
Universal hash families and the leftover hash

lemma, and applications to cryptography and

computing

D.R. Stinson

Department of Combinatorics and Optimization

University of Waterloo

Waterloo Ontario, N2L 3G1, Canada

dstinson@uwaterloo.ca

Abstract

This paper is an expository treatment of the leftover hash lemma

and some of its applications in cryptography and complexity theory.

1 Introduction

The technique of universal hashing, introduced in 1979 by Carter and Weg-
man [6], has become an essential tool in many areas of computer science,
including derandomization, pseudorandom number generation and privacy
amplification, to mention three specific applications. It has been observed
that universal hash families are very closely related to combinatorial struc-
tures such as orthogonal arrays ([11]) and error-correcting codes ([15]), and
we will frequently make use of these connections. (For a survey, see Stinson
[21].)

Several random number generators related to strongly universal hash
families have been shown to have desirable quasirandomness properites; see
for example, [17]. (Quasirandomness provides a measure of how closely a
given probability distribution approximates the uniform distribution.) We
will give a self-contained, elementary treatment of this theory. The bounds
on quasirandomness that we provide are exact, rather than asymptotic.

We also provide a thorough discussion of the so-called leftover hash
lemma, which was proven by Impagliazzo, Levin and Luby in [12] (the
term “leftover hash lemma” was first coined in Impagliazzo and Zucker-
man [13]). We provide a simple combinatorial proof of this result, which is

1

also known as the “smoothing entropy theorem”. We survey several con-
sequences of this lemma, including the construction of extractors (which
are used in derandomization of probabilistic algorithms) and quasirandom
number generators (which are used in cryptography), as well as techniques
of privacy amplification (another cryptographic application). Finally, we
discuss how codes and orthogonal arrays can be used to provide simple
constructions of these objects for various parameter situations of interest.

This paper is mainly expository in nature, and we include proofs of
almost all the results in it. The remainder of the paper is organized as fol-
lows. In Section 2, we give several definitions and basic properties of differ-
ent flavours of universal hash families. In Section 3, we recall several useful
constructions of hash families. Section 4 presents, in an informal way, three
applications of universal hash families: quasirandom number generation,
privacy amplification, and derandomization. Section 5 presents the basic
theory and definitions relating to concepts such as distance between prob-
ability distributions, distinguishability of probability distributions, quasir-
andomness of probability distributions, collision probability, and different
types of entropies. In Section 6, we state and prove a basic combinatorial
lemma concerning an important quasirandom property of strongly univer-
sal hash families, and examine the applications of this lemma to certain
tyes of random number generators. In Section 7, we present the leftover
hash lemma, which concerns quasirandom properties of δ-universal hash
families, similar to those considered in the previous section. One applica-
tion of the leftover hash lemma is studied in Section 8, namely, the concept
of extractors, which are used for partial derandomization of probabilistic
algorithms in the class BPP. Another application, privacy amplification, is
studied in Section 9. Finally, we make some concluding remarks in Section
10.

2 Universal hash families

We begin by recalling some definitions of hash families.

• A (D; N, M) hash family is a set F of D functions such that f : X →
Y for each f ∈ F , where |X | = N and |Y | = M .

• A (D; N, M)-hash family, F , is δ-universal ([20]) provided that for
any two distinct elements x1, x2 ∈ X , there exist at most δD functions
f ∈ F such that f(x1) = f(x2). The parameter δ is often referred
to as the collision probability of the hash family. We will use the
notation δ-U as an abbreviation for δ-universal.

• A (D; N, M)-hash family, F , is strongly universal ([6]) provided that,

2

for any two distinct elements x1, x2 ∈ X , and for any two (not nec-
essarily distinct) elements y1, y2 ∈ Y , it holds that

|{f ∈ F : f(xi) = yi, i = 1, 2}| =
D

M2
.

We will use the notation SU as an abbreviation for strongly universal.

We will often depict a (D; N, M) hash family, say F , in the form of a
D × N array of M symbols, where the rows are indexed by the functions
in F , the columns are indexed by the elements in X , and the entry in row
f and column x of the array is f(x) (for every f ∈ F and every x ∈ X).
Each row of the array corresponds to one of the functions in the family.
We denote this array by A(F) and call it array representation of the hash
family F . If F is a δ-U (D; N, M) hash family, then in any two columns
of A(F), it follows that there exist at most δD rows of A(F) such that the
entries in the two given columns are equal.

Let Y be an alphabet of q symbols. An (n, K, d, q) code is a set C of K
vectors (called codewords) in Y n such that the Hamming distance between
any two distinct vectors in C is at least d. If the code is linear (i.e., if q
is a prime power, Y = Fq, and C is a subspace of (Fq)

n), then we will say
that the code is an [n, k, d, q] code, where k = logq K is the dimension of
the code.

The following equivalence was first observed by Bierbrauer, Johansson,
Kabatianskii and Smeets in [3].

Theorem 2.1 If there exists an (n, K, d, q) code, then there exists a (1 −
d
n
)-U (n; K, q) hash family. Conversely, if there exists an δ-U (D; N, M)

hash family, then there exists an (D, N, D(1 − δ), M) code.

Theorem 2.1 is proved by letting the codewords in the stated code cor-
respond to the columns of A(F), where F is the stated hash family.

Example 2.1 The following 1
3 -U (3; 9, 3) hash family {fi : i ∈ Z3} is

equivalent to a (3, 9, 2, 3) code:

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
f0 : 0 0 0 1 1 1 2 2 2
f1 : 0 1 2 1 2 0 2 0 1
f2 : 0 2 1 1 0 2 2 1 0

An orthogonal array OAλ(N, M) is a λM2 by N array of M symbols
such that, in any two columns of the array, each ordered pair of symbols

3

occurs in exactly λ rows. If F is an SU (D; N, M)-hash family, then it is
immediate that A(F) is an OAλ(N, M), where λ = D/M2. The converse
also holds, so we have the following theorem, which was first observed in
[19].

Theorem 2.2 An SU (D; N, M)-hash family is equivalent to an OAλ(N, M),
where λ = D/M2.

Example 2.2 The following SU (9; 3, 3) hash family {fi,j : i, j ∈ Z3} is
equivalent to an OA1(3, 3):

0 1 2
f0,0 : 0 1 1
f0,1 : 1 2 2
f0,2 : 2 0 0
f1,0 : 1 1 0
f1,1 : 2 2 1
f1,2 : 0 0 2
f2,0 : 1 0 1
f2,1 : 2 1 2
f2,2 : 0 2 0

3 Some Constructions of Hash Families

We give several constructions of hash families in this section. The main
idea in the following construction was used by Rao in 1947 ([18]) using the
language of orthogonal arrays.

Theorem 3.1 Let ℓ be a positive integer and let q be a prime power. Let
X ⊆ (Fq)

ℓ be any collection of pairwise linearly independent vectors over
Fq. For every ~r ∈ (Fq)

ℓ, define a function f~r : X → Fq by the rule

f~r(~x) = ~r · ~x.

Finally, define
F(q, ℓ, X) = {f~r : ~r ∈ (Fq)

ℓ}.

Then F(q, ℓ, X) is an SU (qℓ; |X |, q)-hash family.

Proof. Clearly we have a (qℓ; |X |, q)-hash family. We need to prove that it
is SU. Let ~x1, ~x2 ∈ (Fq)

ℓ (where ~x1 6= ~x2) and let y1, y2 ∈ Fq. We want to
count the number of vectors ~r ∈ (Fq)

ℓ such that

~r · ~x1 = y1

4

and
~r · ~x2 = y2.

Now ~x1 and ~x2 are linearly independent vectors over Fq. If we denote
~r = (r1, . . . , rℓ), we have a linearly independent system, in Fq, of two
equations in the ℓ unknowns r1, . . . , rℓ. There are therefore exactly qℓ−2

solutions for the vector ~r, and the hash family is SU.

We present a couple of corollaries of Theorem 3.1. The hash family
constructed in Corollary 3.2 is equivalent to the classical desarguesian affine
plane of order q.

Corollary 3.2 Let q be a prime power. For a, b ∈ Fq, define fa,b : Fq → Fq

by the rule
fa,b(x) = ax + b.

Then {fa,b : a, b ∈ Fq} is an SU (q2; q, q)-hash family.

Proof. Take ℓ = 2 and let X = Fq × {1}. Then apply Theorem 3.1.

The hash family presented in Corollary 3.3 was proposed in [5].

Corollary 3.3 Let ℓ be a positive integer and let q be a prime power. Let
X = {0, 1}ℓ\{(0, . . . , 0)}. For every ~r ∈ (Fq)

ℓ, define f~r : X → Fq by the
rule

f~r(~x) = ~r · ~x.

Then {f~r : ~r ∈ (Fq)
ℓ} is an SU (qℓ; 2ℓ − 1, q)-hash family.

In the constructions we have presented so far, the hash functions are
all linear functions. A construction for an SU hash family of quadratic
functions was presented in [8].

Theorem 3.4 Let q be an odd prime power. For a, b ∈ Fq, define fa,b :
Fq → Fq by the rule

fa,b(x) = (x + a)2 + b.

Then {fa,b : a, b ∈ Fq} is an SU (q2; q, q)-hash family.

Proof. Clearly we have a (q2; q, q)-hash family. We prove that it is SU: Let
x1, x2 ∈ Fq (where x1 6= x2) and let y1, y2 ∈ Fq. We want to show that the
number of ordered pairs (a, b) ∈ (Fq)

2 such that

(x1 + a)2 + b = y1

and
(x2 + a)2 + b = y2

is a constant. Subtracting the two equations, we can solve uniquely for a:

a =
y1 − y2

2(x1 − x2)
−

x1 + x2

2
.

Then, given a, we obtain a unique solution for b.

5

It is interesting to note that the hash family constructed in Theorem
3.4 is also equivalent to the desarguesian affine plane of order q. The SU

(9; 3, 3) hash family presented in Example 2.2 is an application of Theorem
3.4.

In view of Theorem 2.1, we can construct many δ-U hash families from
codes. For example, using Reed-Solomon codes, we obtain the following
construction which was pointed out in [3].

Theorem 3.5 Let q be a prime power and let 1 ≤ k ≤ q − 1. For a ∈ Fq,
define fa : (Fq)

k → Fq by the rule

fa(x0, . . . , xk−1) = x0 +

k−1
∑

i=1

xia
i.

Then {fa : a ∈ Fq} is a k−1
q

-U (q; qk, q) hash family.

Proof. Clearly we have a (q; qk, q)-hash family. We prove that it is k−1
q

-U:
Let

(x0, . . . , xk−1), (x
′
0, . . . , x

′
k−1) ∈ (Fq)

k

be two different vectors. We want to determine (an upper bound on the)
the number of elements a ∈ Fq such that

k−1
∑

i=0

xia
i =

k−1
∑

i=0

x′
ia

i.

This is equivalent to
k−1
∑

i=0

(xi − x′
i)a

i = 0.

Since a non-zero polynomial of degree at most k − 1 over a field Fq has at
most k − 1 roots, it follows that there are at most k − 1 values of a for
which this equation holds. Therefore the hash family is k−1

q
-U.

The following construction is given in [21] (it is in fact based on a 1952
construction for difference matrices due to Bose and Bush [4]).

Theorem 3.6 Let q be a prime power and let s and t be positive integers
such that s ≥ t. Let φ : Fqs → (Fq)

t be any surjective q-linear mapping
(i.e., φ(x + y) = φ(x) + φ(y) for all x, y ∈ Fqs , and φ(ax) = aφ(x) for all
a ∈ Fq, x ∈ Fqs). For every a ∈ Fqs , define fa : Fqs → (Fq)

t by the rule

fa(x) = φ(ax).

Then {fa : a ∈ Fqs} is a 1
qt -U (qs; qs, qt) hash family.

6

Proof. Clearly we have a (qs; qs, qt)-hash family. We prove that it is 1
qt -U:

Let x1, x2 ∈ Fqs , x1 6= x2. We want to determine (an upper bound on the)
the number of elements a ∈ Fq such that

φ(ax1) = φ(ax2).

Since φ is linear, this is equivalent to

φ(a(x1 − x2)) = 0.

Now, since φ is surjective and linear, we have that |ker(φ)| = qs−t. Since
x1−x2 6= 0, there are exactly qs−t values of a such that a(x1−x2) ∈ ker(φ).
Therefore the hash family is 1

qt -U, as desired.

It is possible to take the composition of two hash families whenever
the domain of the functions in one family is the same as the range of the
functions in the other family. We now recall a composition construction
from [20] which allows us to compose a δ1-U hash family with a δ2-U hash
family and obtain a (δ1+δ2)-U hash family. (This procedure can be thought
of as constructing a concatenated code.)

Theorem 3.7 Suppose F1 is a δ1-U (D1; N, M1) hash family of functions
from X to Y1, and F2 is a δ2-U (D2; M1, M2) hash family of functions from
Y1 to Y2. For any f1 ∈ F1, f2 ∈ F2, define f1 ◦ f2 : X → Y2 by the rule
f1 ◦ f2(x) = f2(f1(x)). Then

{f1 ◦ f2 : f1 ∈ F1, f2 ∈ F2}

is a (δ1 + δ2)-U (D1D2; N, M2) hash family.

Proof. Fix any two distinct elements x, x′ ∈ X . We want to compute
an upper bound on the number of pairs (f1, f2) such that f2(f1(x)) =
f2(f1(x

′)). Let G = {f1 ∈ F1 : f1(x) = f1(x
′)}. Clearly |G| ≤ δ1D1, and

for any f1 ∈ G, it holds that f2(f1(x)) = f2(f1(x
′)) for all f2 ∈ F2.

Now, if f1 ∈ F1\G, then f1(x) 6= f1(x
′). For every f1 ∈ F1\G, it fol-

lows that there are at most δ2D2 functions f2 ∈ F2 such that f2(f1(x)) =
f2(f1(x

′)). Therefore the total number of pairs (f1, f2) such that f2(f1(x)) =
f2(f1(x

′)) is at most

|G|D2 + (D1 − |G|)δ2D2 ≤ |G|D2 + D1δ2D2

≤ δ1D1D2 + D1δ2D2

= (δ1 + δ2)D1D2.

Therefore the hash family is (δ1 + δ2)-U.

7

4 Three Applications

In this section, we present three interesting applications of universal hash
families.

4.1 Quasirandom Number Generation

Our first application uses strongly universal hash families for quasirandom
number generation. Suppose that F is an SU (D; N, M)-hash family of
functions from X to Y . A particular function f ∈ F is chosen randomly
and kept secret. Then one or more values x ∈ X are chosen using a
specified probability distribution p on X . For each x that is chosen, the
value y = f(x) is computed and outputted. The objective is that result-
ing distribution of the values y that are outputted is “close to uniform”.
Using the theory that we develop later in the paper, it can be shown that
the strongly universal property implies that this objective is met for most
choices of f ∈ F , provided that the parameters D, N and M are cho-
sen appropriately and the probability distribution p is reasonably close to
uniform.

The BPV generator (see [5]) provides a nice example of the above-
described technique. This generator uses Corollary 3.3 as follows. Let p
be prime. The set X consists of all 2ℓ − 1 non-zero binary ℓ-tuples. Now,
a vector ~r ∈ (Zp)

ℓ is chosen at random. This determines a fixed function
f~r ∈ F(p, ℓ, X). Then random choices of ~x are made, and for each ~x that
is selected, the value f~r(~x) is computed and outputted.

The BPV generator is useful because it allows a convenient method of
precomputation to speed up random number generation. This could be
useful in the context of implementing signature schemes on a constrained
device such as a smart card. Suppose we want to implement an ElGamal-
type signature scheme which requires computing a pair (y, αy) for a secret
random value y, where α generates a cyclic subgroup of a finite field Fp,
for some prime, p. We might use the BPV generator in order to generate
the required y-values, i.e., y = f~r(~x) = ~r · ~x where ~x ∈ {0, 1}ℓ is chosen
randomly and ~r = (r1, . . . , rℓ) ∈ (Fp)

ℓ is fixed. If we precompute the values
αr1 , . . . , αrℓ and store them, then

αy =
∏

{i:xi=1}

αri

can be computed by multiplying together a subset of these ℓ precomputed
values. This replaces an exponentiation modulo p by (at most) ℓ − 1 mul-
tiplications in Fp.

8

4.2 Derandomization

A BPP (bounded-error probabilistic polynomial time) algorithm is a ran-
domized algorithm, say A, for a decision problem, that returns the correct
answer (“yes” or “no”) for any possible problem instance I with probabil-
ity at least 3/4. The algorithm A chooses a random value y ∈ Y , where Y
is a specified finite set, and then proceeds deterministically, computing an
output that is denoted A(I, y). The algorithm A should have the property
that, for any instance I, A(I, y) yields the correct answer for at least 3|Y |/4
of the values y ∈ Y .

Suppose that A uses m random bits to choose the random value y ∈ Y
(so |Y | = 2m). Then we can decrease the probability of error as follows:

1. Choose k values y1, . . . , yk ∈ Y uniformly at random;

2. Run A(I, yi) for 1 ≤ i ≤ k; and

3. Take the majority output (“yes” or “no”) as the final answer.

Using the Chernoff bound, it is not hard to show that the error probability
is reduced to 2−Ω(k) by this method; however, we require km random bits
to apply this technique.

Deterministic amplification is any method of partial derandomization
of a probabilistic algorithm. The goal is to reduce the error probability
as much as possible, while requiring fewer random bits than the method
described above. (In general, there will be a tradeoff between the number
of random bits used and the error probability.)

The following is a useful technique for deterministic amplification: Sup-
pose that F is a δ-U (D; N, M)-hash family of functions from X to Y , where
M = 2m. Further, as described above, suppose that we have a randomized
algorithm, say A, in the class BPP, in which each run of the algorithm
depends on a random value chosen from the set Y . Let I be any problem
instance, and consider the following algorithm:

1. Choose a random element x ∈ X ;

2. Run the algorithm A(I, f(x)) for all f ∈ F ;

3. Take the majority output (“yes” or “no”) as the final answer.

We show in §8 that the resulting error probability can be bounded as a
function of the error probability of A by using “extraction” properties of
δ-U (D; N, M)-hash families. Similar techniques can be used for determin-
istic amplification of RP (randomized polynomial) algorithms, which are
probabilistic algorithms having (bounded) one-sided error. (For a survey
on these topics, see [16].)

9

4.3 Privacy Amplification

The concept of privacy amplification is due to Bennett, Brassard and
Robert ([2]). Suppose that two parties, Alice and Bob, can carry out a
key agreement protocol using quantum cryptography, at the end of which
they each know the value of some element x ∈ X . An eavesdropper, Eve,
has some partial information on the value of x, which is specified by a prob-
ability distribution p on X . Alice and Bob do not know the probability
distribution p but they have some information about the non-uniformity of
the distribution p, as specified by its collision probability, for example (this
concept will be defined in §5.5).

Now, suppose that F is a δ-U (D; N, M)-hash family of functions from
X to Y . A particular function f ∈ F is chosen randomly by Alice and Bob
and kept secret. Alice and Bob can both compute the value y = f(x). The
objective is that Eve should have very little information about the value
of y. We will show in §9 how Eve’s knowledge about y can be bounded
suitably, given the parameters D, N and M and a measure of the non-
uniformity of p.

5 Statistical Distance and Quasirandomness

Suppose that F is an SU hash family of functions from X to Y . One
main result we will prove is that, with high probability (with respect to the
function f ∈ F), the values f(x) have a close to uniform distribution when
x ∈ X is chosen using a close to uniform distribution. We quantify the
notion of “close to uniform distribution” in this section, using the notions
of statistical distance and quasirandomness. We also present some basic
definitions and results on topics such as collision probability and entropy
of probability distributions.

5.1 Probability Spaces and Random Variables

We begin with a few standard definitions concerning probability spaces
and random variables. A finite probability space is a pair (Y, p), where
Y is a finite set and p is a probability distribution on Y . The uniform
probability distribution on Y is denoted uY ; it assigns probability 1/|Y | to
every element y ∈ Y . A random variable on a finite probability space (Y, p)
is a function Y : Y → R.

The expectation of Y, denoted E(Y), is defined to be

E(Y) =
∑

y∈Y

p(y)Y(y).

10

The variance of Y, denoted var(Y), is defined to be

var(Y) = E(Y2) − (E(Y))2 = E((Y − E(Y))2).

If we wish to emphasize the dependence on the particular probability dis-
tribution p, we may use the notation Ep(Y) and varp(Y).

We state the following fundamental results from probability theory
without proof.

Lemma 5.1 (Chebyshev’s inequality) For any random variable Y, it
holds that

Pr[|Y(y) − E(Y)| ≥ ǫ] ≤
var(Y)

ǫ2
.

Lemma 5.2 (Jensen’s inequality) Suppose that I ⊆ R is an interval,
Y is a random variable taking on values in I, and f : I → R is strictly
concave on the interval I. Then it holds that

E(f(Y)) ≤ f(E(Y)).

By taking f(x) = −x2 and I = R, we obtain the following corollary:

Corollary 5.3 For any random variable Y, it holds that

(E(Y))2 ≤ E(Y2).

By taking f(x) = log x and I = (0,∞), we obtain the following corol-
lary:

Corollary 5.4 For any random variable Y taking on positive values, it
holds that

logE(Y) ≥ E(logY).

5.2 Statistical Distance

Let p and q be two probability distributions on the set Y . We define the
statistical distance between p and q, denoted d(p, q), as follows:

d(p, q) =
1

2

∑

y∈Y

|p(y) − q(y)|.

It is easily seen that 0 ≤ d(p, q) ≤ 1 for all probability distributions p
and q. Another elementary property is given in the following lemma.

11

Lemma 5.5 Let p and q be two probability distributions on the set Y .
Then it holds that

∑

y∈Y

max{p(y), q(y)} = d(p, q) + 1.

Proof. Let Yp = {y ∈ Y : p(y) ≥ q(y)}. Then

d(p, q) =
1

2

∑

y∈Yp

(p(y) − q(y)) +
1

2

∑

y∈Y \Yp

(q(y) − p(y))

=
1

2

∑

y∈Yp

p(y) −
1

2

∑

y∈Y \Yp

p(y) −
1

2

∑

y∈Yp

q(y) +
1

2

∑

y∈Y \Yp

q(y)

=
1

2

∑

y∈Yp

p(y) −
1

2

1 −
∑

y∈Yp

p(y)

−
1

2

∑

y∈Yp

q(y)

+
1

2

1 −
∑

y∈Yp

q(y)

=
∑

y∈Yp

p(y) −
∑

y∈Yp

q(y).

However, we also have that

∑

y∈Y

max{p(y), q(y)} =
∑

y∈Yp

p(y) +
∑

y∈Y \Yp

q(y)

=
∑

y∈Yp

p(y) + 1 −
∑

y∈Yp

q(y).

It therefore follows that
∑

y∈Y

max{p(y), q(y)} = d(p, q) + 1.

Let p be any probability distribution on the set Y . For any Y0 ⊆ Y ,
define

p(Y0) =
∑

y∈Y0

p(y).

Lemma 5.6 Let p and q be two probability distributions on the set Y .
Then it holds that

d(p, q) = max{|p(Y0) − q(Y0)| : Y0 ⊆ Y }.

12

Proof. Define Yp as in the proof of Lemma 5.5. Note that

|p(Yp) − q(Yp)| =
∑

y∈Yp

(p(y) − q(y)).

We showed in the proof of Lemma 5.5 that

∑

y∈Yp

(p(y) − q(y)) = d(p, q).

Therefore, |p(Yp) − q(Yp)| = d(p, q). It is also easy to see that

q(Y \Yp) − p(Y \Yp)| = d(p, q).

To complete the proof, we show that |p(Yp) − q(Yp)| ≥ |p(Y0) − q(Y0)|
for all Y0 ⊆ Y . Let Y0 ⊆ Y , and denote Y1 = Y0∩Yp and Y2 = Y0∩(Y \Yp).
Observe that p(Y1) − q(Y1) > 0 and p(Y2) − q(Y2) < 0. Then we have that

p(Y0) − q(Y0) = p(Y1) − q(Y1) + (p(Y2) − q(Y2))

≤ p(Y1) − q(Y1)

≤ p(Yp) − q(Yp) since Y1 ⊆ Yp

= |p(Yp) − q(Yp)|.

Similarly,

q(Y0) − p(Y0) = q(Y2) − p(Y2) + (q(Y1) − p(Y1))

≤ q(Y2) − p(Y2)

≤ q(Y \Yp) − p(Y \Yp) since Y2 ⊆ Y \Yp

= |p(Yp) − q(Yp)|.

Therefore we have that

|p(Y0) − q(Y0)| ≤ |p(Yp) − q(Yp)|,

as desired.

Example 5.1 Consider the following two probability distributions p and
q on the set {y1, y2, y3, y4}:

p(yi) q(yi)
y1 1/3 1/4
y2 1/3 1/4
y3 1/6 1/4
y4 1/6 1/4

13

We can compute d(p, q) by any one of the three methods described above.
Using the definition of distance, we compute

d(p, q) =
1

2
× 4 ×

1

12
=

1

6
.

If we use Lemma 5.5, then we compute

d(p, q) = 2 ×
1

3
+ 2 ×

1

4
− 1 =

1

6
.

Finally, using Lemma 5.6, we have

d(p, q) = p({y1, y2}) − q({y1, y2}) =
2

3
−

1

2
=

1

6
.

We get the same answer in each case, of course!

5.3 Distinguishability

Statistical distance of probability distributions is related to the concept of
distinguishability. Let p0 and p1 be two probability distributions on the set
Y . Consider the probability distribution q defined on the set Y by choosing
i ∈ {0, 1} uniformly at random, and then choosing y ∈ Y with probability
pi(y). It is easy to see that

q(y) =
p0(y) + p1(y)

2
.

A distinguisher is a function f : Y → {0, 1}. Intuitively, given a value
y ∈ Y chosen by the above method (i.e., according to the probability
distribution q), the distinguisher is trying to guess whether it is more likely
that i = 0 or i = 1. Suppose we denote by corr(f) the probability that the
distinguisher f makes a correct guess for i, given y. The probability that
the distinguisher f is correct, given y ∈ Y , is

pf(y)(y)

p0(y) + p1(y).

From this, it follows immediately that

corr(f) =
∑

y∈Y

p0(y) + p1(y)

2
×

pf(y)(y)

p0(y) + p1(y)
=
∑

y∈Y

pf(y)(y)

2
.

For each y ∈ Y , a distinguisher will maximize its probability of guessing
the value of i correctly by choosing i ∈ {0, 1} so that

pi(y) ≥ p1−i(y).

14

Therefore, the optimal distinguisher, denoted f∗, is defined as follows:

f∗(y) =

{

0 if p1(y) < p0(y)
1 if p1(y) ≥ p0(y).

The probability that the distinguisher f∗ is correct is

corr (f∗) =
∑

y∈Y

max{p0(y), p1(y)}

2
=

d(p0, p1) + 1

2
,

where the last equality follows from Lemma 5.5.
We can view f and f∗ as random variables on both of the probability

spaces (Y, p0) and (Y, p1). The following easily proven relation compares
the statistical distance of p0 and p1 to the expectation of f and f∗ over the
two probability spaces.

Lemma 5.7 Suppose that p0 and p1 are probability distributions defined
on a set Y . Then, for any f : Y → {0, 1}, it holds that

|E(fp1
) − E(fp0

)| ≤ E(f∗
p1

) − E(f∗
p0

) = d(p0, p1).

Proof. We first show that E(f∗
p1

) − E(f∗
p0

) = d(p0, p1). We compute

E(f∗
p1

) =
∑

y∈Y

f∗(y)p1(y)

=
∑

{y∈Y :p1(y)≥p0(y)}

p1(y).

Similarly,

E(f∗
p0

) =
∑

{y∈Y :p1(y)≥p0(y)}

p0(y).

Then it follows that E(f∗
p1

)−E(f∗
p0

) = d(p0, p1), as in the proof of Lemma
5.5.

We complete the proof by showing that |E(fp1
) − E(fp0

)| ≤ d(p0, p1).
This is seen as follows:

|E(fp1
) − E(fp0

)| = |p1(f
−1(1)) − p0(f

−1(1))| ≤ d(p0, p1),

where the inequality follows from Lemma 5.6.

15

5.4 Quasirandomness

Let (Y, p) be a finite probability space, let Y0 ⊆ Y , and let ǫ > 0 be a
real number Then we say that p is quasirandom within ǫ with respect to Y0

provided that
∣

∣

∣

∣

p(Y0) −
|Y0|

|Y |

∣

∣

∣

∣

≤ ǫ.

Further, p is quasirandom within ǫ provided that
∣

∣

∣

∣

p(Y0) −
|Y0|

|Y |

∣

∣

∣

∣

≤ ǫ

for all Y0 ⊆ Y .
Using the fact that uY (Y0) = |Y0|/|Y |, the following is an immediate

corollary of Lemma 5.6.

Lemma 5.8 Let uY be the uniform probability distribution on the set Y .
Then an arbitrary probability distribution p on the set Y is quasirandom
within ǫ if and only if d(p, uY) ≤ ǫ.

5.5 Collision Probability

Let (Y, p) be a probability space. The collision probability of the probability
distribution p is defined to be the quantity

∆p =
∑

y∈Y

(p(y))2.

Observe that ∆p = 1/|Y | if p = uY . We now prove a relationship between
collision probability and quasirandomness of a probability distribution that
is due to Impagliazzo and Zuckerman [13, Claim 2].

Lemma 5.9 Let (Y, p) be a probability space. Then p is quasirandom
within

√

∆p|Y | − 1/2.

Proof. Let |Y | = M . Using the fact that ∆p =
∑

(p(y))2, it follows that

∑

y∈Y

(

p(y) −
1

M

)2

= ∆p −
1

M
.

Let Y be the random variable on the probability space (Y, uY) defined by
the formula Y(y) = |p(y) − (1/M)|. Then

E(Y2) =
1

M

(

∆p −
1

M

)

=
∆pM − 1

M2
.

16

Applying Corollary 5.3, we have that

E(Y) ≤
√

E(Y2) =

√

∆pM − 1

M
.

Now we compute

d(p, uY) =
1

2

∑

y∈Y

∣

∣

∣

∣

p(y) −
1

M

∣

∣

∣

∣

=
M

2
× E(Y) ≤

√

∆pM − 1

2
.

5.6 Shannon, Renyi and Min Entropy

Let (Y, p) be a probability space. The Renyi entropy of (Y, p), denoted
hRen(p), is defined to be

hRen(p) = − log2 ∆p.

The min entropy of (Y, p), denoted hmin(p), is defined to be

hmin(p) = min{− log2 p(y) : y ∈ Y } = − log2(max{p(y) : y ∈ Y }).

The Shannon entropy of (Y, p), denoted h(p), is defined to be

h(p) = −
∑

y∈Y

p(y) log2 p(y).

Observe that the uniform distribution uY has

h(uY) = hRen(uY) = hmin(uY) = log2 |Y |.

The following lemma is easy to prove.

Lemma 5.10 Let (Y, p) be a probability space. Then hRen(p)/2 ≤ hmin(p) ≤
hRen(p) ≤ h(p).

Proof. First, we have that

(max{p(y) : y ∈ Y })2 ≤
∑

(p(y))2.

This implies that hRen(p)/2 ≤ hmin(p).
Next, we observe that

∑

(p(y))2 ≤
∑

(p(y) × max{p(y) : y ∈ Y }) = max{p(y) : y ∈ Y }.

17

It therefore follows that hmin(p) ≤ hRen(p).
Finally, we define the random variable Y on the probability space (Y, p)

by the rule Y(y) = p(y). Note that E(Y) =
∑

(p(y))2 and E(log Y) =
∑

p(y) log p(y). Now apply Corollary 5.4, obtaining the following:

log
(

∑

(p(y))2
)

≥
∑

p(y) log p(y).

It therefore follows that hRen(p) ≤ h(p).

Several results in the literature on the applications described in §4 in-
volve probability distributions with specified bounds on their min or Renyi
entropy. The significance of the above lemma is that these two quantities
differ by a factor of two at most, so they can be used essentially inter-
changably (up to a constant factor). We will generally state our results in
terms of collision probability in this paper.

6 Quasirandomness of SU Hash Families

In this section, we will state and prove some results regarding quasiran-
domness of SU hash families. We provide a somewhat simpler treatment
of several theorems from [17]. Our approach is similar to that used in [9,
§B.2].

Suppose that (X, p) is a finite probability space and F is any SU

(D; N, M)-hash family of functions from X to Y . For any f ∈ F , define
the induced probability distribution on qf on Y as follows:

qf (y) =
∑

x∈f−1(y)

p(x)

for all y ∈ Y . qf (y) is the probability that the output of the function f
takes on the value y, given that x ∈ X is chosen using the probability
distribution p.

For any y ∈ Y , we define a random variable χy on the probability space
(F , uF) as follows:

χy(f) = qf (y)

for all f ∈ F . It is easy to see that

∑

f∈F

χy(f) =
D

M
.

Hence, we have that

E(χy) =
1

M
. (1)

We now prove the following important combinatorial lemma.

18

Lemma 6.1 Suppose that (X, p) is a finite probability space and F is any
SU (D; N, M)-hash family of functions from X to Y . Let y ∈ Y , and let
χy be the random variable on F that was defined above. Then it holds that

∑

f∈F

(χy(f))2 =
D(1 + (M − 1)∆p)

M2
.

Proof.

∑

f∈F

(χy(f))2 =
∑

f∈F

∑

x∈f−1(y)

p(x)

2

=
∑

f∈F

∑

x1∈f−1(y)

∑

x2∈f−1(y),x2 6=x1

p(x1)p(x2)

+
∑

f∈F

∑

x∈f−1(y)

(p(x))2

=
D

M2

∑

x1∈X

∑

x2∈X,x2 6=x1

p(x1)p(x2) +
D

M

∑

x∈X

(p(x))2

=

(

D

M2

)

(1 − ∆p) +

(

D

M

)

∆p

=
D(1 + (M − 1)∆p)

M2
.

Example 6.1 We present an SU (9; 3, 3)-hash family, with a particular
probability distribution p imposed on X . In the last column of the following
table, we record the values of χ0:

p(0) = 1/2 p(1) = 1/4 p(2) = 1/4 χ0

f0,0 0 1 1 1
2

f0,1 1 2 2 0

f0,2 2 0 0 1
2

f1,0 1 1 0 1
4

f1,1 2 2 1 0

f1,2 0 0 2 3
4

f2,0 1 0 1 1
4

f2,1 2 1 2 0

f2,2 0 2 0 3
4

19

Then we have

∑

(χ0(fa,b))
2 =

7

4
=

9
(

1 + (3 − 1)
(

(

1
2

)2
+
(

1
4

)2
+
(

1
4

)2
))

32
,

as was shown in Lemma 6.1.

As an immediate corollary of Lemma 6.1, we have that

E(χy
2) =

1 + (M − 1)∆p

M2
. (2)

Now, using Equations (1) and (2), we obtain the following:

var(χy) = E(χy
2) − (E(χy))2 =

(M − 1)∆p

M2
.

Then, applying Chebyshev’s inequality (Lemma 5.1), we have that

Pr[|χy(f) − E(χy)| ≥ ǫ] ≤
(M − 1)∆p

ǫ2M2
.

Finally, observe that

|χy(f) − E(χy)| =

∣

∣

∣

∣

qf (y) −
1

M

∣

∣

∣

∣

.

Therefore qf is quasirandom with respect to y if and only if

|χy(f) − E(χy)| ≤ ǫ,

and we have proven the following, which is a slight generalization of [9,
Lemma B.3] and [17, Theorem 5].

Theorem 6.2 Suppose that (X, p) is a finite probability space and F is
any SU (D; N, M)-hash family of functions from X to Y . Let y ∈ Y be
fixed, and let f ∈ F be chosen randomly. Then the probability that qf is
not quasirandom within ǫ with respect to y is at most

(M − 1)∆p

ǫ2M2
.

The preceding result can be generalized to handle the situation of
quasirandomness with respect to any Y0 ⊆ Y . The following can be proven
easily in a similar fashion.

20

Theorem 6.3 Suppose that (X, p) is a finite probability space and F is
any SU (D; N, M)-hash family of functions from X to Y . Let Y0 ⊆ Y be
fixed, and let f ∈ F be chosen randomly. Then the probability that qf is
not quasirandom within ǫ with respect to Y0 is at most

|Y0|(M − |Y0|)∆p

ǫ2M2
.

Theorem 6.4 Suppose that (X, p) is a finite probability space and F is
any SU (D; N, M)-hash family of functions from X to Y . Let f ∈ F be
chosen randomly. Then the probability that qf is not quasirandom within ǫ
is at most

∆pM(M − 1)

4ǫ2.

Proof. First, we observe that, if
∣

∣

∣

∣

qf (y) −
1

M

∣

∣

∣

∣

<
2ǫ

M

for all y ∈ Y , then d(qf , uY) ≤ ǫ, and hence qf will be quasirandom within
ǫ by Lemma 5.8.

Let f ∈ F be chosen at random. For any y ∈ Y , the probability that
∣

∣

∣

∣

qf (y) −
1

M

∣

∣

∣

∣

>
2ǫ

M

is at most
∆p(M − 1)

(2ǫ/M)2M2
=

∆p(M − 1)

4ǫ2
.

Since there are M choices for y ∈ Y , the probability that
∣

∣qf (y) − 1
M

∣

∣ >
2ǫ/M for some y ∈ Y is at most ∆pM(M − 1)/(4ǫ2). Hence, the result
follows.

7 Leftover Hash Lemma

In this section, we discuss and prove a general version of the so-called
“leftover hash lemma”. An early version of this was proven in [12]; see
also [1, 9, 13, 14] for closely related results. The leftover hash lemma
concerns the quasirandomness of the probability distribution r on the set
F×Y defined by choosing f ∈ F randomly, and then evaluating f(x) when
x ∈ X is chosen using the probability distribution p. Hence, r is defined as
follows:

r(f, y) =
qf (y)

D
=

χy(f)

D
.

21

The following lemma establishes a result similar to Lemma 6.1, under
the weaker assumption that F is a δ-U hash family. The proof of Lemma
7.1 is essentially identical to that of Lemma 6.1.

Lemma 7.1 Suppose that (X, p) is a finite probability space and F is any
δ-U (D; N, M)-hash family of functions from X to Y . For all y ∈ Y and
f ∈ F , let χy(f) = qf (y). Then it holds that

∑

y∈Y

∑

f∈F

(χy(f))2 ≤ D(δ + (1 − δ)∆p).

Example 7.1 We present a 1
2 -U (4; 4, 2)-hash family, with a particular

probability distribution p imposed on X . In the last two columns of the
following table, we record the values of χ0 and χ1:

p(0) = 1/2 p(1) = 1/6 p(2) = 1/6 p(3) = 1/6 χ0 χ1

f1 0 0 1 1 2
3

1
3

f2 0 0 0 0 1 0

f3 0 1 1 0 2
3

1
3

f4 0 1 0 1 2
3

1
3

Then we have

∆p =

(

1

2

)2

+

(

1

6

)2

+

(

1

6

)2

+

(

1

6

)2

=
1

3

and
1
∑

i=0

4
∑

j=1

(χi(fj))
2 =

8

3
= 4

(

1

2
+

(

1 −
1

2

)

1

3

)

,

so the bound of Lemma 7.1 is met with equality.

We now state the main result of this section, which follows immediately
from Lemma 7.1.

Theorem 7.2 Suppose that F is any δ-U (D; N, M)-hash family of func-
tions from X to Y . Suppose that p is a probability distribution on X, and
let r be the probability distribution that is induced on F × Y , as defined
above. Then

∆r ≤
δ + (1 − δ)∆p

D
.

22

Corollary 7.3 Suppose that F is any δ-U (D; N, M)-hash family of func-
tions from X to Y . Suppose that p is a probability distribution on X, and
let r be the probability distribution that is induced on F × Y , as defined
above. Then

d(uF×Y , r) ≤

√

M(δ + (1 − δ)∆p) − 1

2
.

Proof. Apply Lemma 5.9 and Theorem 7.2 .

8 Extractors

We begin with a definition. Suppose F is a δ-U (D; N, M)-hash family of
functions from X to Y . Let p be a probability distribution on X , and let
the probability distribution r be defined as in §7. We say that F is a (k, ǫ)-
extractor if d(uF×Y , r) < ǫ whenever hRen(p) ≥ k. The following result
provides a sufficient condition for a given hash family to be an extractor.

Theorem 8.1 A δ-U (D; N, M)-hash family is a (k, ǫ)-extractor if

√

M(δ + 2−k) − 1 ≤ 2ǫ

Proof. Apply Corollary 7.3 with ∆p = 2−k. Then

d(uF×Y , r) ≤

√

M(δ + (1 − δ)2−k) − 1

2
<

√

M(δ + 2−k) − 1

2
≤ ǫ.

We now prove that a (k, 1/4)-extractor allows the the error probability
of a BPP algorithm to be reduced to 2k/N , using the technique described
in §4.2. Suppose that F is a δ-U (D; N, M)-hash family of functions from
X to Y . Further, suppose that we have a randomized algorithm, say A, in
the class BPP, in which each run of the algorithm depends on a random
value chosen from the set Y . Let I be any problem instance; choose a
random element x ∈ X ; and run the algorithm A(I, f(x)) for all f ∈ F .
Define B(I, x) to be the the majority output (“yes” or “no”). The following
result, concerning the error probability of the algorithm B, is from [16].

Theorem 8.2 The error probability of the algorithm B, as described above,
is at most 2k/N .

Proof. Let I be any problem instance. Let Y0 ⊆ Y consist of all y-values
such that A(I, y) yields the wrong answer. Then |Y0| ≤ |Y |/4 = M/4. For
any x ∈ X , define Bx = {f ∈ F : f(x) ∈ Y0}. Bx consists of all functions

23

f such that A(I, f(x)) returns the wrong answer. Observe that B(I, x)
returns the wrong answer if and only if |Bx| ≥ D/2. Define X0 = {x ∈ X :
|Bx| ≥ D/2}. The error probability of the algorithm B is |X0|/N . We will
complete the proof by showing that |X0| ≤ 2k.

Define a probability distribution p on the set X as follows:

p(x) =

{ 1
|X0|

if x ∈ X0

0 if x ∈ X\X0.

It is not hard to prove that the induced probability distribution r satisfies

r(F × Y0) ≥
1

2
.

On the other hand, with respect to the uniform distribution on F × Y , we
have that

uF×Y (F × Y0) =
|Y0|

|Y |
≤

1

4
.

It therefore holds that

d(r, uF×Y) ≥
1

2
−

1

4
=

1

4
.

Now suppose that |X0| > 2k. Note that ∆p = 1/|X0|, so it follows that
hRen > k. Since our hash family is an extractor with ǫ = 1/4, if follows by
definition that

d(r, uF×Y) <
1

4
.

This contradiction proves that |X0| ≤ 2k, and the proof is complete.

It is clear that the number of random bits required by the algorithm
B is log2 N . (These random bits are required to choose a random value
x ∈ X .) Also, the number of trials required to run algorithm B (i.e., the
number of times that the algorithm A is run during the execution of B) is
D.

By using various types of δ-U hash families, we can use Theorem 8.2 to
obtain a variety of deterministic amplification techniques simply by plug-
ging the parameters of the hash families into Theorem 8.1. As an illus-
tration, we show that the two-point sampling technique of Chor and Gol-
dreich [7] can be viewed as a special case of this general approach. We let
M = 2m, and construct a 1

M
-U (M ; M2, M)-hash family using Theorem

3.5 with k = 2. Theorem 8.1 says that this hash family is an (m + 2, 1/4)-
extractor. Therefore the probability amplification result proved in Theorem
8.2 reduces the error probability to 4/M using 2 log2 M random bits and
M trials.

24

In the above example, the error probability is proportional to the recip-
rocal of the number of trials. In general, it is desired to find a probability
amplification technique in which the error probability decreases exponen-
tially quickly as a function of the number of trials, such as is the case when
each trial uses independent random bits (as discussed in §4.2). We present
a new, simple amplification technique of this type, using hash families that
are a slightly modified version of some hash families used for the purpose
of unconditionally secure authentication (see [3]).

We require two ingredients. First, applying Theorem 3.5 with q = 2a+m

and k = 2a−3, we obtain a

1
2m+3 -U (2a+m; 2(a+m)2a−3

, 2a+m)

hash family. The second ingredient is a

1
2m -U (2a+m; 2a+m, 2m)

hash family, which exists by applying Theorem 3.6 with q = 2, t = m and
s = a + m. Now we compose the two hash families using Theorem 3.7. We
get a hash family with parameters

9
8×2m -U (22a+2m; 2(a+m)2a−3

, 2m).

Using Theorem 8.1, it is easily verified that this hash family is an (m +
3, 1/4)-extractor. Now, if we denote t = (a + m)2a−3 − (m + 3), then we
can use Theorem 8.2 to reduce the error probability of a BPP algorithm to
2−t using m + t + 3 random bits and 22a+2m = O(t2) trials.

9 Privacy Amplification

In this section, we present some very interesting results on privacy am-
plification that can be found in [1]. These results can also be viewed as
applications of the leftover hash lemma. We use the same scenario as in the
two previous sections: F is a δ-U (D; N, M)-hash family of functions from
X to Y , p is a probability distribution on X , and the probability distribu-
tion r is defined as in the two previous sections. f ∈ F is chosen randomly
(i.e., using the uniform distribution uF on F); x ∈ X is chosen using the
probability distribution p; and then y = f(x) is computed. We consider
the probability distribution q induced on Y by this process. Clearly the
following relations hold:

q(y|f) = χy(f) = qf (y)

and

q(y) =
∑

f∈F

r(f, y) =
∑

f∈F

χy(f)

D
=
∑

f∈F

qf (y)

D
.

25

For any fixed f ∈ F , qf is a probability distribution on Y . Therefore we
can compute

hRen(qf) = − log2 ∆qf

= − log2

∑

y∈Y

(qf (y))2

= − log2

∑

y∈Y

(χy(f))2

 .

The Renyi entropy hRen(q|uF) is defined to be

hRen(q|uF) =
∑

f∈F

uF hRen(qf).

Hence, we have that

hRen(q|uF) = −
∑

f∈F

1

D
log2

∑

y∈Y

(χy(f))2

 . (3)

Applying Corollary 5.4, we have that

∑

f∈F

1

D
log2

∑

y∈Y

(χy(f))2

 ≤ log2

∑

f∈F

1

D

∑

y∈Y

(χy(f))2

 . (4)

Now Lemma 7.1 together with equations (3) and (4) imply the following
result proved in [1, Theorem 3]:

Theorem 9.1 hRen(q|uF) ≥ − log2(δ + ∆p).

We continue in the same fashion as [1], by stating and proving a conse-
quence of Theorem 9.1. We return to the setting of privacy amplification
introduced in Section 4.3.

Suppose that x ∈ X is chosen uniformly at random by Alice and Bob,
and Eve is given the value of z = e(x), where e : X → Z is a public
eavesdropping function. Then Alice and Bob randomly and secretly choose
f ∈ F , and use the value y = f(x) as their secret key.

For each z ∈ Z, define cz = |e−1(z)|. The probability distribution pz

on X , given the value z, is the following:

pz(x) =

{

1
cz

if x ∈ e−1(z)

0 if x 6∈ e−1(z).

26

Clearly we have ∆pz
= 1/cz for all z ∈ Z. Therefore, from Theorem 9.1, it

follows that hRen(q|uF , z) ≥ − log2(δ + 1/cz). (The notation hRen(q|uF , z)
means that the value z is fixed.)

Now we compute the average Renyi entropy hRen(q|uF , z) over all possi-
ble values of z. Since x ∈ X is shosen randomly and z = e(x), this average
should be computed using the probability distribution eZ on Z that is de-
fined as eZ(z) = cz/|X | = cz/N for all z ∈ Z. Now we can compute this
average entropy to be

hRen(q|uF , eZ) =
∑

z∈Z

eZ(z)hRen(q|uF , z)

≥ −
∑

z∈Z

cz

N
log2

(

δ +
1

cz

)

≥ − log2

(

∑

z∈Z

cz

N

(

δ +
1

cz

)

)

from Corollary 5.4

= log2 N − log2

(

∑

z∈Z

(1 + δcz)

)

= log2 N − log2 (|Z| + δN) .

Here is an interpretation of this result: Eve’s average (Shannon) infor-
mation about the key (i.e., the value of y), given z, is h(q) − h(q|uF , eZ),
where h denotes Shannon entropy. By a fundamental propoerty of Shannon
entropy, it holds that h(q) ≤ log2 |Y | = log2 M . As well, it holds that

h(q|uF , eZ) ≥ hRen(q|uF , eZ).

Using the bound on hRen(q|uF , eZ) proven above, we obtain the following
result proven in [1, Corollary 5].

Theorem 9.2 Eve’s average information about the key y = f(x), given
the value z = e(x), is at most

log2 M − log2 N + log2 (|Z| + δN) .

10 Remarks and Conclusion

We have discussed several variants of the leftover hash lemma and its ap-
plications in cryptography and complexity. We have tried to point out
the fundamental combinatorial nature of the lemma, and the similarity of
the various applications, all of which make use of basic inqualities from
probability theory such as Jensen’s and Chebyshev’s inequalites. We have

27

also emphasized the close connections between universal hash families, er-
ror correcting codes and orthogonal arrays. These links allow the easy
derivation of many useful classes of hash families via well-known results
from coding theory and combinatorial design theory (and we presented an
interesting new class of extractors using this approach). It is our belief that
coding theory is “right” way to view hash families and that the enormous
amount of research on coding theory in the last 50 or so years has not been
exploited to its full potential in the study of universal hash families and
their many applications.

Acknowledgements

D.R. Stinson’s research is supported by NSERC grants IRC #216431-96
and RGPIN #203114-98.

References

[1] C.H. Bennett, G. Brassard, C. Crépeau and U. Maurer. Generalized
privacy amplification. IEEE Transactions on Information Theory 41
(1995), 1915–1923.

[2] C.H. Bennett, G. Brassard and J-M. Robert. Privacy amplification by
public discussion. SIAM Journal on Computing 17 (1988), 210–229.

[3] J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets. On
families of hash functions via geometric codes and concatenation.
Lecture Notes in Computer Science 773 (1994), 331–342 (CRYPTO
’93).

[4] R.C. Bose and K.A. Bush. Orthogonal arrays of strength two and
three. Annals Math. Statistics 23 (1952), 508–524.

[5] V. Boyko, M. Peinado and R. Venkatesan. Speeding up discrete log
and factoring based schemes via precomputation. Lecture Notes in
Computer Science 1403 (1998), 221–235 (EUROCRYPT ’98).

[6] J.L. Carter and M.N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences 18 (1979), 143–154.

[7] B. Chor and O. Goldreich. On the power of two-point based sampling.
Journal of Complexity 5 (1989), 96–106.

[8] M. Etzel, S. Patel and Z. Ramzan. Square hash: fast message au-
thenticaiton via optimized universal hash functions, Lecture Notes in
Computer Science 1666 (1999), 234–251 (CRYPTO ’99).

28

[9] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseu-
dorandomness. Springer-Verlag, 1999.

[10] K. Gopalakrishnan and D.R. Stinson. A simple analysis of the er-
ror probability of two-point based sampling. Information Processing
Letters 60 (1996), 91–96.

[11] A.S. Hedayat, N.J.A. Sloane and J. Stufken. Orthogonal Arrays: The-
ory and Applications. Springer-Verlag, 1999.

[12] R. Impagliazzo, L. Levin and M. Luby. Pseudo-random generation
from one-way functions. In 21st ACM Symposium on Theory of Com-
puting, 1989, pp. 12–24.

[13] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
30th IEEE Symposium on Foundations of Computer Science, 1989,
pp. 248–253.

[14] M. Luby. Pseudorandomness and Cryptographic Applications. Prince-
ton University Press, 1996.

[15] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-correcting
Codes. North-Holland, 1977.

[16] N. Nisan and A. Ta-Shma. Extracting randomness: a survey and new
constructions. J. Comput. System Sci. 58 (1999), 148–173.

[17] P. Nguyen and J. Stern. The hardness of the hidden subset sum prob-
lem and its cryptographic application. Lecture Notes in Computer
Science 1666 (1999), 31–46 (CRYPTO ’99).

[18] C.R. Rao. Factorial experiments derivable from combinatorial ar-
rangements of arrays. Journal of the Royal Statistical Society 9
(1947), 128–139.

[19] D.R. Stinson. Combinatorial techniques for universal hashing. Jour-
nal of Computer and System Sciences 48 (1994), 337–346.

[20] D.R. Stinson. Universal hashing and authentication codes. Designs,
Codes and Cryptography 4 (1994), 369–380.

[21] D.R. Stinson. On the connections between universal hashing, combi-
natorial designs and error-correcting codes. Congressus Numerantium
114 (1996), 7–27.

[22] M.N. Wegman and J.L. Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System
Sciences 22 (1981), 265–279.

29

