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Abstract. Many approaches for RDF stores exist, most of them us-
ing very straight-forward techniques to store triples in or mapping RDF
Schema classes to database tables. In this paper we propose an RDF
store that uses a natural mapping of RDF resources to database tables
that does not rely on RDF Schema, but constructs a schema based on
the occurring signatures, where a signature is the set of properties used
on a resource. This technique can therefore be used for arbitrary RDF
data, i.e., RDF Schema or any other schema/ontology language on top
of RDF is not required. Our approach can be used for both in-memory
and on-disk relational database-based RDF store implementations.

A first prototype has been implemented and already shows a sig-
nificant performance increase compared to other freely available (in-
memory) RDF stores.

1 Introduction

RDF has been developed to facilitate semantic (meta-)data exchange between
actors on the (Semantic) Web [1]. Its primary design rationale was simplicity;
therefore, a lowest common denominator of knowledge representation formalisms
suited for this task has been chosen: triples, or statements of the form subject,
predicate, object. But exactly for the same reason, being a lowest common denom-
inator of knowledge representation formalisms, it is suited neither for internal
use in general applications1 nor for efficient handling in established databases
which are optimized to handle tables or n-tuples, not ternary statements/binary
predicates. Also, naive handling of triples leads to inefficient memory usage since
data is implicitly duplicated.2

We therefore propose (and implemented a first prototype of) an RDF store
that on the one hand allows efficient import and export of RDF data, but on the
other hand allows adequate and efficient access from applications (i.e., from the
applications that serve as actors on the Semantic Web, e.g., web services). Unlike

1 Applications’ data structures are typically object-oriented and not statement-
oriented.

2 A resource with four properties needs four statements, each having the resource’s
URI as object.
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other similar approaches which restrict themselves to supporting exactly one
(application-adequate) schema formulated in a schema language such as RDFS
or OWL, we believe that we should stay schema independent, for two simple
reasons: there is no “one-size-fits-all” schema/ontology language, and because of
the distributed and chaotic nature of the Semantic Web, an application might
not have full access to the schema, the schema might be incomplete or even
non-existent, or the data is, at least at intermediate stages, simply not schema-
compliant.

Our approach is based on the notion of signatures, where a signature of a
resource is the set of properties used on that very resource (at a specific point
of time in an application). This approach allows Semantic Web data to be rep-
resented as normal (database) relations (with signatures being the database
column headings), which are much more application-adequate and, at the same
time, much more efficient wrt. space and time than naive approaches that directly
store triples. Especially queries that access multiple properties of a resource si-
multaneously (which, in our experience, form the vast majority of queries) benefit
from this approach.

We furthermore benefit from database technology that has been optimized for
performing queries on normal database tables, i.e., tables that group structurally
similar objects, which in our case are resources with the same properties. Stan-
dard database technology is not very efficient (esp. wrt. queries) when you sim-
ply map triples to one large table (plus some tables for compressing namespaces
etc.), since then data usually accessed together is arbitrarily distributed over the
database, resulting in many (non-consecutive) parts (“pages”) from hard disk
being accessed for one query.

Apart from the obvious benefits of our approach when using on-disk databases,
the approach also shows considerable performance improvements when storing
RDF data in memory, esp. for queries accessing multiple properties for a single
resource.

A first (in-memory) prototype, the RDFBroker, has been realized as part of
the OpenDFKI open-source initiative.3

In the following, we will first explain the major concepts of RDFBroker (sec-
tion 2), give some details on the implementation (section 3), show first results
of evaluating our approach (section 4), list some related work (section 5), and
finally conclude the paper and describe plans for future work (section 6).

2 RDFBroker Concepts

RDFBroker mainly relies on the concept of signatures and signature tables which
are organized in a lattice-like structure. On these tables, normal operations
known from relational algebra are applied. In the following, we will formally
define these basic concepts.

3 http://rdfbroker.opendfki.de/

http://rdfbroker.opendfki.de/
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2.1 Signatures

Definition 1. The signature ΣG(s) of a resource s wrt. an RDF graph4 G is
the set of properties that are used on s in G:

ΣG(s) = {p | ∃o : 〈s, p, o〉 ∈ G}

When it is understood from the context (or irrelevant) which graph is being
referred to, we just write Σ(s).

Definition 2. The signature set ΣG for an RDF graph G is the set of all sig-
natures occurring in it, i.e.,

ΣG = {ΣG(s) | ∃p, o : 〈s, p, o〉 ∈ G}

Definition 3. A signature Σ(s1) subsumes a signature Σ(s2) iff

Σ(s1) ⊆ Σ(s2)

Definition 4. The signature subsumption graph GG for an RDF graph G is
the directed acyclic graph with vertices ΣG and edges according to the subsumes
relation between signatures, i.e., GG = (ΣG, ⊆).

The simplified signature subsumption graph G′
G for an RDF graph G is the

graph that results from the signature subsumption graph by deleting all edges that
can be reconstructed from the transitivity and reflexivity of ⊆.

Note that the (simplified) signature subsumption graph has, in general, more
than one “root.” Adding ∅ and

⋃
s ΣG(s) (for all subjects s in G) turns it into a

lattice. We will see later (Sect. 3.1) that adding ∅ is used for implementing the
basic operators on RDF graphs.

Example 1. Let’s consider the simple RDF graph depicted in Fig. 1.

The signatures for the four subjects Person, p1, p2, p3 that occur in P are:

ΣP (Person) = {rdf : type}
ΣP (p1) = {rdf : type, rdfs : label, firstName, lastName}
ΣP (p2) = {rdf : type, firstName, lastName, email, homepage}
ΣP (p3) = {rdf : type, firstName, lastName}

We therefore have the following signature set:

ΣP =

��
�

{rdf : type}, {rdf : type, rdfs : label, firstName, lastName},
{rdf : type, firstName, lastName, email, homepage},
{rdf : type, firstName, lastName}

��
�

The simplified signature subsumption graph GP is shown in Fig. 2.
4 For simplicity, an RDF graph G is a set of subject-predicate-object triples 〈s, p, o〉.

Special aspects of RDF like BNodes, reification, containers, and datatypes are not
handled in this paper.
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Fig. 1. A Sample RDF Graph: Persons

Fig. 2. Sample Simplified Signature Subsumption Graph

2.2 Signature Tables

The basis of our approach is the storage of an RDF graph entirely in tables that
correspond to the signatures occurring in the graph. These tables are defined in
the following.

Definition 5. The signature table TG({p1, . . . , pn}) for a signature
{p1, . . . , pn} ∈ ΣG for an RDF graph G is a two dimensional table with
headings (rdf:about, p1, . . . , pn) (where the pi are canonically ordered) and
entries as follows: for each subject s in G with ΣG(s) = {p1, . . . , pn}, there is
exactly one row in the table, where the rdf:about column contains s and column
pi contains the set of values for this property on s, i.e., {v | 〈s, pi, v〉 ∈ G}.

Definition 6. The signature table set TG for an RDF graph G is defined as
TG = {TG(s) | s ∈ ΣG}.

The signature table set for Ex. 1 (TP ) looks like this:

rdf:about rdf:type
Person rdfs:Class

rdf:about rdf:type firstName lastName
p3 Person “Peter” “Miller”
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rdf:about rdf:type rdfs:label firstName lastName
p1 Person “Michael Sintek” “Michael” “Sintek”

rdf:about rdf:type firstName lastName email homepage
p2 Person “Frank” “Smith” mailto:. . . http://. . .

2.3 Algebraic Database Operations

Now that we have mapped an RDF graph to a set of tables,5 we can lay the
foundation for queries (and rules) by defining the algebraic operations used in
(relational) databases. We define two sets of database operators, those directly
operating on RDF graphs and those operating on the resulting tables.

On RDF graphs, we define only two operators, namely the projection π̇ and
a combined projection and selection [π̇σ̇]. On the resulting tables, we allow the
usual set of algebraic operators known from relational databases, i.e., π, σ, ×, ��
, ∪, ∩, −, . . ..

Definition 7. The projection π̇ on an RDF graph G for a property tuple
(p1, . . . , pn) is defined as follows:

π̇(p1,...,pn)(G) =
⋃

π(p1,...,pn)(t)
for all t = TG(s) with s ∈ ΣG and {p1, . . . , pn} ⊆ s

where π is the normal database projection operator slightly modified to work on
non-normalized tables (since the entries are set-valued).

It would be sufficient to have only the projection operator π̇ defined on RDF
graphs, as we allow the full range of database operators to be applied to the
resulting tables. Since all relational algebra expressions can be reformulated such
that some projections occur first, we do not need any of the other operators to
directly work on RDF graphs.

But this would mean that we have to copy all tuples from signature tables as
the first step, which would not be very wise for efficiency reasons. Therefore, we
also define a combined selection and projection operator, [π̇σ̇].6

Definition 8. The projection-selection [π̇σ̇] on an RDF graph G for a property
tuple p = (p1, . . . , pn) and a condition C is defined as follows:

[π̇σ̇]Cp (G) = πp

⋃
(σC ◦ πp′)(t)

for all t = TG(s) with s ∈ ΣG and p′ ⊆ s
and p′ = {p1, . . . , pn} ∪ properties(C)

where π and σ are the normal database selection operators (modified as π above),
and properties(C) is the set of properties that occur in C.
5 or, in the case of multiple RDF graphs, to several sets of tables, allowing access to

named graphs which are nicely supported by our approach
6 Note that we do not define an operator σ̇ on RDF graphs since signature tables that

would naturally be involved in a single selection are of varying arity.
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The essential parts of these two definitions are the subsumption restrictions
({p1, . . . , pn} ⊆ s and p′ ⊆ s, resp.), i.e., in both cases we only consider the
signature tables with signatures that are subsumed by the properties occurring
in the operators.

2.4 RDF Schema Semantics

Although RDFBroker is designed to work efficiently on RDF graphs without
RDFS (or any other schema), we believe that is very important to provide an
efficient implementation of the RDFS semantics as RDFS is used as ontology
language in most applications dealing with mass data and therefore being a
target for our system.

In the following, we define the (simplified)7 RDFS semantics GRDFS of an RDF
graph mainly with the help of the (conjointly computed) transitive closures of
rdfs:subClassOf and rdfs:subPropertyOf, the class propagation for rdf:type, and
the value propagation for rdfs:subPropertyOf,8 which follows directly from the
RDF/S model theory [2]. Note that the naive approach to compute the transitive
closures and propagations separately (or in any fixed order) is not correct (e.g.,
this would not catch the case where one defines a subproperty of rdfs:subClassOf
(or even rdfs:subPropertyOf itself)).

Definition 9. The (simplified) RDFS immediate consequence operator9 TRDFS
for an RDF graph G is defined as follows:10

TRDFS(G) = G ∪ {〈p, sPO, q〉 | {〈p, sPO, r〉, 〈r, sPO, q〉} ⊆ G}
∪ {〈p, sCO, q〉 | {〈p, sCO, r〉, 〈r, sCO, q〉} ⊆ G}
∪ {〈s, type, c〉 | {〈c′, sCO, c〉, 〈s, type, c′〉} ⊆ G}
∪ {〈s, p, o〉 | {〈p′, sPO, p〉, 〈s, p′, o〉} ⊆ G}

Theorem 1. The (simplified) RDF Schema semantics of an RDF graph G is
the fixpoint of TRDFS:

GRDFS =
⋃

n∈N0

T n
RDFS(G ∪ AP )

where AP are the axiomatic triples 〈rdf:type, rdfs:domain, rdfs:Resource〉, . . . as
defined in the RDF/S model theory.

We will show in Sect. 3.4 that TRDFS can be directly used to implement GRDFS.

7 We explicitly ignore here some details of the RDFS semantics, namely rdfs:domain
and rdfs:range, as their correct handling is sometimes counterintuitive when coming
from a database or logic programming perspective.

8 {〈p, rdfs:subPropertyOf, q〉, 〈s, p, o〉} ⊆ GRDFS → 〈s, q, o〉 ∈ GRDFS

9 which is similar to the normal immediate consequence operator TP
10 with sPO = rdfs:subProperyOf, sCO = rdfs:subClassOf, and type = rdf:type
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2.5 Sample Queries

In the following, we give some sample queries for the RDF graph P from Exa. 1.

Example 2. ‘Return first name and last name for all persons.’

r = [π̇σ̇]rdf:type=Person
(firstName,lastName)(P )

Example 3. ‘Find first name, email address, and homepage for the person with
last name “Smith”’:

r = [π̇σ̇]rdf:type=Person∧lastName=”Smith”
(firstName,email,homepage) (P )

The current implementation does not support complex selection conditions, we
therefore have to evaluate the query in several steps:11

r = π(1̄,3̄,4̄)(σ2̄=”Smith”([π̇σ̇]rdf:type=Person
(firstName,lastName,email,homepage)(P )))

3 Implementation

The in-memory variant of RDFBroker is currently being implemented with JDK
1.5. It uses Sesame’s RIO parser, which could easily be replaced by any streaming
parser generating “add statement” events.

Most of the concepts of Sect. 2 have directly corresponding implementations
plus appropriate index structures (e.g., there is an index for each column in a
signature table, currently realized as a hash table).

Our approach benefits heavily from well-known database optimization tech-
niques. E.g., queries are reformulated such that selections and joins on multiple
columns access small tables and columns which hold many different values (and
are therefore discriminating) first, thus reducing the size of intermediate results
as fast as possible.

In the following, we describe some aspects of the implementation in detail
(some of which have not yet been realized in our first prototype, like updates
and the RDFS semantics).

3.1 The Operators π̇ and [π̇σ̇]

The efficient implementation of π̇ and [π̇σ̇], which form the basis of all queries,
is obviously vital for our RDF store. The implementation of these operators
requires the lookup of the signature tables TG(s) for all signatures s where the
properties occurring in the operator subsume s, as defined in Def. 7 and Def. 8.

The signature table lookup is performed by first looking up the matching
signatures in the simplified signature subsumption graph and then retrieving
the associated signature tables.

The signature lookup for properties p = {p1, . . . , pn} is performed by the
following (informally described) algorithm, which is also exempflified in Fig. 3:
11 Column numbers for relational operators are marked with a bar on top: 1̄, 2̄, 3̄, . . ..
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(a) add ∅ as an artificial root to the simplified signature subsumption graph G′
G

(making it a “meet-semilattice”12)
(b) starting at ∅, find all minimal signatures s which are subsumed by p, i.e., for

which p ⊆ s holds
(c) add all signatures which are subsumed by these minimal signatures (simply

by collecting all signatures reachable from the minimal ones using a depth-
first walk)

Fig. 3. Algorithm: Lookup of Signatures

3.2 Merging of Signature Tables

An important source for optimization are the signature tables and their orga-
nization in the subsumption graph. First tests with the system revealed that
sometimes many small tables are generated which are responsible for overhead,
which we wish to avoid. The obvious solution for this is pruning the subsumption
tree by merging small adjacent signatures tables (i.e., which share many prop-
erties) or merging small tables with subsumed big ones. A sketch for a greedy
algorithm (which tries to minimize the number of NULL values to be added and
the number of merge operations) is as follows:

(a) pick the smallest signature table and mark it to be merged
(b) pick the smallest signature table adjacent to a signature table marked to be

merged (and sharing substantially many properties) and mark it also
(c) repeat (b) until the size of all marked signature tables exceeds some thresh-

old; if the threshold cannot be exceeded, mark the directly subsumed table
with the smallest signature to be merged

(d) merge all marked signature tables
(e) repeat (a) – (d) until no single signature table exists that is smaller than

some threshold

Fig. 4 shows the result of applying this algorithm on some sample signature
subsumption graph.

The resulting signature subsumption graphs are often very similar to user
defined schemas, which is what we expect since co-occurrence of properties is the
basis for (manually) defining classes in an schema/ontology. We therefore expect
our approach to perform similar to mapping an RDF Schema to an (object-)
relational database directly.
12 i.e., an partially ordered set where for any two elements there exists an infimum

(greatest lower bound) but not necessarily a supremum in the set
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Fig. 4. Algorithm: Merging of Signatures

3.3 Updates

Updates (i.e., inserts, deletes, and value updates) can easily be realized on top
of our RDF store, but some operations come with performance penalties when
they change the signature of a subject resource, which then has to migrate from
one signature table to another. To improve this, special methods will be used
to allow mass updates to be handled efficiently. In the case of mass inserts,
e.g., either a whole RDF graph is added all at once, thus allowing first the
property values per subject to be collected (as it is done for parsing already), or
applications use methods like add(Resource, Map<URI,Value>) to explicitly
add many property values for one subject at once.

Since the merging of signature tables results in allowing NULL values in
merged tables, this reduces the likelihood that database rows have to migrate
from one table to another.

3.4 RDF Schema

In general, two main approaches exist to implement the RDFS semantics: com-
pute the triples resulting from the RDFS semantics in advance and material-
ize them, or compute them on demand. Since our main goal currently is high-
performance for queries, we decided to take the first approach.

Materializing the RDF Schema semantics GRDFS of an RDF graph G can
directly be based on Theorem 1, analogously to the realization of logic program-
ming with the well-known immediate consequence operator TP (for a deductive
database / logic program P ) [3]. For this, the semi-naive bottom-up evaluation
is used, i.e., the TRDFS operator is not evaluated on the full data set from all
previous rounds in the fixpoint computation, but restricted in the sense that
certain parts of TRDFS are checked only against the data newly produced in the
previous round. Furthermore, the materialization of the propagation for rdf:type
is not necessary and can be handled by query rewriting, which will drastically
reduce the number of additionally created data.

3.5 Natural Data Handling and Querying

One of our promises is that our RDF store is application-adequate. Therefore,
we allow queries and data handling using traditional programming languages (in
our prototype implementation, Java) in a very natural way.



372 M. Sintek and M. Kiesel

Queries. Higher-level query languages like SPARQL have the disadvantage
compared to using Java that they do not nicely cooperate with Java data: e.g.,
query parameters have to be translated into textual representations matching
the query language syntax, which involves the typical problems of quoting special
characters, character encoding, problems with malformed queries at runtime, no
support from typical development environments,13 etc.

Example 4. For the Exa. 3 query, the Java code looks like this (C equals creates
an equality selection condition and projection/selection indices are 0-based):

p.projectAndSelect(
p.properties(FIRSTNAME, LASTNAME, EMAIL, HOMEPAGE),
p.C_equals(p.RDF_TYPE, PERSON))

.select(p.C_equals(1, p.literal("Smith")))

.project(0,2,3);

Comparing Java-based queries (using algebraic operators) with standard declar-
ative query languages is difficult. Both approaches have benefits and draw-
backs: Java-based queries allow simple debugging since intermediate results are
available. Manual optimization is easily possible without having to know much
about the query engine’s internals. On the other hand, declarative query lan-
guages are easier to read (since inherently they describe only the goal of the
query in a simpler syntax), and automatic optimization can be done to some
degree.

Data Handling. Normal RDF store APIs provide only triple-based methods
for manipulating the RDF data which is uncomfortable for most applications
as the typical view on an application’s data is an object-oriented view. With
additional tools such as RDF2Java [4] or RDFReactor [5] that introduce an
abstraction layer this problem can be solved from the programmer’s point of
view. However, these approaches still map to triples internally. Using RDFBroker
and its object/resource-centric data representation, it is possible to provide a
natural data interface without mapping between data representations.

4 Evaluation

For our first in-memory prototype, we evaluated the (RDFBroker-specific) dis-
tribution of signature tables and load times, memory consumption, and query
execution times by comparing them to the behavior of other freely available RDF
stores, using several queries on a large database and measuring database load
times on three different databases.

We used RDF data from TAP14 which comes with RDF files of
sizes up to about 300 MB. In particular, for evaluating load times
13 Standard IDEs feature autocompletion which helps a lot in coding but does not work

with queries which are just strings to the IDE.
14 http://sp11.stanford.edu/

http://sp11.stanford.edu/
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tuples per table tuples tables
1–10 8941 4137

11–100 15375 506
101–1000 13730 62

1001–10000 0 0
10001–100000 117288 2

100001–1000000 130939 1

Fig. 5. Signature Table Distribution

1.7MB DB 24MB DB 298MB DB
load time memory load time memory load time memory

RDFBroker 500ms 66MB 7,500ms 102MB 102,000ms 945MB
Jena 800ms 36MB 11,000ms 70MB 151,000ms 822MB

Sesame 300ms 28MB 4,500ms 83MB 74,000ms 408MB

Fig. 6. Load Times and Memory Consumption of RDFBroker, Sesame, and Jena

we used swirl-SiteArchitectureEmporis.rdf (1.7MB and 17,086 triples),
swirl-SitePlacesWorldAirportCodes.rdf (24MB and 245,578 triples), and
swirl-SiteMoviesIMDB.rdf (298MB and 3,587,064 triples). For testing query
performance, we used swirl-SiteMoviesIMDB.rdf exclusively. The RDF store
implementations we compared are Sesame [6], Jena [7], and of course RDFBro-
ker.15 The evaluation environment was an Athlon 64 3000+ (3530 bogomips)
with 2GB RAM running Linux 2.6.12.3 i686 and Sun Java 1.5.0-2. The evalua-
tion software can be found on the RDFBroker project website.

Signature Table Distribution. With swirl-SiteMoviesIMDB.rdf (298MB,
3,587,064 triples, 286,273 resources in subject position, 4,708 signature tables),
we got the distribution of signature tables shown in Fig. 5, i.e., there are 4,137
tables of size 1–10 tuples that hold a total of 8941 tuples, . . . , and there is
exactly one table that holds 130,939 tuples. This is exactly what we expect for
mass data: most of the data is in very few tables (in this case, three tables hold
87% of all tuples).

Load Times and memory consumption for the three RDF files are shown in
Fig. 6. Since RDFBroker currently uses Sesame’s “Rio” parser, its load times are
similar to Sesame’s performance. The creation of signature tables and exhaustive
indices explains the higher values.

Queries. We measured the execution times and memory consumption (see
Fig. 7) for several queries, ranging from simple “retrieval” of property values
over path expressions to joins that are not representable as path expressions. In
Appendix A, we list the SeRQL queries for evaluating Sesame for completeness.

15 For all implementations we enabled RDF validation on load and disabled inferencing.
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Query 1 Query 2 Query 3 Query 4
time memory time memory time memory time memory

RDFBroker 70ms 4MB 1200ms 63MB 260ms 4MB 160ms 10MB
Jena 4300ms 82MB 8700ms 26MB 70ms 3MB - -

Sesame 1400ms 24MB 2200ms 46MB 50ms 2MB - -

Fig. 7. Query Times and Memory Consumption of RDFBroker, Sesame, and Jena

Query 1: ‘return some interesting properties of all movies’: This operates heavily
on the queried instances’ properties. As to be expected, RDFBroker performs
very fine in this case since the signature tables nicely match the query’s structure.

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:PropertyCountry,PropertySound Mix...)

Query 2: ‘find names for persons casted in movies’: This is a join query that in
many high-level RDF query languages is expressed as a path expression. Since
this is a very common query, most systems come up with optimized algorithms
for it. Still, RDFBroker’s performance was the best.

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:creditedCast) ��3̄=1̄ [π̇σ̇]rdf:type=imdb:Person

(rdf:about,rdfs:label)

Query 3: ‘find persons playing in movies three cast hops separated from Kevin
Bacon’: This query is related to the Bacon Number.16 Since it is a path expression
using only one property, RDFBroker is not optimized for this kind of query, and
has to walk over thousands of tables multiple times.17

Query 4: ‘find movies with same title and return some useful properties on them,
like release year, cast, genre, . . . ’:

[π̇σ̇]rdf:type=imdb:Movie
(rdf:about,rdfs:label,imdb:creditedCast,...) ��2̄=2̄,1̄�=1̄ [π̇σ̇]rdf:type=imdb:Movie

(rdf:about,rdfs:label,...)

RDFBroker evaluated this query in less than 200ms, while Sesame and Jena
were not able to finish it (we stopped after 30 minutes). Probably joins that
are not path expressions are not handled “properly” in the sense that they are
evaluated by first computing the complete cartesian product.

Conclusion. For standard queries, the RDFBroker approach performs very
well. The prototype’s memory consumption is higher than that of other RDF
stores. Both characteristics are most likely due to the fact that currently all
database columns get indexed which leads to high performance but counteracts
the potential benefit of small memory footprint that is inherent of the approach.
We will address this in future RDFBroker versions, as well as implementing table
merging to reduce the overhead of walking over thousands of tables for queries
accessing only few properties.
16 http://en.wikipedia.org/wiki/Bacon number
17 We expect this kind of query to perform much better in RDFBroker when we use

table merging.
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5 Related Work

Since most RDF frameworks such as Sesame [6] or Jena [7] allow using RDBMSs
as storage backends, quite a lot of previous work on this area is available. An
overview of different RDF frameworks can be found in [8]; an overview of different
approaches of mapping RDF to standard DBs can be found in [9] and [10].

There are several RDF frameworks that rely on native storage such as
YARS [11], Redland [12], or BRAHMS [13]. Often, these implementations per-
form superior with special types of queries. BRAHMS, for example, is very fast
when searching semantic associations—semantic association paths leading from
one resource to another resource.

In [10], several RDBMS mapping characteristics are presented along with a
generic performance comparison of the approaches described. The approaches
outlined use one or more tables with at most three columns, one table repre-
senting either triples, properties, or RDFS class instances. The drawback of this
compared to our approach is that properties of one resource get scattered over
multiple tables and/or rows—an advantage is that no support for sets in table
cells is needed.

The definition of the mapping characteristics in the same paper are a bit too
narrow and cannot be applied to our approach easily—while, for example, no
schema is needed for our approach, it is not schema-oblivious in terms of the
cited paper since we do not use only one table for storing triples.

In [14], an approach to derive table layout from the data or using machine
learning-based query analysis approaches is described. This leads to high initial
costs and requires a large amount of data for initial training. Our approach is
much more lightweight especially concerning initial setup. However, we do not
support query analysis at all.

For performance comparison and test data generation several tools have been
described, mostly using using a Zipfian distribution when generating class in-
stances. See [10] and Store-Gen [14] for a further description of synthetic data
generators.

6 Conclusions and Future Work

In this paper, we introduced RDFBroker, an RDF store using signatures as the
basis for storing arbitrary RDF data. Since signatures and their organization in a
lattice-like structure approximate user-defined schemas/ontologies (and thus also
make RDF data accessible from applications in a more natural way), RDFBroker
performs similar to hand-coded (object-) relational databases. Comparison of our
first prototype with other RDF stores showed that even for the in-memory case
queries can be evaluated more efficiently than with standard techniques using
triples as the basis for storage organization.

Our approach can handle, on standard hardware, already fairly large knowl-
edge bases (RDF files with several hundred MBs) in main memory. For mass
data, we will make use of on-disk databases (which requires support of multiple-
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valued attributes), which lets us expect even higher differences in performance
compared to existing RDF stores which store RDF data in on-disk databases.

We also intend to support query and esp. rule language standards like
SPARQL and the result of the W3C Rule Interchange Format Working Group
that has just been founded, where we will profit from well-investigated deductive
database technologies (like magic set transformation). We furthermore plan to
provide a natural programming API for manipulation of the RDF data stored
in RDFBroker, where the interface classes can be build as known from our
RDF2Java [4] tool. Our future plans also include using a P2P network (or grid)
to improve performance by using in-memory (instead of on-disk) stores in peers
and using the signature subsumption graph for distributing the data, routing
queries, and developing appropriate peer leave/join algorithms.
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Appendix A. SeRQL Queries Used in the Evaluation

Query 1: ‘return some interesting properties of all movies’

SELECT MovieLabel, Year, Runtime, Color, Language, Country, Sound
FROM {MovieURI} rdf:type {imdb:Movie}; rdfs:label {MovieLabel};

imdb:PropertyCountry {Country}; ...
USING NAMESPACE imdb = <http://data.imdb.com/data/>

Query 2: ‘find names for persons casted in movies’

SELECT Movie, Title, Cast, PersonName
FROM {Movie} rdf:type {imdb:Movie}; rdfs:label {Title};

imdb:creditedCast {Cast} rdfs:label {PersonName}
USING NAMESPACE imdb = <http://data.imdb.com/data/>

Query 3: ‘find persons playing in movies three cast hops separated from Kevin Bacon’

SELECT DISTINCT PersonName
FROM {StartPerson} imdb:PropertyActor_filmography {Movie1}

imdb:creditedCast {Cast1} imdb:PropertyActor_filmography {Movie2}
imdb:creditedCast {Cast2} imdb:PropertyActor_filmography {Movie3}

imdb:creditedCast {Cast3} rdfs:label {PersonName}
WHERE StartPerson = imdb:PersonKevin_Bacon_8_July_1958
USING NAMESPACE imdb = <http://data.imdb.com/data/>
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