
Information Integration on the WEB with RDF, OWL and SPARQL

Review Material

Description Logics: dialect SROIQ(D)

Grant Weddell

November 14, 2013

Syntax of DLs
Concepts and Roles in ALC

Almost all DLs are a fragment of FOL with a signature S consisting of constant
function symbols and predicate symbols that are unary or binary.

A signature S in a given DL is a (possibly countably infinite) selection of
non-logical parameters:

I unary predicate symbols in SP called primitive concepts,

I binary predicate symbols in SP called primitive roles and

I constants in SF called individuals.

A particular dialect allows more general concepts C and roles S to be expressed.

The core DL dialect is called ALC, short for attributive logic with compliment.
The concepts {Ci} and roles {Si} induced by S for ALC are given by the
following grammars, where A are primitive concepts and R are primitive roles.

C ::= A S ::= R
| ∃S .C (existential restriction)
| C u C (concept intersection)
| ¬C (concept complement)

Syntax of DLs (cont’d)
Additional Concepts Constructors in ALC

Symbols “∃”, “u”, and “¬” are called concept constructors.

Additional concept constructors, “⊥”, “>”, “t” and “∀”, can also be used to
formulate concepts in ALC.

C ::= ⊥ (bottom)
| > (top)
| C t C (concept disjunction)
| ∀R.C (universal restriction)

In particular: Such concepts occurring in a given knowledge base K can be
replaced as follows, where A is an arbitrary primitive concept:

⊥ A u ¬A
> ¬⊥

C1 t C2 ¬(¬C1 u ¬C2)
∀R.C ¬∃R.¬C

Syntax of DLs (cont’d)
Knowledge Bases in ALC

An ontology or knowledge base K in ALC consists of the following:

I a set of sentences or constraints T called a TBox
(short for terminology), and

I a set of sentences or constraints A called an ABox
(short for assertion box).

The constraints that can appear in K are given by the following grammar,
where a and b are constants in SF.

C ::= C v C (general concept inclusion, or GCI)
| C(a) (concept assertion)
| R(a, b) (role assertion)
| a = b (individual equality)

The TBox T of K consists of all GCIs.

The ABox A of K are the remaining constraints K \ T .

Syntax of DLs (cont’d)
Additional Constraints in ALC

Additional TBox and ABox constraints can also be formulated in ALC.

C ::= C ≡ C (concept equivalence)
| A

.
= C (atomic concept definition)

| ¬R(a, b) (negated role assertion)
| a 6= b (individual inequality)

In particular: Subsets of a given knowledge base K consisting of these
constraints can be replaced as follows, where A1 and A2 are fresh primitive
concepts (i.e., do not appear in K):

{C1 ≡ C2} {C1 v C2,C2 v C1}
{A .

= C} {A ≡ C}
{¬R(a, b)} {A1(a),A2(b),A1 v ∀R.¬A2}
{a 6= b} {A1(a),A2(b),A1 v ¬A2}

ACME payroll System
The Signature

(recall Option 3)

>

object

66

value

ii

employee

OO

string

::

integer

ee

SP = {employee/1, object/1, value/1, integer/1, string/1}
∪ {emp-num/2, name/2, salary/2}

SF = {mary/0, john/0}

ACME payroll System (cont’d)
The Knowledge Base

The data and metadata correspond to an ABox and a TBox, respectively.

ABox (example payroll data)

employee(mary) Mary is an employee.
name(mary, “Mary”) Mary’s name is “Mary”.
salary(mary, 72000) Mary’s salary is 72000.

employee(john) John is an employee.
emp-num(john, 3412) John’s employee number is 3412.

mary 6= john Mary and John are different things.

TBox (payroll metadata)

employee ≡ (∃ name .>)
u (∃ emp-num .>)
u (∃ salary .>)

Employees are things that have a name, employee number and salary.

ACME payroll System
The Knowledge Base (cont’d)

TBox (cont’d)

employee v object

u (∀ name . string)
u (∀ emp-num . integer)
u (∀ salary . integer)

(object u value) v ⊥

value ≡ (string t integer)

(string u integer) v ⊥

What cannot be expressed:

I functional roles,

I keys and

I functional dependencies.

Semantics of DLs
Terminologies

Semantics is based on the FOL notion of an interpretation due to Tarski.

An interpretation I of a ALC terminology T is a 2-tuple (4I , ·I), where

I 4I is a non-empty (possibly infinite) domain of objects or things, and

I ·I is an interpretation function for concepts, roles and individuals.

The interpretation function maps primitive concepts to subsets of 4I , primitive
roles to subsets of (4I ×4I) and individuals to elements of 4I .

The function is extended to (arbitrary) ALC concepts as follows:

(∃R.C)I = {e1 ∈ 4I | ∃e2 ∈ 4I s.t. (e1, e2) ∈ RI and e2 ∈ CI}
(C1 u C2)I = (C1)I ∩ (C2)I

(¬C)I = 4I \ CI

An interpretation I is a model for a general concept inclusion (GCI) C1 v C2 if
(C1)I ⊆ (C2)I , written I |= C1 v C2.

I is a model for a terminology T if it is a model for each GCI in T , also
written I |= T .

Semantics of DLs
Assertion Boxes via Nominals

Adding O to the name of a DL dialect indicates the inclusion of the nominal
concept constructor “{ }”:

C ::= {a} (nominal)

An interpretation function ·I is extended to nominals as follows:

({a})I = {aI}

An ABox constraint is then syntactic shorthand for a GCI in ALCO:

C(a) {a} v C
R(a, b) {a} v ∃R.{b}
¬R(a, b) {a} v ¬∃R.{b}

a = b {a} v {b}
a 6= b ({a} u {b}) v ⊥

Observation: An ALC knowledge base is an ALCO terminology in which
nominal concepts have restricted use.

Subsumption Checking

Let K be an arbitrary knowledge base.

The concept subsumption problem for K is written

K |= C1 v C2

and is to determine if I |= K implies I |= C1 v C2 for all I.

Special cases:

I Role checking: Given R(a, b), to determine if K |= {a} v ∃R.{b}.
I Instance checking: Given C(a), to determine if K |= {a} v C .

I Knowledge base consistency: To determine if K 6|= {a} v ⊥, for some a.

I Concept consistency: Given C , to determine if K 6|= C v ⊥.

Subsumption checking can be reduced to instance checking:

K |= C1 v C2 iff K ∪ {(C1 u ¬C2)(a)} |= {a} v ⊥,

for some a not occurring in K.

Conjunctive Queries

A conjunctive query Q is a wff of the form

∃{xi}.
(∧

Ci (yi)
)
∧
(∧

Si (zi ,wi)
)
.

The {xi} are called the non-distinguished variables of Q.

The distinguished variables of Q are its free variables: Fv(Q).

A substitution θ is a mapping from a set of variables to individuals.

The certain answers of Q over a knowledge base K is a set of substitutions:

{θ over Fv(Q) | K |= Qθ}.

Special cases:

I Role assertion query: Q has the form S(x , y).

I Instance query: Q has the form C(x).

Evaluating Conjunctive Queries

When a knowledge base is loaded, a reasoning engine usually starts by
performing a classification.

A classification of a knowledge base K is a directed graph G = (V ,E), where:

I V is the set of atomic concepts and individuals, viewed as nominals,
occuring in K, and

I E consists of all edges C → D for which K |= C v D.

Performing a classification achieves a number of things:

I a check for knowledge base consistency,

I an efficient way of evaluating an instance query of the form >(x),

I an efficient way of evaluating role assertion queries of the form S(x , y),
and

I an efficient way of evaluating instance queries of the form A(a).

Also: All reasoning engines will provide support for reasoning tasks that are
instance checks, that is, determining if K |= C(a).

Evaluating Conjunctive Queries (Cont’d)

Class exercise: Consider the following algebra for evaluating conjunctive queries
with no non-distinguished variables:

E ::= >(x) (all individuals in K)

| R(x , y) (role assertion query)

| A(x) (instance query)

| σC(x)(E) (instance check)

| π{x1,...,xn}(E) (duplicate preserving projection)

| E1
→
./ E2 (nested loop join)

Explore how plans in this algebra can be used to evaluate SPARQL queries over
an RDF source based on a hypothetical ALC entailment regime.

I How does one handle “second order” variables in basic graph patterns that
bind to URIs denoting classes and properties?

I When such variables do not occur, is there always an initial plan that can
easily be found?

I Can you think of rewriting rules that can improve efficiency? (Assume the
rules themselves can require reasoning tasks.)

At-Least Restrictions

Adding Q to the name of a DL dialect indicates the inclusion of the at-least
concept constructor “>n”, a more general form of existential restriction:

C ::= >n S .C (at-least restriction)

The interpretation function ·I of an interpretation I is extended to at-least
restrictions as follows:

(>n S .C)I = {e1 ∈ 4I | n ≤]{e2 ∈ 4I s.t. (e1, e2) ∈ SI and e2 ∈ CI}}

There are two special cases:

I Adding N to a DL dialect indicates the inclusion of at-least restrictions of
the form “>n S .>”.

I Adding F to a DL dialect indicates the inclusion of at-least restrictions of
the form “¬(>2 S .>)” (denoting a set of objects for which S is a partial
function).

Also:

I Allow concepts “6n S .C” as shorthand for “¬(>n + 1 S .C)”.

I Allow constraints “Func(S)” as shorthand for “> v 61 S .>”.

Inverse Roles

A number of dialects allow roles to be inverted:

S ::= S− (role inverse)

An interpretation function ·I is extended to role inverse as follows:

(S−)I = {(e2, e1) ∈ (4×4) | (e1, e2) ∈ SI}

Adding I to the name of a DL dialect indicates the inclusion of the inverse role
constructor “−”.

Observation: ((S−)−)I = SI , for any interpretation I. Therefore assume S−

is short for a role of the form “R” or “R−”.

Role Boxes

Adding H to the name of a DL dialect indicates the ability to include role
inclusion constraints in a knowledge base K.

C ::= S v S (role inclusion)

An interpretation I is a model for a role inclusion S1 v S2 if (S1)I ⊆ (S2)I ,
written I |= S1 v S2.

The role subsumption problem for K is written K |= S1 v S2 and is to
determine if I |= K implies I |= S1 v S2 for all I.

The subset of K consisting of all role inclusions is called the RBox R of K.

Role Composition and Transitivity

A number of dialects allow roles to be composed:

S ::= S ◦ S (role composition)

An interpretation function ·I is extended to role composition as follows:

(S1 ◦ S2)I = {(e1, e3) ∈ (4×4) | (e1, e2) ∈ SI1 and (e2, e3) ∈ SI2 }

A dialect that supports transitive roles allows an RBox R to have role
inclusions of the form

C ::= R ◦ R v R (transitive role)

Such constraints ensure that R is transitive in any interpretation of a
knowledge base.

ALC with support for transitive roles is more simply referred to as dialect S.

Note: There are now conditions on how roles may appear in concepts to ensure
decidability of concept subsumption. (Return to this later.)

Role Composition (cont’d)

Adding R to the name of a DL dialect has a number of consequences:

I Implies adding H.

I Allows a single use of composition on the left-hand-side of role inclusions:

C ::= S ◦ S v S (role composition)

I Allows roles to have additional properties:

C ::= Ref(S) (role reflexivity)
| Asy(S) (role asymmetry)
| Dis(S1, S2) (role disjointness)

I Admits a new concept constructor:

C ::= ∃S .Self (self restriction)

Class exercise: Define the semantics of the additional properties and of self
restriction concepts.

Decidability with an RBox

For subsumption to be decidable, any dialect that admits role composition
must restrict how roles may be used in a knowledge base K.

The set NS of non-simple basic roles of knowledge base K is the smallest set
satisfying the following conditions:

1. S1 ◦ S2 v S3 ∈ R implies {S1,S2} ⊆ NS;

2. S ∈ NS implies S− ∈ NS; and

3. S1 v S2 ∈ R and S1 ∈ NS implies S2 ∈ NS.

Subsumption checking is decidable for K if the following conditions are
satisfied:

1. Any role occurring in an asymmetry constraint, in a role disjointness
constraint or in an at-least restriction does not occur in NS.

2. The RBox of K is regular : there exists a total order ≺ over all roles such
that, for any S1 ◦ S2 v S3 ∈ K, S1 ≺ S3 and S2 ≺ S3.

Concrete Domains

Adding (D) to the name of a DL dialect indicates the inclusion of (one or
more) concrete domains, which has a number of consequences:

1. The addition of a (possibly infinite) set of literal constants 4lit to the
domain 4 of any interpretation I together with the addition of unary
function symbols {fi} to SF called concrete features. An interpretation
function ·I maps a concrete feature f to a function: 4→ 4lit.

2. The addition of a (possibly infinite) set of interpreted predicate symbols
{Pi/ni} over respective (4lit)

ni .

3. The addition of a new kind of concept:

C ::= P/n (f1, . . . , fn) (concrete domain)

An interpretation function ·I is extended to concrete domain concepts as
follows:

(P/n (f1, . . . , fn))I = {e ∈ 4 | ((f1)I(e), . . . , (fn)I(e)) ∈ PI}

Concrete Domain S

The concrete domain S of finite length strings is given as follows:

1. The literal constants 4lit are finite strings {s1, s2, . . .}.
2. Additional predicate symbols include: unary predicates over 4lit

corresponding to literals, {=s1/1,=s2/1, . . .}, and Cmp/2, the strict
lexicographic ordering over 4lit ×4lit.

Examples:

I Mary’s name is “Mary”:

{mary} v =“Mary”(name)

I Mary’s salary is less than one hundred thousand:

(Cmp(salary, oht) u =“100000”(oht))(mary)

Summary

A SROIQ(D) knowledge base is a SROIQ(D) terminology.

A SROIQ(D) terminology is a fragment of FOL with an initial signature S
consisting of:

I constant function symbols {ai}, called individuals,

I unary predicate symbols {Ai}, called primitive concepts,

I binary predicate symbols {Ri}, called primitive roles,

I unary function symbols {fi}, called concrete features

and one or more initial theories called concrete domains.

The set of SROIQ(D) roles {Si} induced by S is given by the following
grammar:

S ::= R
| S− (role inverse)

Summary (cont’d)

The set of SROIQ(D) concepts {Ci} induced by S is given by the following
grammar:

C ::= A
| ∃S .C (existential restriction)
| C u C (concept intersection)
| ¬C (concept complement)
| > (top)
| ⊥ (bottom)
| C t C (concept disjunction)
| ∀R.C (universal restriction)
| >n S .C (qualified at-least restriction)
| 6n S .C (qualified at-most restriction)
| >n S (at-least restriction)
| 6n S (at-most restriction)
| ∃S .Self (self restriction)
| P(f1, . . . , fn) (concrete domain)

Summary (cont’d)

The set of SROIQ(D) constraints {Ci} induced by S is given by the following
grammar:

C ::= C v C (general concept inclusion, or GCI)
| C(a) (concept assertion)
| R(a, b) (role assertion)
| a = b (individual equality)
| C ≡ C (concept equivalence)
| A

.
= C (atomic concept definition)

| ¬R(a, b) (negated role assertion)
| a 6= b (individual inequality)
| Func(S) (role functionality)
| S v S (role inclusion)
| S ◦ S v S (role composition)
| Ref(S) (role reflexivity)
| Asy(S) (role asymmetry)
| Dis(S1, S2) (role disjointness)

Relation Algebra

The relation algebra is a fragment of FOL with roles and constraints given by
the following respective grammars.

S ::= R
| S− (role inverse)
| S ◦ S (role composition)
| S u S (role intersection)
| ¬S (role compliment)
| ≈ (identity)

C ::= S v S (role inclusion)

Observation: Rich enough to express Peano arithmetic and axiomatic set
theories!

Longer term exercise: Explore if a SROIQ(D) knowledge base can be
translated to a theory in relation algebra.

