. In total, there were 2,133 independent entities whose 

performance was being captured every six minutes.  These 



 

included 1,572 virtual machines and 495 physical machines.  

The physical machines provided support for 56 VMware hosts. 

On average, 53% of the monitored services were active at any 

time, with a maximum of 85%. The captured data ideally 

would describe CPU workloads, memory usage, disk I/O and 

network traffic.  However, in most cases only CPU workloads 

were available. Therefore, we only focused on the CPU 

workload data. This data was consolidated into average and 

maximum hourly performance figures.  

In terms of the nature of the services, at least 423 services 

were dedicated to providing virtual desktop environments, 

while the cloud was also proving support for web-based 

services, transaction processing, database support, placement of 

virtual services on hosts, and other services such as 

performance monitoring and backup.  

As is typically the case in desktop environments, individual 

computer utilization varies dramatically. Much of the time little 

if any intensive work is being done on a virtual desktop and the 

virtual service appears almost idle. However, for any virtual 

desktop there are periods of intense activity, when CPU, 

memory, disk I/O, and/or network traffic peaks. Similarly, 

within transaction processing environments, there will be a 

wide variety of behaviors, depending on the overall demand 

placed on such systems. 

As mentioned, the frequency distribution of the utilizations 

is highly skewed, with the vast majority of utilizations (83.5%) 

not exceeding 25%. Therefore, we mostly require a prediction 

technique that (with a reasonable degree of confidence) 

indicates when future loads will be high, even if such 

predictions do not mathematically fit the totality of observed 

and future data as closely as other statistical approaches. 

III. STORM PREDICTION USING LINEAR REGRESSION 

In this section, we apply a basic MVLR and three variations 

of it to our industrial dataset and report their accuracy in terms 

of average absolute errors, when predicting peak values.  

MVLR: To apply an MVLR on CPU utilization data, we 

first obtain correlograms from the provided data, by computing 

the auto-correlation of each time series with each lagged 

version of the same time series. This indicates the strongest 

auto-correlation as the hourly (1,676 sources), weekly (247), 

daily (106) and bi-weekly (41) levels, with these correlations 

degrades only slowly over longer intervals.  

Using the discovered significant lags, multivariate linear 

regression [5] was then applied using 10 lags of 1 and 2 hours, 

1 and 2 days, 1, 2, 3 and 4 weeks, and 1 and 2 months, to 

identify coefficients which when applied to this strongly 

correlated lagged data, linearly fit observed data, with minimal 

least squared residue error. This provided good general 

predictability across the data sources. The resulting linear 

equation was then used to predict the next hour’s utilization. 

To be able to evaluate prediction techniques with respect to 

peak values, for each data series, the observed utilizations are 

partitioned into small intervals, in increments of 0.05. For each 

such partition, the average absolute difference between 

observed and predicted values is obtained. Plotting these 

average absolute errors per interval helps understanding the  
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Figure 1. Comparing MVLR with Weighted Regression. The weighting 

parameter is c = 4, 8, 12, 16 which means a data point having utilization u and 
all lags associated with it are multiplied by (1+u)c. The values in parenthesis are 

the average absolute errors across all intervals. 

 

behavior of the predictor algorithm for different input data 

ranges. 

A minor problem we encountered that requires special 

consideration is the missing values. In this study, short gaps are 

approximated by their prior values. However, in our dataset, 

769 time series have more missing data than the actual data. In 

such scenarios we discard the highly missing source of data 

from our dataset since otherwise they could skew our 

experimentation results.  

Weighted MVLR: To adjust the MVLR to higher values, 

we first restrict the regression to a 5 week sliding window. 

Within the regression summations, we then weight [8] each 

data point. Because the overall distribution of utilizations is 

observed to be exponential, we employ exponential weighting 

in which a data point having utilization u as well as all lags 

associated with this data point were multiplied by (1+u)
c
. This 

naturally assigns higher utilizations a significantly greater 

weight, thus skewing the predictions towards higher values, 

while simultaneously bounding them by the highest values. As 

can be seen in Figure 1, increasing c (the weighting parameter), 

from 4 to 16, reduces the prediction errors for the higher 

utilization intervals while increases the errors for the lower 

intervals. Therefore, a more consistent average absolute error 

across all intervals might be the best choice. For example, c=12 

seems to be a good choice for our dataset. 

In both MVLR and Weighted MVLR, we only relied on the 

predefined lags for our predictions. However, one must 

consider seasonal contributions, as well. Applying Fourier 

transforms [9] is a typical approach to discover obvious cyclic 

patterns within the data. The next two approaches employ 

Fourier transforms. 

  Scaled Seasonality: Applying a Fourier transformation on 

our dataset, we fit the summation of the top n (n=10 in this 

study) sine waves with the largest amplitudes – the terms that 

describe the most dominant variability within the input data – 

to the input data. This fits well to the overall seasonality within 

the provided data, but fails to fit the peaks in the data. To 

account for the terms not included in the contribution to our  
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Figure 2. Comparing Fourier-based approaches (scaled and subtracted 

seasonality) with MVLR and weighted MVLR 

 

prediction, it is reasonable to attempt to scale the Fourier 

transform to better fit the utilization. 

One way of better fitting peaks is to apply a linear 

transformation to the computed Fourier transform, ignoring all 

values below some suitable cutoff (e.g. maximum = 0.05).  We 

arrange for the minimum to remain unchanged by subtracting 

it, and then scale by the mean of observed values divided by 

the mean of predicted values, before adding the minimum back 

in.  

Figure 2. compares the MVLR, Weighted MVLR and the 

Scaled Seasonality approahces. MVLR provides better 

predictive accuracy for low utilizations, and weighted MVLR 

for high utilizations. Scaled Seasonality is in between MVLR 

and Weighted MVLR in both cases, however, it also has the 

potential for longer term predictions (in months).  

To improve the accuracy of our predictions, in the next 

approach, we combine the Fourier and regression analyses.   

Subtracted Seasonality: In this approach, we subtract the 

seasonality from the original data, to remove much of the 

variability in the data, which makes it more linear, and thus a 

better fit with linear prediction models. Essentially, we 1) 

subtract the Scaled Seasonality from the observed utilizations, 

2) perform MVLR (as before) on the resulting residue, and 3) 

add the seasonality back in to the resulting prediction.  

The results (Figure 2) obtained are significantly better than 

using either Fourier transforms, or MVLR/Weighted MVLR 

alone. Applying this approach on our dataset, roughly, reduced 

the average absolute error across all inputs for large 

utilizations by a third, and halved the overall average absolute 

error. 

The most significant drawback of using Fourier transforms 

is that unlike regression, which could quickly start providing 

predictions from initially observed results, a substantial 

amount of prior data must be available, in order to discover 

seasonality within an input time series. In practice, it is 

proposed that early predictions are predicated on regression 

alone, while periodically, as sufficient data becomes available, 

a Fast Fourier Transform is employed to repeatedly discover 

seasonality with the input data. 

IV. LIMITATIONS AND THREATS TO THE VALIDITY 

The top three limitations of this study, which we currently 

working on, are 1) having a single dimensional prediction 

based on the CPU utilization, 2) studying only a linear 

regression (and its modified versions) prediction approach and 

3) evaluating the forecast only based on the prediction accuracy 

and not the ultimate improvement in terms of impacts on the 

virtualization and capacity planning process. 

As it is common in industrial research, the study is limited 

to the data which is available for the research team. It is 

obvious that having knowledge about other performance 

measures such as memory, disk I/O, and network traffic 

consumptions would potentially improve the prediction power. 

In addition, knowledge about workload type and even the 

business context behind the workload are among variables that 

may have impact on the future CPU utilization. However, in 

this study, we only had access to the CPU utilization data from 

the CA client’s systems. The goal, therefore, was to maximize 

prediction accuracy (specifically with respect to the peak 

values) using the available data. However, in the future, we are 

planning to get access to several performance data resources 

and extend our one dimensional approach to such rich datasets. 

While multivariate linear regression can be expected to 

respond appropriately to changing trends, our presumption 

(predicated on studying the data) was that no trend would be 

present within long term seasonality.  If trends were present 

within the observed seasonality, it would be necessary to 

attempt to scale the seasonality using something more complex 

than a simple linear equation. Non-linear regression approaches 

are among the first techniques that we are planning to exercise 

on our current and future datasets. In addition, machine 

learning techniques, e.g. neural networks [10], need to be 

evaluated to find the best forecasting approach. 

In this stage of the study, it is difficult to apply the research 

finding on the company’s virtualization and capacity planning 

process. However, in short term, we are planning to explore 

more datasets and techniques and increase the supporting 

evidence around the ideas of storm forecasting, so that the 

company would be willing to apply them in its virtualization 

process.  

In terms of construct validity, we made a best effort to 

accommodate missing data, but assumptions as to what missing 

values might have been, necessarily compromise predictive 

algorithms. In addition, in terms of external validity, this 

research was predicated on a single client data, during a 

comparatively short, six month, interval. Though containing a 

very large number of physical and virtual services, the 

behaviour of the system and the data patterns might not be the 

typical within all cloud computing environments. 

V. RELATED WORK 

In general, the relevant literature to this work may fall into 

three categories: 1) workload characterization 2) workload 

forecasting and 3) prediction techniques. The first category 

focuses more on the features of the workload that can help 

analyzing and potentially predicting it [11-13].  The second 

category explores different data and prediction techniques to 



 

predict the future workload [14, 15] but still its focus is more 

on exploring data than the prediction itself.  

In this paper, however, our focus is more on the prediction 

side, the third category. We use the data that is made available 

for us by our industrial collaborator and we study possibilities 

for maximizing the accuracy of the predictions. Therefore, we 

briefly mention some of the relevant articles in this direction. 

Linear regression techniques are among the most popular 

workload prediction approaches. For example, Andreolini et. 

al. propose using moving  averages to smooth the input time 

series, and then using linear extrapolation on two of the 

smoothed values to predict future workload [16].  

Exponential smoothing, auto regressive and ARIMA 

models are the other most used approaches in this area [17]. 

For instance, Dinda et. al. compared the ability of a variety of 

ARIMA like models to predict futures [18].  Nathuji et. al. 

proposed evaluating virtual machines in isolation, and then 

predicted their behavior when run together using multiple 

input signals to produce multiple predictive outputs using 

difference equations (exponential smoothing) [3].  

Using machine learning techniques for workload prediction 

builds up another large category of related literature. For 

instance, Istin et. al.  used neural networks for workload 

prediction [10] and Khan et. al. applied hidden Markov 

models to discover correlations between workloads, which can 

then be used to predict variations in workload patterns [19]. 

Unlike the existing work, our paper uses basic techniques 

(linear regression and its modified version combined with 

Fourier transformation), as a starting point, and applies them 

on utilization data from a CA technology client with a specific 

goal of predicting peak utilizations.  

VI. CONCLUSIONS AND FUTURE WORK 

System utilization can peak both as a consequence of 

regular seasonality considerations, and as a consequence of a 

variety of anomalies, that are inherently hard to anticipate.  It 

is not clear that the optimal way of predicting such peak 

system activity is through approaches such as multivariate 

linear regression, since such prediction is predicated on the 

totality of the data observed, and tends to produce smoothed 

results rather than results that emphasize the likelihood of 

system usage exceeding capacity.   

We have presented a number of modifications to standard 

multivariate linear regression, and to Fourier transforms, 

which individually and potentially collectively improve the 

ability of multivariate linear regression to predict peak 

utilizations with reasonably small average absolute error. 

The best proposed modification subtracts an scaled 

seasonality, extracted by a Fourier analysis, of the observed 

utilizations, then performs a weighted multivariate linear 

regression on the resulting residues, and finally adds the 

seasonality back in to the resulting predictions.  

In the future, we plan to extend this study using more 

predictive variables such as memory, disk I/O, and network 

traffic consumptions, as well as workload characteristics and 

business data. In addition, we plan to evaluate several 

prediction techniques such as non-linear regression and 

machine learning techniques, to improve the accuracy of storm 

prediction.  
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