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Abstract

Let H be the 3-hypergraph having edges {123,124,134} and points
{1,2,3,4}. A 3-hypergraph is H-free if it does not contain three edges
isomorphic to H. The integer ex(n, H) denotes the maximum number
of edges in any H-free hypergraph on n points. In this paper, it is
shown that de Caen’s upper bound, n?(n — 1)/18, cannot be met
for n > 6. Then the exact values for ex(n,H) for n = 9, 10, 11
and 12 are determined. Finally, an improvement to ex(13,H) is
given, which allows us to improve the upper bounds for ex(n,H)
for n = 14,...,24. Using these numbers, Mubayi’s asymptotic upper
bound is improved to 1/3 — 1.89820 x 107°.
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1 Introduction

A 3-hypergraph is a set system in which every edge (or block or triple) has
size three and in which there do not exist repeated blocks. Let H(4,3), or
H for brevity, be the 3-hypergraph having edges {123,124,134} and points
{1,2,3,4}. A 3-hypergraph is H-free if it does not contain three blocks
isomorphic to H. The integer ex(n, H) denotes the maximum number of
blocks in any H-free hypergraph on n points. Some results on ex(n, H) can
be found in [2, 3].
We define
r(H(4,3)) = lim 82,
n—oo (1)

For applications of H(4,3) to computer science see [4, 9]. In 1983, de Caen
[1] showed that ex(n, H) < n?(n — 1)/18. De Caen’s bound implies that
m(H(4,3)) < 1/3. Some efforts were made to improve de Caen’s bound
in both the asymptotic and non-asymptotic cases. In the asymptotic case,
Matthias [6] proved that m(H(4,3)) < 1/3 — 10719 Then Mubayi [8] im-
proved this result to m(H(4,3)) < 1/3 —0.45305 x 10~°. Just recently, Tal-
bot [10] has improved this to 7(H (4, 3)) < .32975. For the non-asymptotic
case, Deng et al. [2] proved that, for some instances where n?(n — 1)/18 is
not an integer, the bound could be improved. They also found ex(n, H) for
n=3,4,5,6,7 and 8.

In Section 2, we show that for n > 6, ex(n, H)< n?(n — 1)/18. In
Section 3, we describe a computer search to find the exact value for ex(n, H)
for n = 9. We then determine that ex(n, H) for n = 10,11, 12. Finally, in
Section 4, we show that ex(13, H) < 103, improving the currently best
known upper bound. We use this result to improve the upper bounds
on ex(n, H) for n = 14,...,24. In Section 5, we slightly modify Mubayi’s
method, use the upper bounds of ex(n, H) from Section 4 and use the exact
number of blocks in an H-free hypergraph to improve Mubayi’s bound to
m(H(4,3)) < 1/3 —1.89820 x 10~°. Note, however, that Talbot’s recent
bound is stronger than our bound.

2 If de Caen’s Bound is an Integer

If de Caen’s bound is an integer, then every pair must occur equally often
in the triples of the 3-hypergraph (see Theorem 5.14 in [2]). Then the 3-
hypergraph is a BIBD(n, 3, (n/3)), i.e., every element occurs n(n — 1)/6
times. We examine this situation in the next theorem. Originally we had
a long tedious proof from first principles, but we instead present a short
proof supplied by an anonymous referee.



Theorem 2.1. Suppose that n > 6 is an integer. If n =0,1,3,6 (mod 9),
then ex(n, H)< n?(n—1)/18—1. Ifn = 2,4,5,7,8 (mod 9), then ex(n, H)<
n?(n —1)/18.

Proof. Suppose such a system exists with n?(n — 1)/18 triples. If n is not
divisible by 3, then the number of pairs cannot all be equal and the bound
cannot be met. If n is divisible by 3, then the system is a simple (no
repeated blocks) (n = 3),3,\)-BIBD, where each pair zy occurs A times
in the system. Now if every four points span 0 or 2 triples, then, by Frankl
and Fiiredi ([3]), the number of triples in such a hypergraph is strictly less
than n?(n — 1)/18 for n > 6. These numbers are explicitly computed in
Theorem 3.4. So there must be a set of four points, say 1,2, 3,4, spanning
precisely one edge, say the triple {1, 2,3}. This means that 4 does not occur
with the pairs 12, 13 or 23 in any triple. Further, the elements that occur
with the pairs 12, 13 and 23 cannot be repeated, as otherwise we have H.
So one of them has size at most (n —4)/3 41 < A and our assumption that
ex(n, H) = n*(n — 1)/18 is false. 0

3 Computing ex(9, {123,124, 134})

The first n where the exact value of ex(n, H) is unknown is n = 9. It
has been previously shown that 32 < ex(9,{123,124,134}) < 33. In this
section, we describe how we showed that ex(9, {123, 124, 134}) = 32.

In order to determine the value of ex(9,{123,124,134}), we will use an
orderly backtracking algorithm which will try to find such a system with 33
triples. We begin by placing the lexicographical ordering on the (g) =84
triples given by Algorithm 2.7 of [5]. The rank of a triple is its position
in the ordering. At each stage of the algorithm, the next triple, T', chosen
must have rank larger than the rank of the triple chosen in the previous
stage. A choice set for each stage can now be defined. Suppose C; is the
choice set for stage i, and a T € C} is selected to be in the partial solution
as the i*" block of the partial solution. Then, C;,1 is the set of all triples in
C; whose rank is larger than that of 7" having the property that adding any
one of these triples to the partial solution (as the (i + 1)%* block) will keep
it H-free. C is initialized to contain all of the 84 triples. It is important
that the triples in the choice set be ordered (and selected) by increasing
rank.

In order to speed up the search, we will use an isomorphic rejection tech-
nique. For each partial solution with b triples, we form the b x 9 incidence
matrix B where row i of B is the characteristic vector of the i** triple. For
example, suppose the triples {1, 2,3}, {1,2,4} and {1, 3,5} are selected in
this order in the partial solution. Then the corresponding incidence matrix
is



11100 0O0O0O0
1101 0O0O0O0O0
10101 0O0O0TO0

The algorithm will reject a partial solution if its corresponding incidence
matrix is not in canonical form. We define the canonical form of an b x 9
matrix B in the following manner. First, define b(B) to be the binary string
obtained by concatenating the rows of B, so that the B[1][1] is the most
significant bit of the string. The order of the natural numbers can them be
used to define an ordering on all the b x 9 incidence matrices. We say that
the matrix B is in canonical form if for each B’ obtained by permuting the
rows and columns of B, we have b(B) > b(B'). A backtracking algorithm
from [7] can be used to determine if an incidence matrix is canonical or
not. We have included the pseudocode, as given by Algorithm 3.1, for
completeness. Here, 7 is a permutation of the columns, and M; is the i**
row of M. Before attempting to add a triple to the partial solution (which is
selected from the choice set), the search algorithm will determine if adding
the triple leads an incidence matrix in canonical form. If it does, we add
the triple to the partial solution and continue to the next stage. If not,
then it will not add the triple, and try to add the next triple in the choice
set.

Notice that if an incidence matrix B is in canonical form, the triple
corresponding to row ¢ has rank smaller than the rank of the triple corre-
sponding to row j, where ¢ < j. For if not, we can swap the two rows and
get a matrix B with b(B') < b(B). In addition, if B is canonical, then
it is easy to see that the matrix B*, formed using the all but the last row
of B, is also canonical. This implies that the way we define our choice set
and how we pick the next candidate triple to add to the partial solution is
consistent with the canonical test. We now state the pseudocode for the
search algorithm. Algorithm 3.2 is called with C; containing all 84 triples
and level set to 1 and stoplevel set to 34.

Using this algorithm, we were able to show that ex(9,H)# 33 and that
there are 6 non-isomorphic H-free hypergraphs on 9 points and 32 blocks.
These are listed in the appendix. This computation was done on a Pentium
111, 700 MHz machine with 1 GB of RAM in about 134676 seconds. Note
that the isomorphism test was done for only up to the ninth level. We
found this to be a good place to stop performing the canonical test.

To use this result we need the following from [2]:

Theorem 3.1. If there exists an H-free hypergraph on n points with b blocks
and x € X occurs in b, blocks, then there exists an H-free hypergraph on
n — 1 points with at least b — b, blocks.



Algorithm 3.1: isCanon(M)

comment M is a n by v matrix.
comment Returns TRUE if it is canonical
I+{1,2,...,n,n+1}
k<0
last + 0
repeat
jmin{i €I:i>last}
ifj<n+1
then [k + 1]« j, I+ I\ {j}, k< k+1

ifk>1
else then I < I'Un[k],last < w[k],k + k—1
else return ( true )
B < matrix with rows My, ..., My
B* +B, after it is sorted by descending order of its columns
comment Compare k"row of B* and M
if b(By) > b(My)
then return ( false )
if b(B;) < b(My)
then I < I'Uw[k],last < w[k],k+ k—1
until true

Of course, any H-free hypergraph on n points with b blocks must have
a point of frequency at most |3b/n|. So we can state the following:

Corollary 3.2. If there exists an H-free hypergraph on n points with b
blocks, then there exists an H-free hypergraph on n — 1 points with at least
b— [3b/n] blocks.

Using Theorem 3.1, Corollary 3.2 and ex(9, {123,124, 134}) = 32, we
can get upper bounds for ex(n, H), n = 10,11,12. To get the best lower
bounds for n = 10,11,12, we use the following constructions from [3].

Construction 3.3. Let |V| = n and partition V into siz parts V; where
|Vi| > |n/6]. Define a 3-hypergraph on n points with blocks {(v;,, vi,,vig) :
1 <y <ig <i3 < 6,v;; € Vyy, (i1, 02,13) € S(6)} where S(6) is the unique,
up to isomorphism H-free hypergraph on 6 points and 10 blocks.

The constructed hypergraph has the property that any set of 4 points
spans either 0 or 2 blocks. It was shown in [3] that no hypergraph satisfying



Algorithm 3.2: Backtrack(level)

global C;, blocks, stoplevel
local M, i, result
if level > stoplevel
then return ( true )
for i <~ 1 to |Clevel|
comment Check if there are enough blocks in choice set
if (|Crever| — 1) < (stoplevel — level)
then go to 10
blocksllevel] + Cieper|i]
comment Perform canonical test
M + ConstructIncidenceMatriz(blocks, level)
if isCanon(M)
comment Compute choice set Cieper+1
ComputeChoiceSet(level + 1)
then < result «+ Bactrack(level + 1)
if result = true
then return ( true )

do

10 :
return ( false )

this property has more blocks than the one constructed above. In the next
sections, knowing the actual number of blocks in this construction will be
useful so we list these in the following theorem. Since we know the actual
blocks of S(6), the proof is relatively straight forward.

Theorem 3.4. Let |[V| = 6s + r, where 0 < r < 6. Then the number of
blocks in Construction 8.3 is 10s3, 105+ 552, 105> + 1052 425, 105> + 1552 +
6s + 1,10s% + 2052 4+ 125 + 2,105 + 2552 + 20s + 5 for r = 0,1,2,3,4,5
respectively.

When |V] is large enough and any 4 points are allowed to span 0,1 or 2
triples, Construction 3.3 can be improved by adding more blocks.

Construction 3.5. When |V;| > 3, Z?=1 ex(|Vi|,H) blocks of the form
(4,4, k) where i,j,k € V; can be added to the blocks of Construction 3.3 to
form an H-free hypergraph.

Applying Corollary 3.2 and Construction 3.3, it is easy to see show that
44 < ex(10,H) < 45, 60 < ex(11,H) < 61, and 80 < ex(12, H) < 81.



Now, if we can show that ex(10, H) = 44, then Corollary 3.2 implies that
ex(11,H) = 60 and ex(12,H) = 80.

So we now discuss how we go about showing that ex(10, H) # 45. We
begin by supposing that exz(10, H) = 45 and try to look for such a design.
The average frequency of the elements in such a design is 45 x 3/10 = 13.5.
In such a hypergraph, no element can appear in less than 13 of the 45 blocks
as ex(9,H) = 32. That is, each element must have frequency at least 13 and
so one element must have frequency exactly 13. Hence to look for a design
on 45 blocks, it is enough to enumerate all the non-isomorphic designs on
9 points with 32 blocks (these six designs are listed in the appendix) and
try to extend each one to 45 blocks, with each of the 13 blocks being added
containing a “new” element 10, which does not occur in the starting 32
blocks. Note that once we fix the first 32 blocks, isomorphism rejection is
not applied in the search algorithm. With only 13 blocks to extend, it was
easy for our search program to show such a design on 45 blocks does not
exist. We can now state the following theorem.

Theorem 3.6. ex(10, H) = 44, ex(11, H) = 60 and ex(12, H) = 80.

4 ex(13,H)

Using Corollary 3.2, we know that ex(13,H) < 104. If ex(13,H) = 104 then
it must be a simple (13,3,4) BIBD. But we will show that this cannot be
the case in the following theorem.

Theorem 4.1. 101 < ex(13, H) < 103.

Proof. If one applies Construction 3.5 for 13 points one gets 101 blocks,
including the one block consisting of elements from the same part. So
ex(13,H) > 101.

Now let us assume that there is an H-free hypergraph on 13 points with
104 blocks. By Corollary 3.2, no element can have frequency 23 so every
element has frequency 24. Note that the fact that ex(10,H) = 60 implies
that no pair of elements can have frequency 5. So every pair of elements
have frequency 4. This shows that the hypergraph is a (13,3,4) BIBD.
Using a computer search, we found that there are only 11 non-isomorphic
ways that the blocks, containing a particular element, could occur. We will
call the element that occurs in the 24 blocks, 13. We will list the blocks
vertically without putting in element 13. We will represent 10 by a, 11 by
b, 12 by ¢ and 13 by d.

Consider the 4 blocks containing the pair dz where = is one of 1,2,. .., c.
The 4 elements that occur with dz will be called linked(z) elements. Let
y be a linked(x) element. The 3 other elements that occur in the triples
containing dy are called extra elements of the linked(z) element. As in



the proof of Theorem 2.1, these elements will prove useful. We have three
claims that we need to prove.

The first claim is that extra elements coming from 2 linked(x) elements
can not intersect in 3 elements. If they did, then we have triples dxy;,
dzrys, dvys, dzys, dyim, dyin, dyip, dyam, dysn, dysp, then there are 3
more triples containing the pair xy;. Because these triples are H-free, those
third elements in those triples can not be from d, x,yi,y2,ys, Y1, , M, 1, D.
So the third elements must be 3 elements from a 4-element set. But this is
also true for the third elements in the triple containing zys. The 4-element
sets are equal. So we must have triples zy 7, xys2s, xyor, ry2s. But now we
do not have enough elements to be third elements in the triples containing
y1y2. So this situation can not happen. This eliminates the first 4 cases.

The second claim is that extra elements from 3 linked(x) elements, say
Y1,Y2,Yy3, can not all contain two elements, say m and n. If they did,
then again we would be forced to have a situation where we have triples
xY;T, TY; S, TY;T, TY;S, where ¢ and j come from 1,2 or 3. So this can not
happen. This eliminates 2 cases

The third claim is that if extra elements from 2 linked(x) elements, say
Y1, Y2, both contain two elements, say m and n, then some triples will be
forced into the design. To see this consider the third elements that occur
with triples containing the pair zy; where ¢ is from 1 or 2. For each y;,
there is a choice of 4 elements with 3 of the choices being the same for each
y; and one choice being different. Let the different choices be u for y; and
w for y5. To ensure that we do not get the previous situations, we must
have triple zy;u and zysw. This is useful in eliminating 4 cases.

That leaves only one possibility, up to isomorphism for any element.
Using this fact and a computer search, this last case was also ruled out.
The details of the proof and the 11 cases are listed in the appendix.

Since all cases lead to a contradiction then ex(13,H) < 103. 0

Iteratively using Corollary 3.2, with this new upper bound for ex(13,H),
new upper bounds on ex(n, H) for larger n, can be obtained. Also, using
Construction 3.3 and Construction 3.5, lower bounds for ex(n, H) can also
be given. We record these facts in Table 1.

The upper bounds from n = 18 to n = 24 will be used in the next
section to improve the asymptotic upper bound.

5 Improving Mubayi’s Bound

In 2003, Mubayi [8] showed that 7(H(4,3)) < 1/3 — .45305 x 105, We
review Mubayi’s method and give an improvement. Even though Talbot [10]
has the best current upper bound of w(H(4,3)) < .32975, we think our
techniques are short and interesting enough to be included.



Table 1: Lower and Upper Bounds for ex(n, H), n = 4,5,...,24

n |ex(n,H) || n | ex(n,H) || n | ex(n,H)

4 2 ) 5 6 10
7 15 8 22 9 32
10 44 11 60 12 80

13 | 101-103 | 14 | 126-131 || 15 | 156-163
16 | 190-200 || 17 | 230-242 || 18 | 276-290
19 | 322-344 || 20 | 374-404 || 21 | 433471
22 | 498-545 || 23 | 571-626 | 24 | 652-715

Suppose that (X, B) is a H-free hypergraph in which |X| = n and
|B| = a(3). A 4-set spans a triple if all 3 of the points of the triple are in
the 4-set. Let g; denote the number of 4-subsets of X that span exactly 1
triple of B. Mubayi proved the following by simple counting:

o< (3)(n 3022 1)

Let m < n and suppose that there are § (;‘l) m-subsets of X that span
more than 10(m/6)® = 5m>/108 triples in B. By a result of Frankl and
Fiiredi [3], any such m-subset contains at least one 4-subset that spans

exactly one triple in B. Therefore the following holds:

a6
PEE T @)

m—4 4

Combining (1) and (2) and simplifying, we get the following:

4(7) (an — 3a2(n — 2))
p— : (3)

The following equation results from counting pairs of the form (B,Y),
where B € B, BC Y C X, |Y| = m, and using the fact that ex(m, H)
<m?(m—1)/18:

() ) o) o

Rearranging and simplifying (4), we get:

6 <

5> 18a(m —1)(m—2)  5m ' (5)

- m(m — 6) m—6

Combining (3) and (5) we get:



18a(m —1)(m—2)  5m__ 4("}) (an — 3a*(n — 2))
m(m — 6) m—6 n—3 '

(6)

Then, letting n — oo, we see that 7(H(4,3)) < r, where r is the largest
root, of the quadratic equation

18z(m — 1)(m — 2) 5m m 9
=4 — 3z7). 7
m(m — 6) m—=6 4 (z - 32%) (™)
Mubayi’s bound is obtained by taking m = 18. However, since we have
better bounds for ex(n, H) than de Caen’s bound and since we know the
actual number of triples in Construction 3.3, we can obtain a better bound,
as shown in the following theorem.

Theorem 5.1. 7(H(4,3)) <1/3 —1.89820 x 107°.

Proof. Rather than using de Caen’s bound for ex(n, H), we use the best
bounds known for n = 18,...,24 that are in Table 1. Also, rather than
using 5m>/108 for the number of blocks in Construction 3.3, we use the
numbers in Theorem 3.4. The best value to use is m = 20. Doing this in
equations (4), (5), (6) we get 7(H(4,3)) < 1/3 — 1.89820 x 105. ad

6 Conclusion

We showed that for n > 6, ex(n, H)< n%(n — 1)/18. We then determined
ex(n,H) for n = 9,10,11,12. Finally, we lowered the upper bound on
ex(11, H) to 103. We used this last result to get upper bounds on ex(n, H)
for 14 < n < 24. These results on the small hypergraphs allowed us to
prove that 7(H(4,3)) < 1/3 — 1.89820 x 10-°.
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7 Appendix

The 11 non-isomorphic cases of triples containing d is listed below with a
brief indication of how they were ruled out.

Case 1:

1111222333444555778899%aa

234567867869a69abcbcbebe

The extra elements of linked(1) elements 2 and 3 intersect in 3 element
which is a contradiction.

Case 2:

1111222333444555778899%aa

234567867869a6bc91bcbebe

The extra elements of linked(1) elements 2 and 3 intersect in 3 element
which is a contradiction.

Case 3:

1111222333444555677889ab

234567867869a9acbac9cbbc

The extra elements of linked(1) elements 2 and 3 intersect in 3 element
which is a contradiction.

Case 4:
1111222333444555678899ab
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2345678678 7ab6abc99cabcec
The extra elements of linked(1) elements 2 and 3 intersect in 3 element
which is a contradiction.

Case 5:

11112223334445556677889b

23456786ab7ab8ab9c9cIcac

The linked(1) elements 3,4 and 5 each contain extra elements a and b which
is a contradiction.

Case 6:

11112223334445556677888b

23456786ab7ab9ab9c9cIbcee

The linked(1) elements 3,4 and 5 each contain extra elements a and b which
is a contradiction.

Case T:

1111222333444555677889%ab

23456786ab7ab68c99c9abcec

The linked(1) elements 3 and 4 force the triple 137, the linked(3) elements
1 and 6 force the triple 139, and the linked(7) elements 2 and 9 force triple
179. This arrangement of triples is not H-free.

Case 8:

11112223334445556677889a

23456786799ac8ababac9cbc

The linked(7) elements 1 and 2 force the triple 279, the linked(9) elements
8 and b force the triple 296, and the linked(b) elements 9 and ¢ force the
triple 79b. This arrangement of triples is not H-free.

Case 9:

11112223334445556677889%

23456786ab7ab89a9c9cbcbce

The linked(3) elements 1 and a force the triple 13¢, the linked(4) elements
1 and a force the triple 14c, the linked(5) elements 1 and a force the triple
15¢, the linked(6) elements 2 and c force triple 16¢, and the linked(7) ele-
ments 2 and c force the triple 17c. The pair 1¢ then occurs 5 times which
is a contradiction.

Case 10:

11112223334445556677888b

23456786ab7ab9ac9c9Ic9abce

The linked(1) elements 3 and 4 force the triple 13¢, the linked(2) elements
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6 and 7 force the triple 237, the linked(9) elements 6 and 7 force the triple
379, the linked(a) elements 3 and 4 force triple 37a, and the linked(b) ele-
ments 3 and 4 force the triple 37b. The pair 37 then occurs 5 times which
is a contradiction.

Case 11:

11112223334445556677889b

23456786ab7ac89b9cIbacac

All blocks containing a particular element must look like this. Using this
fact and a computer search, this case was also ruled out.

The 6 non-isomorphic H-free hypergraphs on 9 points and 32 blocks:

Hypergraph 1

11111111111122222222333333444444
22223344567834556678555666555666
34567878999999787899789789789789

Hypergraph 2

11111111111222222233333334445557
22223344568345566844456665676678
34567879899987978958977896788989

Hypergraph 3

11111111111222222233333344445567
22223344568345566844455755676678
34567879899987978968967989788999

Hypergraph 4

11111111111222222223333333445567
2223344556733445567444556 7686878
34567687998897968985786989797999

Hypergraph 5

11111111111222222223333333445567
2223344556733445567444556 7686888
34567687998897968985786989797999

Hypergraph 6

11111111112222222233333334444566
22233445773345556744455565566878
34567689898976789978967986879989
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