
Looking Back—My Life as a Mathematician and
Cryptographer?

Douglas R. Stinson

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3G1, Canada

Abstract. In this paper, I look back at my career as a mathematician
and mathematical cryptographer, mainly concentrating on my student
days and the early parts of my career. I also discuss my research philoso-
phy and what I mean by the term “combinatorial cryptography.” Along
the way, I recall some influential people, books and papers.

Overview

I would like to thank the SAC 2019 organizers for inviting me to give an invited
talk at SAC 2019, which was held at the University of Waterloo. This talk
was also happening in conjunction with my retirement from the University of
Waterloo, which took place on September 1, 2019. I suggested that I might give
a (mostly) non-technical talk of a somewhat autobiographical nature, and they
agreed. Thus, I used the talk to look back at my career as a mathematician and
mathematical cryptographer, mainly concentrating on my student days and the
early parts of my career. This paper will serve as a summary of the material in
my talk.

The following are the main topics I discussed.

– My involvement with SAC
– Transitions: math contests→ mathematical research→ computer science→

mathematical cryptography
– Combinatorial cryptography: what is it?
– Influences: people, books, papers
– Research philosophy and mathematical exposition.

SAC and Me

I have been involved with SAC from the beginning. I attended and spoke at the
first SAC Workshop, which was held at Queen’s University in 1994. My talk there
was entitled “Recent results on resilient functions.” I was an invited speaker at
SAC 1995, SAC 2013, and SAC 2019. I was Co-chair of SAC in 2000 and 2010.
I was Chair of the SAC organizing board from 2000–2007 and a Member of the
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SAC organizing board from 2000–2014. I created the first SAC web pages in
2003.

The first six editions of SAC were held at Queen’s University and Carleton
University. In 2000, SAC was held at the University of Waterloo for the first
time and there was discussion there about the future direction of SAC. I was
an early voice calling for SAC to be held exclusively in Canada. The following
quote is from the minutes of the SAC 2000 Board Meeting:

“It was suggested by D. Stinson that SAC be officially designated as a
‘Canadian workshop series in cryptography’ in the Draft Guidelines.”

Given my long participation with SAC, it was a pleasure and an honour to be
invited to speak at SAC 2019.

Cribbage

One of my first “mathematical” memories was watching my parents and grand-
parents play cribbage. I do not recall my age exactly, but I was perhaps 6 or 7
years old at the time. I was very interested in scoring the hands, where points
are given for pairs, combinations of cards that sum to 15, runs of three or more,
etc. The details aren’t important, but the scoring system is rather complex. Two
facts that I found fascinating were that

– a count of 19 is impossible and

– 29 is the maximum possible count.

I suppose this was my first experience with the concept of mathematical impos-
sibility.

One example of a 29-count hand in cribbage would consist of the five of clubs,
diamonds and hearts and the jack of spades. If the five of spades is then “cut”
(this is a card that is common to all the players’ hands), then the result is a
29-count hand:

–
(
4
2

)
= 6 pairs → 12 points

– 4 +
(
4
3

)
= 8 fifteens → 16 points

– 1 point for the “Jack of nobs” (i.e, the player’s hand contains the jack of the
same suit as the card that is cut)

– total: 12 + 16 + 1 = 29 points.

Note that three of a kind =
(
3
2

)
= three pairs and four of a kind =

(
4
2

)
= 6

pairs. This is combinatorics in action! Perhaps this inspired me to become a
combinatorial mathematician.
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Math Contests

I always enjoyed math classes in school, in part because I could do tests without
having to memorize boring facts!1 However, my serious involvement in math-
ematics really started with high school math contests. I began high school in
1970 (grade 9) at John F. Ross Collegiate and Vocational Institute in Guelph,
which is just a few minutes down the highway from Waterloo. The University of
Waterloo ran the Junior Math Contest, which was a multiple choice contest for
students in grades 9–11.

That year, a grade 10 student (Bob Saul) finished first in our school and I
finished second. The next year, when I was in grade 10, I finished in the top 15
in Ontario and I was invited to the Junior Math Contest Seminar held at the
University of Waterloo in June 1972. I attended the JMC seminar again in June
1973 after finishing in the top 10 in Ontario.

Ross Honsberger

I first heard Ross Honsberger speak at the JMC seminars. Ross (1929–2016)
was a masterful mathematical expositor and an entertaining speaker who was a
long-time faculty member at UW. For many years, Ross taught a popular course
on problem solving, consisting of 100 problems.

Ross was the author of numerous books such as “Ingenuity in Mathematics”
[9]. One particularly memorable lecture I recall from the 1973 JMC seminar was
on the topic of a checker-jumping problem known as “Conway’s Soldiers”.

As it is explained in Wikipedia:2

“Conway’s Soldiers or the checker-jumping problem is a one-person math-
ematical game or puzzle devised and analyzed by mathematician John
Horton Conway in 1961. A variant of peg solitaire, it takes place on an
infinite checkerboard. The board is divided by a horizontal line that ex-
tends indefinitely. Above the line are empty cells and below the line are
an arbitrary number of game pieces, or “soldiers”. As in peg solitaire,
a move consists of one soldier jumping over an adjacent soldier into an
empty cell, vertically or horizontally (but not diagonally), and removing
the soldier which was jumped over. The goal of the puzzle is to place a
soldier as far above the horizontal line as possible. Conway proved that,
regardless of the strategy used, there is no finite series of moves that
will allow a soldier to advance more than four rows above the horizontal
line. His argument uses a carefully chosen weighting of cells (involving
the golden ratio), and he proved that the total weight can only decrease
or remain constant. This argument has been reproduced in a number of
popular math books.”

1 I did have to memorize the multiplication table, but this did not bother me.
2 This quote is from the Wikipedia article “Conway’s Soldiers” (https://en.
wikipedia.org/wiki/Conway’s_Soldiers), which is released under the Creative
Commons Attribution-Share-Alike License 3.0
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The weight of the destination cell four rows above the x-axis is > the weights
of all the cells (an infinite number of them) below the x-axis. Since the total
weight never decreases with any move, the destination cell cannot be reached. I
did not understand all the intricacies of the proof at the time, but I was convinced
I had seen something remarkable!

From High School to University

Ontario used to have a fifth year of high school, which was designated as grade
13. A diploma would be awarded after grade 12, but students who intended to go
to university would take grade 13. I took grade 11 and grade 12 math while I was
enrolled in grade 11. While I was in grade 12 (1973–1974), I took the three grade
13 math courses and I applied for early admission to UW. My parents took me
to UW to meet with the Dean of Mathematics, Ken Fryer, who indicated that
Waterloo would be happy to accept me even though I would not have a grade 13
diploma. I continued to be involved in various math contests—that year I won
the UW Descartes Math Contest with a score of 99/100 and I finished second in
the Canadian Math Olympiad .

The 1974 “Special K” Math Contest

Murray Klamkin (1921–2004) joined UW as a visiting professor in 1974. At
the time he was the principal research scientist at Ford Motor Company. Later
Murray was chair of the Mathematics Department at the University of Alberta,
from 1976–1981.

Murray was well-known as a “prolific proposer and editor of professionally
challenging mathematical problems”.3 In 1974, he instituted the Special K and
Euler math contests for undergraduates. I won the Special K contest (for first-
year students) that year.

One of the problems in the Special K contest that year was written up by Ross
Honsberger in his book “Mathematical Morsels” [10], which was published in
1978. Here is the description of the problem, which Ross termed the “Chauffeur
problem”:

“Mr. Smith, a commuter, is picked up each day at the train station at
exactly 5 o’clock. One day he arrived unannounced on the 4 o’clock train
and began to walk home. Eventually he met the chauffeur driving to the
station to get him. The chauffeur drove the rest of the way home, getting
him there 20 minutes earlier than usual.
On another day, Mr. Smith arrived unexpectedly on the 4:30 train, and
again began walking home. Again he met the chauffeur and rode the

3 This quote is from the Wikipedia article “Murray S. Klamkin” (https://en.
wikipedia.org/wiki/Murray_S._Klamkin), which is released under the Creative
Commons Attribution-Share-Alike License 3.0
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Fig. 1. Mr. Smith and the chauffeur

rest of the way with him. How much ahead of time were they this time?
(Assume constant speeds of walking and driving and that no time is lost
in turning the car around and picking up Mr. Smith.)

The answer to the problem (namely, 10 minutes) is intuitively obvious, but
a bit of work is required to give a convincing mathematical proof. I provided
an algebraic solution to this question. My solution was correct but not very
illuminating. Another student who wrote the contest, Rick Cameron, provided
a much more satisfying solution, which was related by Ross Honsberger in [10].
The basic idea is to plot “distance from the station” on one axis and “time” on
the other axis.4 See Figure 1.

– On a normal day, the chauffeur proceeds from X to C where he meets Mr.
Smith. They then drive to F .

– When Mr. Smith arrives on the 4:00 train, the chauffeur proceeds from X
to A. There he meets Mr. Smith, who has walked from Y to A. They then
drive to D.

– When Mr. Smith arrives on the 4:30 train, the chauffeur proceeds from X
to B. There he meets Mr. Smith, who has walked from Z to B. They then
drive to E.

4 This is sometimes called a Minkowski diagram.
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We observe that XAD, XBE and XCF are similar triangles, as are Y AC and
ZBC. The length of the line segment Y Z is the same as the length of the line
segment ZC, so the line segments AB and BC have the same lengths. Hence,
the line segments DE and EF have the same lengths. Since we are told that
DF has length 20 (minutes), it follows that EF has length 10 (minutes).

I can honestly say that I do not remember the details of the solution I gave,
and I cannot remember any of the other problems in this contest. What sticks
in my mind 45 years later is Rick’s solution.

Ron Mullin

After my second year of undergraduate studies, Ron Mullin hired me as a un-
dergraduate research assistant in 1976. Ron of course is well-known as a leading
researcher in combinatorics (especially design theory) and cryptography. Ron
eventually became my PhD supervisor; he was clearly the main influence in my
mathematical career. Among many other things, I credit Ron with helping me
make the transition from problem solver to researcher. Ron was the first gradu-
ate of the University of Waterloo—he received the very first degree (an MA in
mathematics) awarded at the very first convocation in June, 1960. Another bit
of trivia is that Ron and I are both natives of Guelph, Ontario.

At Ron’s suggestion, I attended the ManiWat Workshop in the summer of
1976. The ManiWat workshops took place from 1975–1985 at a former convent
in St. Pierre, Manitoba that was owned by Ralph Stanton (1923–2010). These
workshops were modelled after Oberwolfach. This was my first “up-close” ex-
posure to mathematicians “in the wild” doing research, with a bottle of beer in
one hand and a piece of chalk in the other hand!

That year, the workshop consisted of one week of computational number
theory followed by a week of design theory. I recall hearing lectures from Dan
Shanks about the SQUFOF (SQU are FOrm Factorization) factoring algorithm.
In the design theory week, Ron Mullin gave a series of talks on the problem of
packing pairs into quadruples. This problem requires the determination of the
maximum number of four-subsets of a v-set such that no pair is contained in
more than one four-subset; I was working at the time on some special cases of
that problem for Ron.

Ron Mullin hired me as a URA for three consecutive years. I worked on
various problems including packings, mutually orthogonal latin squares and skew
Room squares. Mostly I was doing computational work as I found the theory
very complicated.

I was especially mystified by recursive constructions for block designs, which
I felt was the most complicated mathematics I had ever seen. I tried to read
various papers by Hanani, Mills, Wilson, etc., but the methods and notation were
daunting. In retrospect, it took a considerable amount of time for me to become
comfortable with the theoretical underpinnings of recursive constructions for
designs. However, finally there was an epiphany. I vividly recall in 1978 when
Ron showed me a new PBD (pairwise balanced design) construction on the
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blackboard in his office. For the first time, I really understood how a recursive
PBD construction worked. This construction, which appeared in [11], was of
fundamental importance in attacking the skew Room square problem since it
could provide PBDs of odd orders whose block sizes were orders of skew Room
squares (i.e., odd integers ≥ 7).

Here is a brief summary of the construction. First, it requires the construction
of two small designs:

1. Deleting a point from a transversal design TD(7, 9), we obtain a group-
divisible design (GDD) with group type 8169 and having blocks of size 7 and
9.

2. Start with a TD(7, 8). Adjoint a new point to each group and then delete
some other point. The result is a GDD with group type 8168 and having
blocks of size 7 and 9.

We use these two GDDs as “building blocks” in a recursive construction. Start
with a TD(10,m) and then deletem−t points from one group (where 0 ≤ t ≤ m).
This produces a GDD with group type m9t1 and having blocks of size 9 and 10.

Next, give the points in one group of size m weight 8, give all other points
weight 6 and apply Wilson’s Fundamental GDD Construction (see [20]). Each
block B of the GDD is replaced by a copy of one of our two “building blocks,”
in such a way that the groups of the GDD align with the copies of the points in
B: a block of size 10 is replaced by the blocks of the GDD #1, and a block of
size 9 is replaced by the blocks of the GDD #2.

This yields a GDD of group type (6m)8(8m)1(6t)1, having blocks of size 7
and 9. If we now add one new point to each of the groups, we obtain a pairwise
balanced design (PBD) on 56m+6t+1 points, having block sizes 7, 9, 6m+1, 6t+1
and 8m+ 1.

Graduate Studies

I completed my Bachelor of Mathematics degree at the University of Waterloo
in 1978, majoring in C&O (Combinatorics and Optimization) and Pure Mathe-
matics. Then I started graduate school at Ohio State, but I already had a “head
start” of two years on learning how to do research. Ohio State was a hotbed
of combinatorics in the 1970s. Furthermore, a number of now well-known com-
binatorial researchers were grad students at OSU at the time, including Jeff
Dinitz, Dan Archdeacon, KT Arasu, Jeff Kahn, and Ernie Brickell. Ohio State
was where I met my long-time friend and frequent collaborator Jeff Dinitz.

I obtained a Masters Degree at Ohio State in 1980 and then I returned
to Waterloo to complete my PhD. I received my PhD in Combinatorics and
Optimization from UW in 1981. The title of my thesis was “Some classes of
frames, and the spectra of skew Room squares and Howell designs.”

Various people have asked me how I managed to complete a PhD in three
years. I firmly believe that the reason I was able to do this was due to the two
years of “apprenticeship” under Ron’s guidance while I was still an undergrad:
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the hard work of learning how to do research was already in place before I began
my graduate studies.

Easing into the World of Computer Science

The academic job market in math was very challenging in 1981, but there seemed
to be substantially more opportunities in computer science than there were in
mathematics at that time. I applied for and was awarded an NSERC PDF (post-
doctoral fellowship), which I decided to hold at the Computer Science depart-
ment at the University of Manitoba. This was in spite of the fact that I had
essentially no computer science training as a student. However, at that time,
there were several people in the Computer Science Department at the Univer-
sity of Manitoba who had research interests in combinatorics, including Ralph
Stanton, John van Rees, John Bate and Bill Kocay, so it was actually quite a
good academic fit for me.

A year later, in 1982, I was awarded an NSERC University Research Fel-
lowship which I held at the University of Manitoba from 1982–1989. Being in a
computer science department, I expanded my research to pursue more algorith-
mic aspects of combinatorial designs, such as isomorphism testing, enumeration
of designs and hill-climbing algorithms. Actually, I had previously worked on
hill-climbing algorithms with Jeff Dinitz while we were grad students. Jeff and I
devised the first successful hill-climbing algorithm to construct a nontrivial com-
binatorial structure, namely, strong starters in cyclic groups. However, when we
published our paper [7] in 1981, we were not even aware of the term “hill-climbing
algorithm.”

Cryptography

After obtaining my PhD, I was interested in broadening my research expertise,
but this was a slow process. In the early 1980s, I started to become aware of
cryptography through the work by Blake, Fuji-Hara, Mullin and Vanstone [3] on
the discrete logarithm problem in finite fields of characteristic 2. This Waterloo
research group solved the discrete logarithm problem in F2127 using some new
extensions of index calculus methods. There was a commercial implementation of
key exchange in F2127 at the time, which was rendered insecure by this algorithm.

I also heard research talks by Gus Simmons on the topic of unconditionally
secure authentication codes.5 Ernie Brickell, who was working for Gus Simmons
at Sandia Labs, was also investigating authentication codes, but from a more
combinatorial point of view. (Ernie was a grad student at OSU at the same time
I was there. We later collaborated on several cryptography papers starting in
the late 1980s.)

Ernie presented a paper [5] on authentication codes entitled “A few results
in message authentication” at the Southeastern Conference on Combinatorics,

5 Gus was another important influence on my career.
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Graph Theory and Computing held in Baton Rouge in 1984. This paper includes
a (three-dimensional) 6×6×6 Howell cube on 12 points. The Howell cube could
be used to construct a certain type of “optimal” authentication code that was
termed “doubly perfect” by Ernie.

The Howell cube can be described as three orthogonal one-factorizations of
a certain 6-regular graph on 12 vertices. The construction of two-dimensional
Howell designs was one of the main problems I addressed (and solved) in my
PhD thesis. Ernie’s paper was the first time I saw a cryptographic application
of combinatorial designs.

Ernie’s Howell cube can be presented as a list of quadruples. Each quadruple
has the form (row, column, level, pair). The row, column and level specify a cell
in a cube, and the cell contains an unordered pair of elements. The quadruples
in Brickell’s cube are as follows:

1, 1, 1, {1, 2} 3, 1, 3, {7, 12} 5, 1, 5, {4, 8}
1, 2, 2, {3, 4} 3, 2, 6, {2, 8} 5, 2, 3, {10, 11}
1, 3, 3, {5, 6} 3, 3, 1, {4, 9} 5, 3, 4, {2, 3}
1, 4, 4, {7, 8} 3, 4, 2, {6, 10} 5, 4, 6, {5, 9}
1, 5, 5, {9, 10} 3, 5, 4, {1, 11} 5, 5, 1, {6, 12}
1, 6, 6, {11, 12} 3, 6, 5, {3, 5} 5, 6, 2, {1, 7}
2, 1, 2, {9, 11} 4, 1, 4, {5, 10} 6, 1, 6, {3, 6}
2, 2, 1, {5, 7} 4, 2, 5, {1, 6} 6, 2, 4, {9, 12}
2, 3, 6, {1, 10} 4, 3, 2, {8, 12} 6, 3, 5, {7, 11}
2, 4, 5, {2, 12} 4, 4, 1, {3, 11} 6, 4, 3, {1, 4}
2, 5, 3, {3, 8} 4, 5, 6, {4, 7} 6, 5, 2, {2, 5}
2, 6, 4, {4, 6} 4, 6, 3, {2, 9} 6, 6, 1, {8, 10}

Each two dimensional projection of the Howell cube is a 6×6 array such that
every symbol occurs once in each row and once in each column, and no pair of
symbols occurs in more than one cell of the array.

It took me a couple more years, but by 1986 I started to work on combinato-
rial aspects of authentication codes and I presented my first cryptography paper
([15]) at CRYPTO ’86. The CRYPTO conferences have been held annually in
Santa Barbara since 1981.

At the CRYPTO ’86 conference, I heard a number of fascinating talks on
various aspects of cryptography. I was particularly intrigued by the notion of
a threshold scheme and I published my first paper on that topic ([18], joint
with Scott Vanstone) at CRYPTO ’87. Our paper used combinatorial designs to
construct threshold schemes.

Over the next few years, I wrote a number of papers on these two topics.
Obviously this was a natural way for me to leverage my expertise in combina-
torics in a new research area. Combinatorial cryptography began to establish
itself as a distinct subarea of cryptography by the early 1990s as more examples
of combinatorial cryptography were studied.
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Here are a few topics in combinatorial cryptography, along with the year that
I first studied them, over the following 17 years. (There are numerous additional
topics in combinatorial cryptography that I have studied since then.)

– authentication codes (1986)
– threshold schemes (1987)
– resilient and correlation-immune functions (1992)
– visual cryptography (1996)
– broadcast encryption (1996)
– combinatorial key predistribution (1997)
– frameproof codes and traceability codes (1998)
– all-or-nothing transforms (2001)
– unconditionally secure commitment schemes (2002)
– generic algorithms for the discrete logarithm problem (2003)

What is Combinatorial Cryptography?

I like to conceptualize combinatorial cryptography as a process:

starting point: define an unconditionally secure6 cryptographic primitive or
protocol;

security definitions are phrased in terms of probability distributions;

optimal and/or “uniform” cases lead to the consideration of combinatorial
objects;

cryptographic requirements motivate the mathematics that is used;

solutions might use “off-the-shelf” designs, codes, and extremal set systems,
for example, but they might also motivate the study of new mathematical
problems;

combinatorial characterizations, which establish the equivalence of crypto-
graphic primitives and combinatorial structures, can sometimes be proven.

Shannon and the One-time Pad

Claude Shannon (1916–2001) was one of the giants of 20th-century science. He in-
vented information theory and did seminal work in coding theory, cryptography,
and digital circuit design. One of Shannon’s many contributions in cryptography
was to give the first proof of security (in 1949) of the Vernam One-time Pad ,

6 Unconditional security is basically the same thing as being secure against an infinitely
powerful adversary.
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provided the key is only used once (see [13]). I consider Shannon’s security proof
as being the birth of combinatorial cryptography.

An interesting historical fact is that the One-time Pad was invented in 1882
by Frank Miller, a Sacramento banker (see [1]). (Gilbert Vernam rediscovered
the One-time Pad in 1917.)

The One-time Pad encrypts an n-bit plaintext x with an n-bit key K, ob-
taining an n-bit ciphertext

y = x⊕K.

The ciphertext is decrypted by computing

x = y ⊕K.

Shannon defined the concept of perfect secrecy to describe the situation where

Pr[X = x|Y = y] = Pr[X = x]

for all plaintexts x and all ciphertexts Y. “Perfect secrecy” means that an ob-
server does not gain any information about the plaintext after seeing a cipher-
text.

It is not hard to prove that

|K| ≥ |Y| ≥ |X |

if perfect secrecy is achieved. Furthermore, in the “boundary case” where

|K| = |Y| = |X |,

perfect secrecy is achieved if and only if the encryption matrix is a latin square
of order |X |. That is, this optimal solution has a combinatorial characterization.

Here is an example of the One-time Pad with n = 3:

K
x 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

The encryption matrix of the One-time Pad is a latin square of order 2n, so
it achieves perfect secrecy. The proof makes clear the underlying combinatorial
structure of the optimal solution, as opposed to the algebraic description of
the One-time Pad . Any latin square yields an encryption scheme that provides
perfect secrecy. Thus, the security is based on the combinatorial structure, not
the fact that encryption is done using XOR (exclusive-or) operations.
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My Paper with Jim Massey

My most famous co-author was Paul Erdös, but in cryptography, I would point
to my paper with Jim Massey (1934–2013). Jim is well-known for his work in de-
coding algorithms (e.g., the Berlekamp-Massey algorithm), block cipher design,
convolutional codes, etc.

Jim and I co-authored a 1995 paper on resilient functions [17], entitled “An
infinite class of counterexamples to a conjecture concerning nonlinear resilient
functions,” that was published in the Journal of Cryptology . This paper provides
a nice example of how coding theory was used to disprove a conjecture, based
on an appropriate combinatorial characterization.

An (n, k, t)-resilient function (or RF ) is a function f : (Z2)n → (Z2)k such
that, if any t inputs are fixed and the remaining n−t inputs are chosen uniformly
and independently at random, then every output k-tuple is equally likely. Given
n and k, the fundamental problem is to maximize t.

A resilient function f is linear if f(x) = xM for some n by k binary matrix
M . It was known that the existence of an [n, k, d]-binary code is equivalent to
the existence of a linear (n, k, d−1)-RF. Thus, studying linear resilient functions
is equivalent to studying linear codes. Perhaps based on this equivalence, it was
conjectured in 1988 by Bennett, Brassard and Robert [2] that, if an (n, k, t)-RF
exists, then a linear (n, k, t)-RF exists.

I proved the following combinatorial characterization of (n, k, t)-RF in 1993 in
[16]: An (n, k, t)-RF is equivalent to a large set of orthogonal arrays OAλ(t, n, 2),
where λ = 2n−k−t. In a bit more detail, if f is an (n, k, t)-RF, then, for any binary
k-tuple y, the inverse image f−1(y) is an orthogonal array and the 2k orthogonal
arrays thus obtained comprise a large set (i.e., they partition the entire space
{0, 1}n).

The above-mentioned characterization allows coding-theoretic methods to
be used to study arbitrary (linear or nonlinear) resilient functions. Using the
(nonlinear) Kerdock codes, it is possible to construct a (2r+1, 2r+1−2r−2, 5)-RF.
The Kerdock code has dual distance d′ = 6 and hence it is an orthogonal array
with strength t = 5. In the original version of the paper, which was submitted
to the Journal of Cryptology , I provided a complicated method of extending
this OA to a large set of OAs. The nonexistence of a linear RF with the same
parameters followed from known results in coding theory. A referee of the paper
pointed out that my construction was not needed because the Kerdock code is
systematic and hence a large set of orthogonal arrays (consisting of translates of
the code) exist trivially. The editor-in-chief of the Journal of Cryptology at the
time, Gilles Brassard, suggested that I include the referee as a co-author (if the
referee was willing). The referee turned out to be Jim Massey.

It is interesting to note that most of the disproof of the conjecture used
“off-the-shelf” coding theory, ultimately based on Delsarte’s seminal work [6].
The tricky part was extending a nonlinear orthogonal array to a large set of
orthogonal arrays. However, as described above, this turned out to be not so
tricky after all!
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Research Philosophy

Up to the present day, I have continued my research in combinatorial mathemat-
ics, applications of combinatorics and various aspects of cryptography, including,
of course, combinatorial cryptography. I have never been so interested in devel-
oping theory for its own sake—I like to see some kind of motivation for the
problems I study. I also try to be cognizant of the danger of researching ever
more specialized problems which may not be of interest to anyone but the author,
such as “hemi-demi-flippoids that vanish under close inspection.”7

I choose my research topics based on various criteria:

– intrinsic interest of the problem (aesthetics)
– my ability to make a contribution based on my knowledge and skill set, and
– potential applications of the problem in any area of computer science.

I have often sought out “practically motivated” problems raised by others when
I think that combinatorial techniques will prove fruitful in their solution. At the
same time, I also work on any mathematical problems (usually combinatorial)
that happen to appeal to me.

Some Influential Books

I thought it might be of interest to mention a few examples of extremely well-
written books from which I have learned a great deal.

H. J. Ryser, Combinatorial Mathematics, 1963 [12]. From the preface: “But effort
and ingenuity lead to mastery, and our subject holds rich rewards for those who
learn its secrets.” This book is a very short but well written classic treatment of
combinatorial theory up to the year 1963. It still makes excellent reading today.

M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1979 [8]. Wikipedia states: “In a 2006 study, the
CiteSeer search engine listed the book as the most cited reference in computer
science literature.”8 This is, in my opinion, the best example of a clearly written
book on a very technical subject. It is how I (as a complete novice) learned about
this theory in the early 1980s.

G. J. Simmons (Editor), Contemporary Cryptology: The Science of Information
Integrity , 1992 [14]. This book is an edited collection of extremely useful survey
articles, which is now (unavoidably) somewhat out of date. The field of cryptog-
raphy needs more survey papers! These are invaluable to keep track of research
trends and to summarize the most important developments in the field.

7 I attribute this amusing term to Curt Lindner.
8 This quote is from the Wikipedia article “Computers and Intractability” (https://
en.wikipedia.org/wiki/Computers_and_Intractability), which is released under
the Creative Commons Attribution-Share-Alike License 3.0
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J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd Edition, 2001
[19]. This is my favourite combinatorics book. It is extremely well written and it
contains a wealth of information on many areas of combinatorics. A reader can
just pick it up and start reading any random page, and there will be interesting,
beautiful mathematics to be found.

Mathematical Exposition

I would like to stress the importance of clear mathematical exposition. The fol-
lowing quote is sometimes attributed (perhaps erroneously9) to Albert Einstein:

“If you can’t explain it simply, you don’t understand it well enough.”

I saw this quote last winter on a poster on the door of an engineering faculty
member’s office door that I passed each day when I walked indoors from my car
to the Davis Centre.

My goal is always to explain things clearly and precisely. Here are a few
guiding principles for my mathematical writing and research talks:

– Use mathematics and English to reinforce each other. For example, give
precise mathematical definitions but also explain what the definitions mean
in plain language.

– Do not overburden the reader (or listener) with cumbersome notation, un-
necessary jargon, etc.

– Whenever possible, provide examples to illustrate concepts, definitions, proofs,
etc. An example is worth a hundred proofs!

– If something is complicated, try to simplify it! Simplification benefits the
reader, of course, but it can also lead to a deeper understanding by the writer,
which may suggest generalizations, extensions, etc. There have been many
times when my understanding of a research paper has been accomplished by
simplifying the ideas, notation, etc., and this has led to me doing additional
research on the same problem.

The following definition is from a recent preprint on the IACR eprint server.
It is a typical example of the kind of notation that is commonly encountered in
cryptographic definitions.10

9 There is apparently no source to substantiate the claim that Einstein actually said
this, but it is still a good quote.

10 I should emphasize that I am not specifically criticizing the wording and notation
in this definition. I am just using it to illustrate how complicated cryptographic
definitions have become in recent years.
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The above mathematical definition is very hard to decipher for anyone who is
not already an expert. There is nothing unusual about this example, as cryptog-
raphy papers are frequently burdened by extremely complicated notation, defi-
nitions, proofs, etc. However, it should be noted that the paragraph preceding
the formal definition conveys the essential idea in a concise and understandable
way, which is a definite positive.

How to Turn a Complex Mystery into a Simple Truth

The eminent combinatorial mathematician Curt Lindner gave a memorable after-
dinner speech at the 1984 Southeastern Conference on Combinatorics, Graph
Theory and Computing, having the above-mentioned title. I emailed Curt re-
cently to fill in a few details about this talk. Curt said this:

“I showed how to get an embedding for a partial idempotent quasigroup
of order n into a complete idempotent quasigroup of order 4n with a
simple picture . . . then I gave a proof that the containing quasigroup
was finite using universal algebra. The universal algebra proof was 50
pages and used reduction chains to canonical forms.

I conjectured that if I gave the universal algebra proof at a famous uni-
versity it would be considered beautiful mathematics . . . whereas if I
gave the 4n proof most of the people in the audience would say ‘who the
hell invited this idiot to give a talk.’

I was illustrating the fact for many people it’s the machinery that mat-
ters, not the result.”

Of course the first result is much stronger than the second one. The ques-
tion Curt is raising is whether complicated “deep” mathematics is really to be
preferred over simple, direct arguments. Personally, I have always been most
inspired by clarity, creativity, and originality.
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Photo

The following photo was taken at a reception at SAC 2019 immediately following
my talk. From left to right, there is Ron Mullin (my PhD supervisor), me, and
Atefeh Mashatan. Atefeh introduced my talk; she is a former PhD student of
mine who is now a faculty member at Ryerson University in Toronto.

Dedications

Research is much easier and enjoyable with the contributions of collaborators. I
would like to dedicate this talk to all my co-authors over the years:

B. Alspach, B. Anderson, D. Archdeacon, A. Assaf, G. Ateniese, M. Atici,
T. Berson, J. Bierbrauer, E. Billington, S. Blackburn, C. Blundo, E. Brickell,
H. Cao, J. Carter, M. Carter, M. Chateauneuf, D. Chen, K. Chen, C. Col-
bourn, M. Colbourn, P. D’Arco, A. De Bonis, A. De Santis, D. Deng, J. Dinitz,
P. Dukes, P. Eisen, P. Erdös, T. Etzion, H. Ferch, L. Frota-Mattos, A. Giorgio
Gaggia, I. Goldberg, G. Gong, K. Gopalakrishnan, D. Gordon, M. Grainger,
C. Guo, A. Hamel, A. Hartman, K. Henry, D. Hoffman, J. Horton, E. Ihrig,
T. Johansson, S. Judah, B. Kacsmar, M. Kendall, K. Khoo, W. Kishimoto,
W. Kocay, E. Kramer, D. Kreher, K. Kurosawa, T. Laing, K. Lauinger, J. Lee,
P.-C. Li, C. Lindner, A. Ling, X. Ma, S. Magliveras, K. Martin, W. Martin,
A. Mashatan, J. Massey, B. Masucci, A. Mattern, J. McSorley, E. Mendelsohn,
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W. Mills, J. Muir, R. Mullin, M. Nandi, N. Nasr Esfahani, S.-L. Ng, M. No-
joumian, W. Ogata, K. Okada, P. Ostergard, K. Ouafi, A. Panoui, M. Paterson,
R. Phan, K. Phelps, M. Qu, R. Rees, C. Rodger, A. Rosa, B. Roy, H. Saido,
P. Sarkar, P. Schellenberg, E. Seah, V. Sós, J. Staddon, R. Stanton, R. Strobl,
J. Sui, B. Sunar, C. Swanson, L. Teirlinck, T. Tillson, T.V. Tran, J. Upadhyay,
U. Vaccaro, J. Van Rees, S. Vanstone, S. Veitch, D. Wagner, W. Wallis, Y. Wang,
R. Wei, W. Wei, Y.-J. Wei, J. Wu, J. Yates, J. Yin, G. Zaverucha, S. Zhang,
and L. Zhu.

As well, I would like to dedicate this paper to my family: my wife, Janet; my
children, Michela and Aiden; and my brothers, Murray and Tom.
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