
Cryptanalysis of the Sakazaki-Okamoto-Mambo

ID-based Key Distribution System over Elliptic

Curves

(Extended abstract)

Minghua Qu, Doug Stinson and Scott Vanstone

Certicom Corporation

Feb. 26, 2001

Abstract

In 1997, H. Sakazaki, E. Okamato and M. Mambo [4] proposed an
ID-based key distribution system on an elliptic curve over Zn. We will
cryptanalyze the scheme and demonstrate that when the hashed ID
length is about 160 bits, the scheme is insecure. To be specific, after
requesting a small number of keys from the Center, our attack allows
a new valid key to be constructed without any further interaction with
the Center.

1 Introduction

In 1986, E. Okamoto proposed an ID-based key distribution system (KDS)
whose security depends on the difficulty of factoring a number of two large
primes, as in the RSA public key cryptosystem. However, this scheme can-
not be constructed on an elliptic curve over Zn in a straightforward way
because the point corresponding to a user’s identity may not be defined on
the elliptic curve. As a solution to this problem, Sakazaki-Okamoto-Mambo
[4] proposed an ID-based KDS on an elliptic curve over Zn.The proposed
scheme can be also constructed on the ring Zn.

We will show that some homomorphism-like properties hold in the Sakazaki-
Okamoto-Mambo scheme, and use them to cryptanalyze the scheme. We
will demonstrate that, when the hashed ID length is about 160 bits, one
can forge a private key Si corresponding to some identity Ii. Hence the
Sakazaki-Okamoto-Mambo scheme is insecure.
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This paper is organized as following: Section 2 describes the Sakazaki-
Okamoto-Mambo KDS scheme. Section 3 will discuss the security of the
scheme and present and analyze some attacks. Section 4 concludes the
paper with some brief comments.

2 The Sakazaki-Okamoto-Mambo Scheme

2.1 Elliptic curves over Zn

For a detailed discussion of elliptic curves over Zn, see Koblitz [3]. Here we
just provide enough information to describe the Sakazaki-Okamoto-Mambo
scheme.

Let n be a product of two primes p and q. Let a, b ∈ Zn be such that
gcd(4a3 + 27b2, n) = 1. An elliptic curve over Zn with parameters a and b
is defined as the set of points

{(x, y) ∈ Zn × Zn : y2 ≡ x3 + ax + b (mod n)} ∪ {O},

where O is a special point called the point at infinity . This elliptic curve is
denoted En(a, b). Suppose that G ∈ En(a, b) be a base point having order

k = lcm(#Ep(a, b),#Eq(a, b)).

Note that Ep(a, b) and Eq(a, b) denote the corresponding elliptic curves de-
fined over Zp and Zq, and #E denotes the number of points in an elliptic
curve E. Such a base point G exists provided that Ep(a, b) and Eq(a, b) are
both cyclic groups.

2.2 The Sakazaki-Okamoto-Mambo Scheme over an Elliptic

Curve

2.2.1 Set-up Phase

The Center publishes the parameters of an elliptic curve En(a, b), and a base
point G, as described in Section 2.1. The Center has private key consisting
of k, p and q.

2.2.2 Issuing a Private Key to a User

Suppose the Center wants to issue a private key to a user i. Let Ii = h(IDi),
where h is a public hash function, and IDi is user i’s public identifying
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information. We call Ii a hashed identity. Suppose that gcd(Ii, k) = 1. The
Center computes

Di = Ii
−1 mod k

and
Si = −DiG.

Hence, it follows that
IiSi + G = O.

The Center transmits (Ii, Si) to user i using a secure channel. Si is user i’s
private key, and Ii is his public key.

2.2.3 Key Exchange Scheme

Suppose Alice and Bob want to establish a common key. Define [1, n− 1] =
{1, . . . , n − 1}. Let IA, IB be Alice’s and Bob’s public keys, and let SA and
SB be their private keys.

First, Alice randomly chooses an integer rA ∈ [1, n − 1], computes the
elliptic curve point

CA = SA + rAIBG

over En(a, b), and sends it to Bob. Similarly, Bob randomly chooses an
integer rB ∈ [1, n − 1], computes

CB = SB + rBIAG

over En(a, b), and sends it to Alice.
Then Alice computes

KAB = rA(IBCB + G)

over En(a, b), and Bob computes

KBA = rB(IACA + G)

over En(a, b). Obviously

KAB = KBA = rArBIAIBG.

Note that the above scheme can also be described over Zn.

3



3 Cryptanalysis of the Sakazaki-Okamoto-Mambo

Scheme

In this section, we will investigate a weakness of the Sakazaki-Okamoto-
Mambo scheme. We will concentrate the private keys distributed by the
Center. We will give methods to forge a private key SI corresponding to a
public key I, where I is a hashed identity.

3.1 Homomorphism-like Properties of the Sakazaki-Okamoto-

Mambo Scheme

In the following definitions, we assume that the modulus k is unknown. All
inverses are defined modulo k. For any positive integer x, define

Sx = −x−1G.

(Sx is the private key corresponding to public key x.)

Lemma 3.1 Let z = xy where x, y and z are positive integers. Suppose
that Sz = −z−1G. Then Sx = ySz and Sy = xSz.

Proof. Clearly we have

xyz−1 ≡ 1 (mod k),

so it follows that
−x−1 ≡ −yz−1 (mod k)

and
−y−1 ≡ −xz−1 (mod k).

Hence,
Sx = −x−1G = −yz−1G = ySz

and
Sy = −y−1G = −xz−1G = xSz.

Lemma 3.2 Suppose that gcd(x, y) = 1, Sx = −x−1G and Sy = −y−1G.
Then Sxy = k1Sy + k2Sx, where k1 and k2 are integers that can be computed
efficiently, given x and y.
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Proof. Since gcd(x, y) = 1, the extended Eulcidean algorithm can be used
to find integers k1 and k2 such that

k1x + k2y = 1.

It follows that

−(xy)−1 ≡ −k1y
−1 − k2x

−1 (mod k).

Hence,

Sxy = −(xy)−1G = −k1y
−1G − k2x

−1G = k1Sy + k2Sx.

3.2 Attacks on the Sakazaki-Okamoto-Mambo Scheme

Here is the basic idea of the attacks. If we know enough public keys Ii and
their corresponding private keys Si, then we can construct a database

DB := {(x, Sx)}

for small prime integers x, using Lemma 3.1. For a given public key I (i.e.,
a hashed identity), suppose that I can be factored as

I = x1x2 . . . xu,

where gcd(xi, xj) = 1 for all i 6= j and and (xi, Sxi
) ∈ DB for all i. Then

we can compute the private key

SI = −I−1G

using Lemma 3.2.
We now present two attacks on the scheme that use this idea. The first

attack is an attack on a specific pre-chosen identity. The second attack is
more general, but less efficient. We will suppose that the length of a hashed
identity, say I, is 160 bits. Let t be a positive integer. A positive integer m
is t-smooth if all the prime divisors of m are less than t. (Typically we will
choose t = 240.)

Algorithm 1 is a forgery of a private key SI corresponding to a specific
public key I (where I is the hash value of the identity information of a user
i).
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Algorithm 1

1. Find a t-smooth hashed identity I = p1p2 . . . pu, where the pi’s are
distinct primes.

2. Find a set of hashed identities I1, . . . , Iv such that, for every i with
1 ≤ i ≤ u, there exists an Ij with 1 ≤ j ≤ v such that pi|Ij . (Clearly
we can assume v ≤ u.)

3. For every j with 1 ≤ j ≤ v, obtain a private key SIj
corresponding to

public key Ij by interacting with the Center.

4. For every i with 1 ≤ i ≤ u, compute Spi
using Lemma 3.1.

5. Construct SI from the u pairs (pi, Spi
) by repeated applying Lemma

3.2.

In Algorithm 1, we build a database that allows us to forge a specific
secret key. Algorithm 2 consructs a large database that will allow various
secret keys to be forged. More precisely, a secret key can be forged using
Algorithm 2 for a hashed identity I whenever I is t-smooth and square-free.

Algorithm 2

1. Find a set of hashed identities I1, . . . , Iw such that, for every prime
p < t, there exists an Ij with 1 ≤ j ≤ w such that p|Iv.

2. For 1 ≤ j ≤ w, obtain a private key SIj
corresponding to public key

Ij by interacting with the Center.

3. For all primes p < t, compute Sp using Lemma 3.1.

4. Let I = p1p2 . . . pu be a t-smooth hashed identity, where the pi’s are
distinct primes.

5. Construct SI from the u pairs (pi, Spi
) by repeated applying Lemma

3.2.

3.3 Analysis of the Complexity of the Attacks

In this section, we analyze the complexity of the attacks. First, we need
some results on smoothness probabilities. Let Ψ(x, t) denote the number
of integers in the interval [1, x] which are t-smooth. The notation “log ” is
used to denote a logarithm to the base e. The following result can be found
in [1, p. 234].
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Theorem 3.3 For x ≥ 4 and 2 ≤ t ≤ x, it holds that Ψ(x, t) > x1−log log x/ log t.

If we take t = xα, where 0 < α < 1/2, then Ψ(x, t) > x/(log x)1/α.
Then the probability that a random integer in [1, x] is t-smooth is at least
1/(log x)1/α. When x = 2160 and t = 240, we have α = 1/4, and the
probability is at least

1

(160 log 2)4
=

1

1.5 × 108
>

1

228
.

(In practice, however, the probability is much larger than this. In fact, when
1/2 ≤ α ≤ 1, the probability is close to 1 + log α; see [2, p. 383].)

We first analyze Algorithm 1.

• Suppose we attempt to construct I in step 1 by choosing random iden-
tities, hashing them and testing them to see if they are t-smooth. We
should find a suitable I after 228 trials. Assuming that I = p1p2 . . . pu

is square-free, we proceed to step 2.

• In step 2, we might choose random identities, hash them and test them
for divisibility by the the pi’s. The probability that a random integer
is divisible by pi is 1/pi, so it will take about pi trials to find a hashed
identity divisible by pi, for each i. The total number of trials will be
about p1 + . . . + pu. It is not hard to see that the number of trials is
maximized when u = 4 and p1, p2, p3, p4 ≈ 240. The number of trials
in the worst case is therefore expected to be about 4 × 240 ≈ 242.

• In step 3, we require u interactions with the Center to obtain the Spi
’s,

1 ≤ i ≤ u. In the worst case, we will have u = 30, because the product
of the first 31 primes exceeds 2160.

• Finally, step 4 can be done quickly using u− 1 applications of Lemma
3.2.

In practice, the most time-consuming step is probably step 1. This is because
the values I in step 1 need to be checked for divisibility by all the primes up
to 240. In step 2, we are only testing for divisibility by the pi’s determined
in step 1.

This attack is sufficient to cast doubt on the security of the Sakazaki-
Okamoto-Mambo scheme if the length of a hashed identity is 160 bits.

Algorithm 2 can be analyzed in a similar fashion. Let π(x) denote the
number of primes that are less than x. (By the prime number theorem,
π(x) ≈ x/ log x.) Unfortunately, in step 2 of Algorithm 2, we need to
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construct a database of π(240) keys. This is so large that it is not really
practical.

4 Summary

The attack presented in Algorithm 1 is at least close to being practical in
the case where a hashed identity is 160 bits in length. After requesting a
small number of (private) keys from the Center, our attack allows a new
valid key to be constructed without any further interaction with the Center.
This shows that it is not sufficient for the hash function to be “secure” in
order for the Sakazaki-Okamoto-Mambo scheme to be secure.
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