
A New Practical Algorithm for the

Construction of a Perfect Hash Function

M. Atici

International Computer Institute

University of Ege

Izmir, Turkey

atici@ube.ege.edu.tr

D. R. Stinson

Department of Combinatorics and Optimization

University of Waterloo

Waterloo Ontario, N2L 3G1, Canada

dstinson@cacr.math.uwaterloo.ca

R. Wei

Department of Combinatorics and Optimization

University of Waterloo

Waterloo Ontario, N2L 3G1, Canada

rwei@cacr.math.uwaterloo.ca

Abstract

A perfect hash function for a subset X of {0, 1, · · · , n −
1} is an injection h from X into the set {0, 1, · · · , m − 1}.
Perfect hash functions are useful for the compact storage and
fast retrieval of frequently used objects. In this paper, we
discuss some new practical algorithms for efficient construction
of perfect hash functions, and we analyze their complexity and
program size.

Keywords: perfect hash family, perfect hash function, program size,
complexity.

1

1 Introduction

A hash function is a function h : {1, 2, · · · , n} → {1, 2, · · · ,m}. A
hash function is said to be perfect on a subset X of {1, 2, · · · , n} if
h is injective on X, i.e., if h|X is one-to-one. Perfect hash functions
are useful for the compact storage and fast retrieval of frequently
used data, such as reserved words in programming languages, com-
mand names in interactive systems, etc. Let w = |X|; then w ≤ m.
When w = m, the function h is called a minimal perfect hash func-
tion. Minimal perfect hash functions have applications in compilers,
operating systems, language translation systems, hypertext, hyper-
media, file managers, and information retrieval systems. For more
information about perfect hash functions and minimal perfect hash
functions, readers can consult the recent survey paper [3] and its
references.

The purpose of this paper is to present some new practical al-
gorithms for construction of a perfect hash function. The efficiency
of the algorithm is measured in three ways. First is the amount of
time required to find a hash function h which is perfect on a given
subset X. Second is the time required to evaluate a given function h
for a given x ∈ X. Third is the amount of memory required to store
a description of the function h, i.e., the program size. The memory
required will be the logarithm of the number of the possible per-
fect hash functions in the associated perfect hash family, as defined
below.

Definition 1.1 An (n,m,w)-perfect hash family is a finite set of
hash functions F such that

h : A → B

for each h ∈ F , where |A| = n and |B| = m, with the property that
for any X ⊆ A such that |X| = w, there exists at least one h ∈ F
such that h|X is one-to-one.

We use the notation PHF(N ;n,m,w) to denote an (n,m,w)-
perfect hash family with |F| = N . We can think of a PHF(N ;n,m,w)
as an N × n array of m symbols, where each row of the array cor-
responds to one of the functions in the family. This array has the

2

property that, for any subset of w columns, there exists at least one
row such that the entries in the w given columns of that row are
distinct. We will use this representation in some small examples in
the sequel.

Let N(n,m,w) denote the smallest N such that a PHF(N ;n,m,w)
exists. In [4], N(n,m,w) is proved to be Θ(log n). However, the
proof of [4] is not constructive, and it seems difficult to give explicit
constructions that are good asymptotically. Hence, it is interesting
to find explicit constructions for PHFs. We use some constructions
where N is a polynomial function of log n (for fixed m and w). More-
over, our constructions have the advantage that they are simple and
easy to program.

Our goal is to obtain an algorithm for construction and evaluation
of a (minimal) perfect hash function in which the complexity and
program size are low, and which also works well in practice.

The rest of this paper is arranged as follows. In Section 2, we
describe our constructions of PHFs, both direct and recursive. Then
we give algorithms to realize these constructions in Section 3. We
will analyze the efficiency of these algorithms in Section 4.

All logarithms in this paper are to the base 2.

2 Constructions

2.1 Direct Constructions

In this section, we give two direct constructions of perfect hash fam-
ilies. These are simple “base” PHFs which will be used as initial
families in our main recursive construction.

The first construction is based on a finite affine plane (see [1,
Corollary 3.2]). Let q be a prime power such that q + 1 >

(

w
2

)

.
Consider the array having columns indexed by pairs (x, y) ∈ Fq×Fq,
and rows indexed by Fq ∪ {−1}, where Fq is a finite field with q
elements and −1 6∈ Fq. The entry in row r and column (x, y) is
x × r + y if r ∈ Fq, and x if r = −1. It is easy to see that any two
different columns have precisely one row of conflict. Since q+1 >

(

w
2

)

,
it follows that for any w different columns there will be a row that has
w different entries in these w columns. Hence we have the following
result.

3

Theorem 2.1 Suppose q is a prime power and q + 1 >
(

w
2

)

. Then
there exists a PHF(q + 1; q2, q, w).

Example 2.1 Let m = 3 and w = 2. In this case we can take q = 3,
and we construct the following PHF(4; 9, 3, 2), F :

r (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

−1 0 0 0 1 1 1 2 2 2
0 0 1 2 0 1 2 0 1 2
1 0 1 2 1 2 0 2 0 1
2 0 1 2 2 0 1 1 2 0

For any w = 2 columns of F there exist a row where two entries are
different.

In the first construction, m is Ω(w2). We will use another base
PHF when m ≤

(

w
2

)

. This construction is far from optimal, however,
the hash families are very easy to compute, and they are considerably
smaller than the trivial construction in which N =

(

n
w

)

.
For a subset X = {x1, x2, · · · , xw}, where x1 < x2 < · · · < xw,

we define a perfect hash function hX as follows:

hX(x) =

1 if x < x2

2i − 1 if x2(i−1) < x < x2i, for some i = 2, 3, · · · , ⌊w
2 ⌋

2i if x = x2i for some i = 1, 2, · · · , ⌊w
2 ⌋

w if x ≥ xw.

Since hX(xi) = i for i = 1, 2, · · · , w, hX is perfect on X. Thus
the family

{hX : X ⊆ {1, 2, · · · , n}, |X| = w}

is a PHF. (In fact, it is a minimal PHF.)
Let us determine the number of functions, N , in the family. Ob-

serve that hX depends only on the values x2, x4, · · ·. First, con-
sider the case where w is even. Denote t = w/2. We have that
{x2, x4, · · · , x2t} ⊆ {2, · · · , n} and x2i ≥ x2(i−1) + 2. If we define
di = x2i − i for 1 ≤ i ≤ t, then we construct a list of t distinct
elements d1, . . . , dt where {d1, . . . , dt} ⊆ {1, . . . , n − t}. Thus we see
that

N =

(

n − w
2

w
2

)

4

in the case where w is even. A similar argument when w is odd
establishes the following theorem.

Theorem 2.2 For any n > w, the PHF(N ;n,w,w) constructed
above has

N =

(

n − ⌈w
2 ⌉

⌊w
2 ⌋

)

.

Example 2.2 Let m = w = 3. We construct a PHF(
(3
1

)

; 5, 3, 3), F ,
as follows:

F =

0 1 2 3 4

1 2 3 3 3
1 1 2 3 3
1 1 1 2 3

For any 3-element subset X of {0, 1, 2, 3, 4}, there exists a row that
has different entries in the corresponding columns from set X.

We mentioned that this construction represents a considerable
improvement over the trivial family. For example, if n = 11 and
w = 5, then we have N =

(8
2

)

= 28 as compared to N =
(11

5

)

= 462
in the trivial PHF.

In the case n = w +1, we obtain a PHF
(

⌊w
2 ⌋ + 1;n,w,w

)

, which
can be shown to be optimal.

2.2 A Recursive Construction

In this section, we describe the recursive construction given in [1].
We begin with a specific type of difference matrix. Suppose that the
integers n,w have the property that gcd(n,

(

w
2

)

!) = 1. Let D = (di,j),
where di,j = ij mod n for 0 ≤ i ≤

(

w
2

)

and 0 ≤ j ≤ n − 1. This is
called an (n,

(

w
2

)

+ 1)-difference matrix, since for all i1, i2 such that
0 ≤ i1 < i2 ≤

(

w
2

)

, we have {(di1,j − di2,j) mod n : 0 ≤ j ≤ n − 1} =
Zn. (See [2] for more information about difference matrices.) The
following lemma ([1, Theorem 4.1]) gives a recursive construction for
PHF that uses difference matrices.

5

Lemma 2.1 Suppose there is an (n0,
(

w
2

)

+1)-difference matrix and
a PHF(N0;n0,m,w). Then there is a PHF((

(

w
2

)

+ 1)N0;n
2
0,m,w).

For completeness, we present an outline of the construction. Let
A be a PHF(N0;n0,m,w) and let D = (di,j) be an (n0,

(

w
2

)

+ 1)-
difference matrix. For 0 ≤ j ≤ n0 − 1, let Aj denote the array
obtained from A by letting the permutation σj act on the columns
of A, where σ(i) = (i − 1) mod n0. Now let

B =

B0,0 B0,1 · · · B0,n0−1

B1,0 B1,1 · · · B1,n0−1
...

...
...

...

B(w
2),0

B(w
2),1

· · · B(w
2),n0−1

where Bi,j = Adi,j , 0 ≤ i ≤
(

w
2

)

, 0 ≤ j ≤ n0 − 1. Then B is the
desired PHF.

To illustrate the construction we give an example below.

Example 2.3 We construct a PHF(12; 25, 3, 3). A PHF(3; 5, 3, 3),
denoted A, is as follows.

A =
1 2 3 3 3
1 1 2 3 3
1 1 1 2 3

Next, we construct the (5, 4) difference matrix D:

D =

0 0 0 0 0

0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

Then we obtain a PHF(4 × 3; 52, 3, 3), denoted B, as follows.

6

B =

A0 A0 A0 A0 A0

A0 A1 A2 A3 A4

A0 A2 A4 A1 A3

A0 A3 A1 A4 A2

That is,

B =

1 2 3 3 3 1 2 3 3 3
1 1 2 3 3 1 1 2 3 3
1 1 1 2 3 1 1 1 2 3

1 2 3 3 3 3 1 2 3 3
1 1 2 3 3 3 1 1 2 3
1 1 1 2 3 3 1 1 1 2

1 2 3 3 3 3 3 1 2 3
1 1 2 3 3 3 3 1 1 2
1 1 1 2 3 2 3 1 1 1

1 2 3 3 3 3 3 3 1 2
1 1 2 3 3 2 3 3 1 1
1 1 1 2 3 1 2 3 1 1

where Aj denotes a cyclic shift of j columns to the left in the array
A.

Using the difference matrices constructed above, and iterating
Lemma 2.1, we have the following theorem.

Theorem 2.3 [1] Suppose there exists a PHF(N0;n0,m,w), where
gcd(n0,

(

w
2

)

!) = 1. Then there is a PHF((
(

w
2

)

+1)jN0;n0
2j

,m,w) for
any integer j ≥ 1.

3 Algorithms for Construction of a Perfect

Hash Function

In this section, we describe algorithms which realize the construc-
tions of the previous section. The first two algorithms concern The-
orem 2.1. Suppose q is a prime, q +1 >

(

w
2

)

, and n ≤ q2. For a given

7

Algorithm 3.1: Construction of a (q2, q, w) hash function

Input:
q, w and {x1, x2, . . . , xw} ⊆ {0, 1, · · · , q2 − 1},
where q is prime, q + 1 >

(

w
2

)

(1) for k := 1 to w do
ik := ⌊xk

q
⌋,

jk := (xk − ik × q) mod q

(2) If all ik’s are different then r := −1
else find r, where 0 ≤ r ≤ q − 1
such that (ik × r + jk) mod q are different for k = 1, ..., w

(3) the constructed hash function is hr

w-subset X of {0, 1, · · · , n − 1}, Algorithm 3.1 finds a hash func-
tion which is perfect on X and takes on values in {0, 1, · · · , q − 1},
and outputs the description of that function. Algorithm 3.2 will use
the description of the hash function to evaluate the function for any
x ∈ {0, 1, · · · , n − 1}.

Similarly, Algorithms 3.3 and 3.4 realize the construction of The-
orem 2.2.

Finally, Algorithms 3.5 and 3.6 realize the recursive construction
of Theorem 2.3. Suppose we have a “base” PHF(N ;n0,m,w) and a
w-subset X ⊆ {0, 1, · · · , n2j

0 −1}, where gcd(n0,
(

w
2

)

!) = 1. Algorithm
3.5 finds the hash function, say h, which is perfect on X. Algorithm
3.6 evaluates the hash function h which is found by Algorithm 3.5
at any input x ∈ {0, 1, ..., n − 1}, where n = n2j

0 . Notice that in
Algorithm 3.5, we do not need to store the whole constructed PHF;
we only need to store the base PHF.

It is straightforward to combine the previous algorithms to give
a general construction. Suppose integers n,m,w, and a w-subset
X ⊆ {0, 1, · · · , n − 1} are given. We want to find a hash function
which is perfect on X. We can proceed as follows. First we find
the smallest prime q >

(

w
2

)

, so it follows gcd(q,
(

w
2

)

!) = 1. (No-
tice that this step is actually a preprocessing step, since it does

8

Algorithm 3.2: Evaluate a (q2, q, w) hash function

Input:
q, w, x ∈ {0, 1, · · · , q2 − 1} and r ∈ {−1, 0, · · · , q − 1},
where q is prime, q + 1 >

(

w
2

)

(1) z := x

(2) i := ⌊z
q
⌋

j := (z − q × i) mod q

(3) If r = −1 then hr(x) := i
else hC(x) := (i × r + j) mod q

Algorithm 3.3: Construction of an (n,w,w) hash function

Input: n, w and {x1, x2, · · · , xw} ⊆ {0, 1, · · · , n − 1}

(1) Sort the elements x1, x2, · · · , xw such that x1 < x2 < · · · < xw

(2) Let t := ⌊w
2 ⌋

(3) Define ci := x2i, for 1 ≤ i ≤ t

(4) The constructed hash function is denoted as hC , where
C := (c1, c2, · · · , ct)

9

Algorithm 3.4: Evaluate an (n,w,w) hash function

Input:
n, w, x ∈ {0, 1, · · · , n − 1} and C = (c1, c2, · · · , ct) (t = ⌊w

2 ⌋)

(1) Define c0 := −1 and ct+1 := n

(2) For i := 1 to t + 1 do

(a) If x = ci then define y := 2i and exit loop

(b) If ci−1 < x < ci then define y := 2i − 1 and exit loop

(3) Define hC(x) := y

Algorithm 3.5: Construct an (n,m,w) hash function, n = n2j

0

Input:
A base PHF(N ;n0,m,w), where gcd(n0,

(

w
2

)

!) = 1

X = {y1, ..., yw} ⊆ {0, 1, ..., n2j

0 − 1}
(1) While j > 0 do

(a)for k := 1 to w do

ik
(j) :=

⌊

yk

n2(j−1)
0

⌋

xk
(j) := [yk − n2(j−1)

0 × ik
(j)] mod n2(j−1)

0

(b) find dj , 0 ≤ dj ≤
(

w
2

)

, such that (xk
(j) + dj × ik

(j)) mod

n2(j−1)

0

are all different for k = 1, 2, · · · , w.
(c) for k := 1, 2, · · · , w do

yk := (xk
(j) + dj × ik

(j)) mod n2(j−1)

0

(d) j := j − 1
(2) Find the hash function hC in the base PHF(N ;n0,m,w)

which is perfect on {y1, ..., yw}
(3) The constructed hash function is denoted hD

where D = (dj , dj−1, ..., d1;C)

10

Algorithm 3.6: Evaluate an (n,m,w) hash function, n = n2j

0

Input:
0 ≤ x ≤ n2j

0 − 1
D = (dj , ..., d1;C)
(1) /* Reduce x to y ∈ [0, n0 − 1] by using dj’s */
While j > 0 do

i(j) :=

⌊

x

n2(j−1)
0

⌋

l(j) := (x − n2(j−1)

0 × i(j)) mod n2(j−1)

0

x := (l(j) + dj × i(j)) mod n2(j−1)

0

j := j − 1
(2) y := x
(3) hD(x) := hC(y) where hC(y) is in the base PHF(N ;n0,m,w)

not require knowing the particular set X that is to be hashed.)
Then we use Algorithm 3.5, letting j = ⌈log(log n) − log(log n0)⌉,
to find the suitable hash function. If q ≤ m, then step (2) will use a
PHF(q + 1; q2, q, w) from Algorithm 3.1 as the base PHF, otherwise

it will use a PHF(
(q−⌈w

2
⌉

⌊w
2
⌋

)

; q, w,w) from Algorithm 3.3 as the base

PHF. (In this second case, it is not necessary that q be prime.) In
either case, Algorithm 3.5 will output the description of the hash
function.

We provide two examples below to illustrate the procedure.

Example 3.1 Let m = w = 5 and n = 105. The smallest prime q >
(5
2

)

is q = 11, and m = 5 < 11. Therefore we use a PHF(
(8
2

)

; 11, 5, 5)
as a base PHF(Algorithm 3.3). Suppose

X = {41, 614, 9958, 11125, 99987}.

We apply Algorithm 3.5 with

j = ⌈log(log n) − log(log n0))⌉ = ⌈log(log(105)) − log(log(11))⌉ = 3.

11

Iteration 1 j = 3
X = {41, 614, 9958, 11125, 99987},
(i31, x

3
1) = (0, 41),

(i32, x
3
2) = (0, 614),

(i33, x
3
3) = (0, 9958),

(i34, x
3
4) = (0, 11125),

(i35, x
3
5) = (6, 12141).

If d3 = 0, then

(41 + 0 × d3) mod 114 = 41,
(614 + 0 × d3) mod 114 = 614,
(9958 + 0 × d3) mod 114 = 9958,
(11125 + 0 × d3) mod 114 = 11125,
(99987 + 6 × d3) mod 114 = 12141,

are all different.

Iteration 2 j = 2
X = {41, 614, 9958, 11125, 12141},
(i21, x

2
1) = (0, 41),

(i22, x
2
2) = (5, 9),

(i23, x
2
3) = (82, 36),

(i24, x
2
4) = (91, 114),

(i25, x
2
5) = (100, 41).

If d2 = 1, then

(41 + 0 × d2) mod 112 = 41,
(9 + 5 × d2) mod 112 = 14,
(36 + 82 × d2) mod 112 = 118,
(114 + 91 × d2) mod 112 = 84,
(41 + 100 × d2) mod 112 = 20,

are all different.

12

Iteration 3 j = 1
X = {41, 14, 118, 84, 20},
(i11, x

1
1) = (3, 8),

(i12, x
1
2) = (1, 3),

(i13, x
1
3) = (10, 8),

(i14, x
1
4) = (7, 7),

(i15, x
1
5) = (1, 9).

If d1 = 1, then

(8 + 3 × d1) mod 11 = 0,
(3 + 1 × d1) mod 11 = 4,
(8 + 10 × d1) mod 11 = 7,
(7 + 7 × d1) mod 11 = 3,
(9 + 1 × d1) mod 11 = 10,

are all different.

Iteration 4 j = 0
X = {0, 4, 7, 3, 10}.
Apply Algorithm 3.3 with X = {0, 3, 4, 7, 10}; then C =

(3, 7).

Therefore the constructed hash function is hD where D = (0, 1, 1; 3, 7).

Now let us run Algorithm 3.6 on some different input values between
0 and 99999.

• Let x = 11125. x is first reduced to 11125, then to 118, then
to 3. By Algorithm 3.4, hC(3) = 2, thus hD(11125) = 2.

• Let x = 1000. x is first reduced to 1000, then to 40, then to
10. Hence by Algorithm 3.4, hD(1000) = hC(10) = 5.

• Let x = 15. x is reduced to 15, then to 15, then to 5. By
Algorithm 3.4, hD(15) = hC(5) = 3.

13

Example 3.2 Let m = 12, w = 5, and n = 105. Let

X = {41, 614, 9958, 11125, 99987}.

The smallest prime q >
(5
2

)

is q = 11, and 11 < m = 12. Therefore
we use a PHF(12; 112, 11, 5) as a base PHF (Algorithm 3.1).

We apply Algorithm 3.5 with

j = ⌈log(log(105)) − log(log(112))⌉ = 2.

Iteration 1 j = 2
X = {41, 614, 9958, 11125, 99987},
(i21, x

2
1) = (0, 41),

(i22, x
2
2) = (0, 614),

(i23, x
2
3) = (0, 9958),

(i24, x
2
4) = (0, 11125),

(i25, x
2
5) = (6, 12141).

If d2 = 0, then

(41 + 0 × d2) mod 114 = 41,
(614 + 0 × d2) mod 114 = 614,
(9958 + 0 × d2) mod 114 = 9958,
(11125 + 0 × d2) mod 114 = 11125,
(99987 + 6 × d2) mod 114 = 12141,

are all different.

Iteration 2 j = 1
X = {41, 614, 9958, 11125, 12141},
(i11, x

1
1) = (0, 41),

(i12, x
1
2) = (5, 9),

(i13, x
1
3) = (82, 36),

(i14, x
1
4) = (91, 114),

(i15, x
1
5) = (100, 41).

If d1 = 1, then

14

(41 + 0 × d2) mod 112 = 41,
(9 + 5 × d2) mod 112 = 14,
(36 + 82 × d2) mod 112 = 118,
(114 + 91 × d2) mod 112 = 84,
(41 + 100 × d2) mod 112 = 20,

are all different.

Iteration 3 j = 0
X = {41, 14, 118, 84, 20}
Apply Algorithm 3.1: For each yk ∈ X we compute (ik, jk)

accordingly as follows:

(3, 8), (1, 3), (10, 8), (7, 7), and (1, 9).

The following table gives the entries of the corresponding columns
in PHF(12; 112 , 11, 5).

r (3, 8) (1, 3) (10, 8) (7, 7) (1, 9)

−1 3 1 10 7 1
0 8 3 8 7 9
1 0 4 7 3 10
2 3 5 6 10 0
...

...
...

...
...

...

Therefore we can take r = 1, and hence D = (0, 1; 1).

Now let us run Algorithm 3.6 on some different input values between
0 and 99999.

• Let x = 12345. x is first reduced to itself, then to 105. Now
105 = (9, 6) and r = 1, therefore hD(12345) = hC(105) =
(1 × 9 + 6) mod 11 = 4 by Algorithm 3.2.

• Let x = 11125. x is first reduced to itself, then to 84. 84 =
(7, 7) and r = 1, therefore hD(11125) = hC(84) = (1 × 7 + 7)
mod 11 = 3 by Algorithm 3.2.

15

4 Efficiency of the Algorithms

In this section, we look at the efficiency of our algorithms. We are
interested both in the complexity of the algorithms as well as the
running time of an actual implementation. We consider the case of
minimal perfect hashing, i.e., m = w. In this case, we can take q to
be the smallest integer such that gcd(q,

(

w
2

)

!) = 1. The value of q is
less than w2 and it can be computed in time polynomial in log w,
using the Euclidean algorithm to compute greatest common divisors.

Let’s first consider program size. The size of the hash family in
Theorem 2.3 is (

(

w
2

)

+ 1)jN0. Here we have that j ≤ log log n and

N0 <

(

w2

w
2

)

< (w2)
w
2 = ww.

Thus the program size is bounded above by

j log w2 + log N0 < 2 log w log log n + w log w.

It is known that a minimal PHF has program size Ω(log log n + w)
(see, e.g., [4, p. 129] or [3, p. 9]). So our construction is not much
larger than an optimal one.

In the encoding of PHF that we use, we have a sequence at most
log log n d’s (produced by Algorithm 3.5), where 0 ≤ di ≤ q − 1 for
each i. Thus each d requires at most log q < 2 log w bits to encode it.
The remaining w log w bits correspond to the list of ⌊w

2 ⌋ c’s produced
by Algorithm 3.3, where 0 ≤ ci ≤ w2 − 1 for each i.

The above analysis is a provable, worst-case bound. In practice,
however, we usually do not require so much space. This is because
the d’s are frequently very small and may not require 2 log w bits
to encode them. It appears that the program size is more likely to
be O(w log w + log log n), since di = 0 or 1 “most of the time”. We
will now try to justify this assumption with an informal heuristic
argument and some experiments.

We have done some experiments for fixed w values to compute the
average number of values that need to be tested to find an acceptable
d in step 1(b) of Algorithm 3.5. In these computations, we take n =
230 and randomly create 100 subsets X (|X| = w) of {0, 1, ..., 230−1}
for each w. We run the program for each subset X, computing the

16

Table 4.1

w q j Aver. num. of j − 1 + e time (seconds)
d values tested

3 5 4 4.89 5.72 0.00013

10 47 3 4.72 4.72 0.00033

20 191 2 3.72 3.72 0.00067

50 1229 2 4.13 3.72 0.00248

100 4951 2 3.25 3.72 0.00668

150 11177 2 3.60 3.72 0.01373

200 19913 2 3.92 3.72 0.02298

300 44851 1 2.60 2.72 0.04432

400 79801 1 2.44 2.72 0.07488

500 124753 1 2.81 2.72 0.11518

600 179717 1 2.76 2.72 0.16355

700 244667 1 2.82 2.72 0.21934

800 319601 1 2.68 2.72 0.28208

900 404557 1 2.28 2.72 0.35176

1000 499507 1 2.91 2.72 0.43724

average number of tested d values. In Table 4.1, columns 1, 2, and
3 record the values of w, q, and j, respectively. The fourth column
gives average number of d values checked (over all j iterations). The
sixth column gives the computing time in seconds. (We have done
these computations with Sun Ultra 1 Model 140 in the International
Computer Institute at the University of Ege, Turkey.)

We now derive a heuristic estimate for the number of d values
tested (see column 5 of Table 4.1). If we choose k random elements
from a set of n elements (repetition allowed), the probability that all
k elements will be distinct is

p(k, n) =

(

1 −
1

n

)(

1 −
2

n

)

· · ·

(

1 −
k − 1

n

)

=

k−1
∏

i=1

(

1 −
i

n

)

. (1)

In step 1(b) of iteration l of Algorithm 3.5, we find a value d such

17

that the w values (x+d×i) mod q2l−1
are distinct elements in Z

q2l−1 .
If we assume that these w values are randomly distributed, we can
estimate the probability that they are distinct using Eq. (1) with

k = w and n = q2l−1
.

For l > 1, p(w, q2l−1
) ≈ 1 while for l = 1, we have

p(w, q) ≈ p(w,w2/2) =

(

1 −
1

w2/2

)

· · ·

(

1 −
w − 1

w2/2

)

≈

w−1
∏

i=1

e
−(i

w2/2
)
≈ e−1.

Here, we are using the approximation 1− x ≈ e−x, which is true
when x is a small positive real number. Thus we estimate that the
total number of d values tested should be approximately j − 1 + e.
These estimates, recorded in column 5 of Table 4.1, are quite close
to the actual experimental values obtained in column 4.

Now we briefly analyze the complexity of the algorithms to con-
struct and evaluate a hash function. For simplicity, we use the “uni-
form cost” model which assumes that any arithmetic operation can
be done in O(1) time (see, e.g., [3, p.10]). As above, we are consider-
ing the case w = m and we assume that q < w2 has been determined
in a preprocessing step.

Step (1) of Algorithm 3.5 requires O(log log n) iterations. Each
iteration takes time O(w log w) to test each particular d value (the w
numbers in step 1(b) can be sorted to determine if they are distinct).
The number of d values that need be considered is O(w2). Thus step
(1) can be accomplished in time O(w3 log w log log n). Algorithm
3.3 takes time O(w log w), so the total time is O(w3 log w log log n).
Notice also that, if the heuristic argument presented above is valid,
then the time required to construct the hash function is reduced to
O(w log w log log n).

For purposes of comparison, the deterministic algorithm pre-
sented in [4] requires time O(w3 log w log n), so our worst-case run-
ning time is better by a factor of O(log n/ log log n). Also, the al-
gorithm in [4] has m = 3w, whereas our algorithm allows minimal
perfect hashing (m = w) to be accomplished.

18

The evaluation time of our algorithm is analyzed in a similar
fashion. Algorithm 3.6 requires time O(log log n), and Algorithm 3.4
can be modified to run in time O(log w) if a binary search is used.
Therefore the total time is O(log w + log log n).

Finally, we should emphasize again that the algorithms are very
suitable for practical use, as is shown by the timings in Table 4.1.

Acknowledgment

The research of the second and third authors was supported by NSF
Grant CCR-9610138.

References

[1] M. Atici, S. S. Magliveras, D. R. Stinson and W.-D. Wei. Some
Recursive Constructions for Perfect Hash Families. Journal of
Combinatorial Designs 4 (1996), 353–363.

[2] C. J. Colbourn and J. H. Dinitz. CRC Handbook of Combinato-
rial Designs, CRC Press, 1996.

[3] Z. J. Czech, G. Havas and B. S. Majewski. Perfect Hashing,
Theoretical Computer Science 182 (1997), 1–143.

[4] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and
Searching, Springer-Verlag, Berlin, 1984.

19

