
Information Integration on the WEB with RDF, OWL and SPARQL

Review Material: First Order Logic (FOL)

Grant Weddell

October 7, 2013

Syntax of FOL
Signatures

Vocabularies are called signatures in FOL.

The non-logical parameters in FOL consist of infinite disjoint collections
{P1,P2, . . .} and {f1, f2, . . .} of predicate symbols and function symbols,
respectively.

The arity of each symbol is a non-negative integer n, denoted Ar(Pi) or Ar(fi).

I P/i denotes predicate symbol P where Ar(P) = i .

I f /j denotes function symbol f where Ar(f) = j .

Predicate symbols of arity 0 are also called propositions

Function symbols of arity 0 are also called constants.

A signature S in FOL is a possibly infinite selection of non-logical parameters.

I SP denotes all predicate symbols in S.

I SF denotes all function symbols in S.

Case of the ACME payroll System: Information

There is a rough dichotomy of information into what are commonly termed
data and metadata.

Example payroll data important to ACME.

1. Mary is an employee.

2. Mary’s employee number is 3412.

3. Mary’s salary is 72000.

payroll metadata specified by ACME.

4. There is a kind of entity called an employee.

5. There are attributes called employee-number, name and salary.

6. Each employee entity has attributes employee-number, name and salary.

7. Employees are identified by their employee-number.

ACME Case: Signatures for payroll

Option 1

I SP = {employee/3}
I SF = ∅

Fewest non-logical parameters: a single 3-ary predicate symbol.

I 1st arg: an employee number

I 2nd arg: an employee name

I 3rd arg: an employee salary

1st arg serves a special role: the set of employee number values is identified
with the set of employees.

Each 3-tuple in (employee)I suggests two things.

1. The employee number is a visible object identifier of some employee.

2. The remaining two components of the 3-tuple express two facts about the
employee.

Signatures for payroll

Option 2

I SP = {employee/1}
I SF = {employee-number/1, name/1, salary/1}

Trades the need to remember the role of argument positions with the need to
learn and remember additional non-logical parameters.

Introduce

I unary predicates to capture the various kinds of entities, and

I unary functions to capture entity attributes.

Advantages:

I Separates entity classification from entity description: an entity e in a
given interpretation I is an employee exactly when e ∈ (employee)I .

I All information about entities, such as a name or salary, is captured by
unary functions.

Signatures for payroll

Option 1 versus Option 2

Latter allows the possibility that more than one employee can have the same
combination of values for attributes employee-number, name and salary.

Replacing an n-ary predicate symbol with one unary predicate symbol and n
unary function symbols is called reification.

Disadvantages:

I Requires all entities to have a value for all attributes.

I Therefore requires simulating partial functions (e.g., “null inapplicable”
values).

Signatures for payroll

Option 3

I SP = {employee/1, employee-number/2, name/2, salary/2}
I SF = ∅

Overcomes disadvantages of Option 2: replaces each unary function symbol
with a new binary predicate symbol.

Makes it possible for an entity (including employees) to have any number of
employee numbers, names or salaries, including none.

Replacing function symbols with new predicate symbols is always possible when
a function free signature is desired.

Variables and Well-Formed Formulae

Denoted V, the variables in FOL are a countably infinite collection of symbols

{x1, x2, . . .}

disjoint from the set of non-logical parameters.

Assume S denotes an FOL signature.

The following grammars define the terms, atoms and well formed formulae
induced by S, denoted TERM(S), ATOM(S) and WFF(S), respectively.

I Term ::= x (where x ∈ V) | f (Term1, . . . ,Termn) (where f /n ∈ SF)

I Atom ::= Term1 ≈ Term2 | P(Term1, . . . ,Termn) (where P/n ∈ SP)

I φ, ψ ::= Atom | ¬φ | (φ ∧ ψ) | ∃ x . φ (where x ∈ V)

Omit mention of S when clear from context.

Use φ and ψ (possibly subscripted) to refer to elements of WFF.

Variables and Well-Formed Formulae (cont’d)

The logical parameters in FOL:

I (equality) ≈
I (negation) ¬
I (conjunction) ∧
I (existential quantification) ∃

Convenient to have additional logical parameters as syntactic shorthand:

I (disjunction) ∨: “(φ ∨ ψ)” “¬(¬φ ∧ ¬ψ)”

I (implication) →: “(φ→ ψ)” “(¬φ ∨ ψ)”

I (equivalence) ≡: “(φ ≡ ψ)” “((φ→ ψ) ∧ (ψ → φ))”

I (universal quantification) ∀: “∀x .φ ” “¬∃x .¬φ ”.

Also common practice to omit parenthesis in well-formed formulae when
intentions are clear, e.g.:

“(φ1 ∧ φ2 ∧ φ3)” instead of “(φ1 ∧ (φ2 ∧ φ3))”

Free Variables

Assume S denotes an FOL signature, and recall TERM and WFF denote the
terms and well-formed formulae induced by S.

Given t ∈ TERM or φ ∈WFF: Fv(t) and Fv(φ) denote the free variables of a
term and of a well formed formula, respectively.

Inductively defined as follows:

Fv(t) =

{
{x} if t = “x”, and⋃

1≤i≤n Fv(ti) when t = “f (t1, . . . , tn)” otherwise.

Fv(φ) =

⋃
1≤i≤n Fv(ti) if φ = “P(t1, . . . , tn)”,

Fv(t1) ∪ Fv(t2) if φ = “t1 ≈ t2”,

Fv(ψ) if φ = “¬ψ”,

Fv(ψ1) ∪ Fv(ψ2) if φ = “(ψ1 ∧ ψ2)”, and

Fv(ψ)− {x} when φ = “∃x .ψ” otherwise.

Sentences and Theories

A well-formed formula φ is closed if Fv(φ) = ∅. A closed well-formed formula is
also called a sentence.

A theory over signature S in FOL, written Σ(S), is a (possibly infinite) subset
of WFF(S).

Usually omit mention of S when the signature is clear from context, or just
describe a theory assuming the signature consists of all non-logical parameters
mentioned in the theory.

Semantics of FOL
Interpretations

Assume S denotes a signature in FOL.

An interpretation I(S) of S is a pair 〈4I(S), (·)I(S)〉.
1. 4I(S) is a non-empty domain of entities.

2. (·)I(S) is an interpretation function.

For each P/n ∈ SP, (P/n)I(S) is a subset of (4I(S))n.

For each f /n ∈ SF, (f /n)I(S) is a total function: (4I(S))n →4I(S).

Write 〈e1, . . . , en〉 to denote an n-tuple, an element of (4I(S))n.

Identity e and 〈e〉. Thus: (P)I(S) ⊆ 4I(S), for any unary predicate symbol P.

Again omit mention of S when the signature is clear from context.

Valuations

Assume I is an interpretation of signature S.

A valuation over I is written V(I) (or as V when I is clear from context) and
is a total function: V→4I .

For a given x ∈ V and e ∈ 4I , the valuation V[x 7→ e] is defined as follows:

V[x1 7→ e](x2) =

{
e if “x1” = “x2”, and

V(x2) otherwise.

A valuation V is extended to apply to any t ∈ TERM in the way that satisfies

V(t) = (f)I(V(t1), . . . ,V(tn))

whenever t = “f (t1, . . . , tn)”.

Models

Assume S is a signature in FOL and also that φ ∈WFF(S).

An interpretation I of S and valuation V over I is a model of φ, written

I,V |= φ,

iff one of the following conditions apply:

I φ = “P(t1, . . . , tn)” and 〈V(t1), . . . ,V(tn)〉 ∈ (P)I ,

I φ = “t1 ≈ t2” and V(t1) = V(t2),

I φ = “¬ψ” and I,V 6|= ψ,

I φ = “(ψ1 ∧ ψ2)”, I,V |= ψ1 and I,V |= ψ2, or

I φ = “∃x .ψ” and I,V[x 7→ e] |= ψ for some e ∈ 4I .

Satisfiability and Logical Consequence

Assume Σ is a theory (over signature S).

We say the following.

1. The pair I,V is a model of Σ if I,V |= ψ for all ψ ∈ Σ.

2. Σ is satisfiable if it has a model and unsatisfiable otherwise.

3. φ is a logical consequence of Σ, written

Σ |= φ,

iff I,V |= φ for any model I,V of Σ.

The fundamental problem of reasoning in a given FOL theory Σ(S) is the
problem of logical implication: establishing which φ ∈WFF(S) are logical
consequences of Σ(S).

ACME Case: Logical Constraints for payroll

On identification.

Assume S is given by Option 1.

The condition that employees can be identified by their employee number can
be expressed as the FOL sentence

∀x1, x2, y1, y2.(∃z .(employee(z , x1, x2) ∧ employee(z , y1, y2))
→ ((x1 ≈ y1) ∧ (x2 ≈ y2))).

Ensures that each employee is associated with a single 3-tuple in (employee)I

in any interpretation I for ACME’s payroll system.1

Called a functional dependency in relational schema.

——————–

1Remember introductory comments: the collection of all data corresponds to
an interpretation I.

Logical Constraints for payroll (identification cont’d)

For S given by Option 2:

∀x , y .(
(employee(x) ∧ employee(y)
∧ employee-number(x) ≈ employee-number(y))
→ x ≈ y).

For S given by Option 3:

∀x , y .(
∃z .(employee(x) ∧ employee(y)
∧ employee-number(x , z) ∧ employee-number(y , z))
→ x ≈ y).

More accurately, latter states that: no pair of distinct employees may have any
employee number at all in common (becomes possible in Option 3 for
employees to have any number of employee numbers).

Logical Constraints for payroll

On property functionality.

Assume Option 3 chosen by ACME’s APS department.

Then necessary to disallow the number of possible values for an
employee-number, name, or salary attribute for a given employee to exceed
one.

Must add constraints to the logical constraints Σ to ensure the attributes are
partial functions.

∀x , y .(∃z .(employee-number(z , x) ∧ employee-number(z , y))
→ (x ≈ y))

∀x , y .(∃z .(name(z , x) ∧ name(z , y))→ (x ≈ y))

∀x , y .(∃z .(salary(z , x) ∧ salary(z , y))→ (x ≈ y))

Equality Generating Dependencies

Assume φ is a well formed formula of the form

(ψ1 ∧ · · · ∧ ψm)

in which each ψi is a function free atom.

An equality generating dependency (EGD) is a sentence in FOL with the form

∀x1, x2.(∃x3, · · · , xn.φ→ (x1 ≈ x2))

where n ≥ 2 and where Fv(φ) = {x1, . . . , xn}.

ACME Case: Logical Constraints for payroll

On taxonomic knowledge.

A simple payroll taxonomy.

entity

object

55

value

jj

employee

OO

string

::

integer

ee

“〈id〉1 → 〈id〉2” asserts: “set of all 〈id〉1” ⊆ “set of all 〈id〉2”.

More relevant to Option 2 or Option 3 for signature S of payroll system.

Logical Constraints for payroll

Add unary predicates entity, object, value, string and integer to SP.

Add following logical constraints to Σ.

1. Everything is an entity.
∀x .entity(x)

2. More specific entities are objects and values.

∀x .(object(x)→ entity(x))

∀x .(value(x)→ entity(x))

3. More specific objects are employees.

∀x .(employee(x)→ object(x))

Logical Constraints for payroll

4. More specific values are strings and integers.

∀x .(string(x)→ value(x))

∀x .(integer(x)→ value(x))

5. Nothing is just an entity or a value.

∀x .(entity(x)→ (object(x) ∨ value(x)))

∀x .(value(x)→ (string(x) ∨ integer(x)))

6. Objects are distinct from values, and strings from integers.

∀x .(object(x)→ ¬value(x))

∀x .(string(x)→ ¬integer(x))

Logical Constraints for payroll

On typing.

The additional unary predicates in the payroll signature can be used to
ensure that attribute values are of appropriate types.

For S given by Option 1:

∀x , y , z .(employee(x , y , z)
→ (integer(x) ∧ string(y) ∧ integer(z)))

For S given by Option 2:

∀x .(employee(x)→ (integer(employee-number(x))
∧ string(name(x))
∧ integer(salary(x))))

Logical Constraints for payroll

For S given by Option 3:

∀x .(employee(x)→ ∃y , z ,w .(employee-number(x , y) ∧ integer(y)
∧ name(x , z) ∧ string(z))
∧ salary(x ,w) ∧ integer(w)))

Option 3 also makes it possible to say that only employees have employee
numbers.

∀x .(∃y .employee-number(x , y)→ employee(x))

Tuple Generating Dependencies

Assume φ and ψ denote well formed formulae with the respective forms
(φ1 ∧ · · · ∧ φm) and (ψ1 ∧ · · · ∧ ψn) in which each φi and ψi is a function free
atom.

A tuple generating dependency (TGD) is a sentence in FOL with the form

∀x1, · · · , xi .(∃y1, · · · , yj .φ→ ∃z1, · · · , zk .ψ)

where Fv(φ) and Fv(ψ) are the respective sets {x1, . . . , xi} ∪ {y1, . . . , yj} and
{x1, . . . , xi} ∪ {z1, . . . , zk}.

A full TGD also satisfies k = 0 (i.e., Fv(ψ) = {x1, . . . , xi}).

