Captain Jack: New Variable Selection Heuristics in Local Search for SAT

Dave Tompkins, Adrian Balint, Holger Hoos

SAT 2011 :: Ann Arbor, Michigan

http://www.cs.ubc.ca/research/captain-jack

Key Contribution:

Captain Jack is a highly parametric algorithm

Incorporates elements from Sparrow [Balint, Fröhlich, SAT 2010] & VE-Sampler [Tompkins, Hoos, SAT 2010]

good performance "jack of all trades"

"interesting" configuration space

Algorithm Design Philosophy

Parameterless Algorithm

Captain Jack: Tompkins, Balint, Hoos

Algorithm Design Philosophy

Parameterless Algorithm

Captain Jack: Tompkins, Balint, Hoos

Algorithm Design Philosophy

Parameterless Algorithm

Highly Parametric Algorithm

Captain Jack: Tompkins, Balint, Hoos

Automated Configuration

- We can use automated configurators to determine the optimal algorithm parameters for a target instance set
- We used ParamILS [Hutter et al., 2007, 2009]
- Offload tedious human tasks to machines

Automated Configuration

Training Instance Set

Highly Parametric Algorithm

Captain Jack: <u>Tompkins</u>, Balint, Hoos

Instance "Space"

Captain Jack: <u>Tompkins</u>, Balint, Hoos

Instance "Space"

Algorithm "Space"

Captain Jack

good performance

"interesting" configuration space

Captain Jack: <u>Tompkins</u>, Balint, Hoos

Overview

- Motivation
- Captain Jack
 - Background
 - Design
 - New Contributions
- Results
- Future Work
- Conclusions

Stochastic Local Search (SLS) for SAT

randomly initialize all variables while (formula not satisfied) select a variable and "flip" it

Evaluate each variable (Variable Expression)

 $(\neg x_1 \lor x_2 \lor \neg x_5)$

Variable Selection Mechanism (VSM)

Captain Jack Controller

Captain Jack can use promising variables (if they exist) [G²WSAT: Li, Huang, 2005]

Select UNSAT clause uniformly at random [Papadimitriou, 1991] [WalkSAT: Selman, Kautz, Cohen, 1994]

Captain Jack Controller

Captain Jack can use promising variables (if they exist) [G²WSAT: Li, Huang, 2005]

Select UNSAT clause uniformly at random [Papadimitriou, 1991] [WalkSAT: Selman, Kautz, Cohen, 1994]

Captain Jack: <u>Tompkins</u>, Balint, Hoos

Variable Properties

Greedy Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make - break) [GSAT: Selman, Levesque, Mitchell, 1992]

Variable Properties

- Greedy Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make break) [GSAT: Selman, Levesque, Mitchell, 1992]
- Diversification Properties
 age = # of steps since x was flipped [TABU: Glover, 1986]
 flips = # of times x has been flipped [HSAT: Gent, Walsh, 1993]

Variable Properties

- Greedy Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make break) [GSAT: Selman, Levesque, Mitchell, 1992]
- Diversification Properties
 age = # of steps since x was flipped [TABU: Glover, 1986]
 flips = # of times x has been flipped [HSAT: Gent, Walsh, 1993]
- Variable Expressions sparrowAge $1 + \left(\frac{age}{c_d}\right)^{c_e}$

Captain Jack Variable Properties

- Greedy
 - make
 - break
 - score
 - sparrowScore₂
 - score
 - scoreRatio
 - rel*

- Diversification
 - rand
 - flat
 - fair
 - last
 - age
 - age₁
 - age₅
 - ageRange
 - sparrowAge
 - tabu
 - flips
 - flops
 - normFlops
 - resetFlops
 - rel*

New Variable Properties

scoreRatio: (make)/(make + break)

• flops: $x x \sqrt{(\neg x_1 \lor x_2 \lor \neg x_5)}$ flops++ \leftarrow \downarrow \downarrow flips++

Captain Jack Controller

Mixed Variable Expressions

- VE-Sampler f(greedy) + f(diversification)
- Sparrow
 - f(greedy) · f(diversification)
- both use a mixed VE
 - First introduced with VW2 [Prestwich, 2005]
- Captain Jack
 - 3 Options: greedy, diversification, mixed
 - greedy · diversification

Variable Selection Mechanism

$$(\neg x_1 \lor x_2 \lor \neg x_5)$$

- Maximum ("best")
 select x₁
- Probability Distribution
 select x₁ 50%
 select x₂ 40%
 select x₅ 10%

Captain Jack Controller

Each type of step assigned a weight (%)

Each property is assigned a weight (%) (both a greedy & div. property selected for mixed)

Prob. of selecting the VSM is based on the type

Captain Jack

"interesting" configuration space

Captain Jack: <u>Tompkins</u>, Balint, Hoos

good performance

Instance "Space"

Industrial-Like Random (Ansótegui et. al., 2009)

Software Verification CBMC (binary search) SWV (static checking)

Random k-SAT: 3-SAT (@ pt, large 4.2) 5-SAT (@ pt, large) 7-SAT (@ pt, large)

Captain Jack: <u>Tompkins</u>, Balint, Hoos

Performance Results

	3-SAT		5-SAT		7-SAT				
	1k	10k	100	500	60	90	IL50k	CBMC	SWV
Captian Jack <	2.06	1.00	1.72	3.66	1.83	4.43	1.00	4.38	1.59
Sparrow*	1.88	5.07	1.00	3.87	1.00	2.08	1.65	867	1.54
VE-Sampler*	2.46							1.00	1.00
SATenstein*	1.00	1.67	1.17	1.00	1.14	2.19	1.42	7.75	1.62
ТММ	2.25	15.96	1.22	8.20	2.37	1.96	422	6,563	1.62
gNovelty+2	2.35	60.15	1.50	3.38	1.36	1.42	2,291		
AG2009++	2.28	54.81	1.17	7.35	1.90	1.00	8.27	40,837	1.48

time relative to fastest solver [PAR10]

Greedy Properties (%)

	3-SAT		5-SAT		7-S	SAT			
	1k	10k	100	500	60	90	IL50k	CBMC	SWV
make*		40	3				19	15	
break*		10	3		50	47	9	6	9
score*	10	10	3	20		3	71	27	12
sparrowScore ₂	79	40	90	78	50	47			3
scoreRatio*	10			2				52	75

property weights as percentages, values \leq 1 not shown

Diversification Properties

	3-SAT		5-SAT		7-SAT				
	1k	10k	100	500	60	90	IL50k	CBMC	SWV
random/flat/fair	15	11	2	46		52	2	6	2
last	15	5	4		10	13			
age*	59	75	87	51	84	18	47	46	47
flips*	4		2				48	42	45
flops*	8	10	5	3	3	18	3	7	4

property weights as percentages, values \leq 1 not shown

Age-based Properties

	3-SAT		5-SAT		7-SAT				
	1k	10k	100	500	60	90	IL50k	CBMC	SWV
age	4	10	33		3	13			3
age ₁		20	16				43		
age ₅	15	40	4		20			42	44
ageRange	7			3					
sparrowAge	29				20	2	3		
tabu	4	5	33	44	41	3			

property weights as percentages, values \leq 1 not shown

Cross-Testing

Configuration	3-SAT		5-SAT		7-SAT		11.501	CPMC	SWV
	1k	10k	100	500	60	90	ILJUK	CDMC	5111
CJ [3sat1k]	(1)	61.5	1.38	95.7	1.08	1.03	157	5 876	1.02
CJ [3sat10k]	2.65	(1)	1.41	545	1.99	3.99	167	1 890	1.02
CJ [5sat100]	2.56	135	(1)	93.2	1.18	0.72	170	7 108	1.03
CJ [5sat500]	24.3	200	1.35	1	1.00	0.97	1 271	10014	1.00
CJ [7sat60]	99.1	200	0.82	539	1	2.33	786	9 989	1.02
CJ [7sat90]	105	200	1.82	12.1	1.44	1	1 929	3 088	0.98
CJ [IL50k]	16.6	200	4.50	567	2.20	15.8		1106	0.83
CJ [CBMC]	19.9	200	6.71	483	2.97	7.70	1 2 3 6	1	1.02
CJ [SWV]	148	200	17.6	567	9.47	79.2	2.29	2.43	1

time relative to target configuration [PAR10]

Additional Observations

No promising steps for CMBC & SWV

- Mixed Steps were preferred
- Variable Selection:
 - No clear winner between: Max/Probability Distribution
- No clear results on clause-length settings

Key Contributions

- CJ is a new *highly parametric* SLS algorithm
- Introduced several new variable properties
- Performs well on both random, industrial* and industrial-like
- Insights into configurations and properties used on different instances

Future Work

- age_k properties
- framework to introduce new properties
- "knock-out" algorithm properties
- adaptive strategies
- lead to specialized light-weight algorithms

