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Abstract

In this paper, we develop a computational method for constrgtransverse-designs. An algorithm
is presented that computes theorbits of k-element subsets transverse to a partifitbngiven that an
automorphism grougx is provided. We then use this method to investigate trassv8teiner quadruple
systems. We also develop recursive constructions for veass Steiner quadruple systems, and we
provide a table of existence results for these designs wieenumber of points < 24. Finally, some
results on transvergedesigns witht > 3 are also presented.

1 Introduction

Given a partition{ = {Hy, Hs, ..., H,} of a setX, we say that a subs&t C X is transverse with respect
toH if TN H;| =0orlforeachi =1,2,...,r. A transverse ¢t-design with parameters-(v, k, \) is a
triple (X, H, B) such that the following properties are satisfied:

1. X is av-element set gpoints,
2. H={H,H,,...,H,}is apartition ofX into subsets calletoles, and

3. B is a collection ofk-element subsets calldilocks, each of which is transverse with respectHo
such that every transvergelement subset of points is in exacHyblocks.

A transverse-(v, k, 1) design is also called group divisible design.

A transverse3-(12,4,1) design having hole${ = {{0,1},{2,3},{4,5},{6,7},{a,b,c,d}} is dis-
played in Figure 1.

Let h; = |H;| be the size of the holél; € H. Thetype of a transverse-design is the multi-set
{h1,ha,..., h.} of hole sizes. It is customary to writg“1s."2 ... s, for the type of a transverse
design withu; holes of sizes;, i = 1,2,...,m. If all the holes have the same siZg,then the transverse
t-design is said to baeniform. Such a design has tygé& for someu.



{3,5,7,a} {3,5,6,b} {3,4,7,d} {3,4,6,c} {2,5,7.¢} {2,5,6,d} {2,4,7,b} {2,4,6,a}
{1,5,7,b} {1,5,6,¢} {1,4,7,a} {1,4,6,d} {1,3,7,¢} {1,3,6,a} {1,3,5,d} {1,3,4,b}
{1,2,7.d} {1,2,6,b} {1,2,5,a} {1,2,4,¢} {0,5,7,d} {0,5,6,a} {0,4,7,¢} {0,4,6,b}
{0,3,7,6} {0,3,6,d} {0,3,5,¢} {0,3,4,a} {0,2,7,a} {0,2,6,¢} {0,2,5,b} {0,2,4,d}

Figure 1: The 32 blocks of a transverse3-(12,4,1) design of type 2%4!, with holes
{0,1},{2,3},{4,5},{6,7},{a, b, ¢, d}

The transverse-(v, k, ) designs of typel” are the the (ordinary)-designs. A transverse(v,k, 1)
design is atransverse Seiner system. A transverse Seiner triple system (or transverse STS) of type
hihg--- h, is a transversé@-(v, 3,1) design of typeh;hs - - - h,, and atransverse Steiner quadruple sys-
tem (or transverse SQS) of typeh ho - - - h, is a transvers8-(v, 4, 1) design of typeh hy - - - h,.

The remainder of this paper is organized as follows. Sediaives some basic constructions for
transverse designs using other types of designs. In Se8fiare discuss how to construct transvetse
designs with a given automorphism group. In order to do #nisalgorithm is required that finds the orbits
of transverse subsets under the automorphism group. lio8ektwe focus on transverse SQS; we review
old results and we give several new constructions for thesigds. In Section 4.4, we give a table of
existence results for transverse SQS on at mgioints. Finally Section 5 concludes the paper.

2 Some basic constructions

A (uniform) transverse-(kh, k, \) design of typeh* is equivalent to aorthogonal array of orderh, strength
t, index\ and degreé:, denoted OA(¢, k, h). Itis well-known that an OA(¢,t + 1, h) exists for allt and
h. Hence, we have the following result as a consequence.

Theorem 2.1 Thereis a transverse t-((t + 1)h,t + 1,1) design of type h'*! for all integers h > 1 and
t> 2.

Proof: DefineX =Z;, x {1,...,t+ 1}, H={Zy x {i} : 1 <i<t+ 1}, and
B={{(a1,1),...,(at+1,t+ 1)} a1+ -+ a1 =0 (mod h)}.
Then(X, H, B) is the desired-((t + 1)h, t + 1, 1) design of typeh! ™. |

If (X, H,B)is atransverse-(v, k, \) design and: € H € H, then(X',H’, B') is a transversét — 1)-
(v—|H|, k — 1, \) design, where

X' = X\H,
H' = H\{H}, and
B = {B\{z}:x€Be€hB}.
The design X', H’, B') is called thederived design of (X, H, B) with respect tar.

SupposeH is a partition of typeh™ of a setX. Two transverse-(v, k, 1) designs of typer* having
holesH, say (X, H,B) and (X, H, '), are said to baligoint if 3N B = (. A collection (X, H, B;)



(¢ =1,2,...,n, wheren = h(u — t)/(k — t)) of pairwise disjoint transverse(v, k, 1) designs of type
h* having holesH is called alarge set of transverse-(v, k, 1) designs of type:. Given any subset of
points transverse t#{, there is a unique desigiX, H, BB;) in the large set that contains tkegiven points
as a block.

The following theorem shows a useful equivalence whent + 1.

Theorem 2.2 There exists a large set of transverse ¢-(hu,t + 1, 1) designs of type h* if and only if there
exists atransverse (t + 1)-(hu + n,t + 2,1) design of type h“n!, wheren = h(u — t).

Proof: SupposeH is a partition of typeh" of a setX. Suppose thatX,H,B;) (: = 1,...,n) are the
transverse-(hu,t + 1,1) designs of typeh” in a large set. Let” = {y,...,y,} be a set ofr points
disjoint from X. Define

B={{y;}UB:BeB;,1<i<n}.

Then(X UY,H U {Y},B) is a transvers¢t + 1)-(hu + n,t + 2, 1) design of typer“n'.

Conversely, suppose we start with a transvétse 1)-(hu + n,t + 2, 1) design of typehn?. It can be
shown that every block contains a point in the hole of siz& we construct the: derived designs through
the points in the hole of size, then we get the desired large set. |

It is easy to see that = h in the above theorem if and only+f = k£ = ¢ + 1. In this case, the designs
are orthogonal arrays. We can extend Theorem 2.1 as follows:

Corollary 2.3 Thereis a large set of transverse ¢-((t + 1)h,t + 1,1) designs of type r'*! for all integers
h>1landt > 2.

Proof: ¢From Theorem 2.1, there exists a transvérse 1)-((t + 2)h, t + 2,1) design of typeh! ™. Now
apply Theorem 2.2. |

Here is a simple “inflation” construction.

Theorem 2.4 Ifatransverset-(v,t+1, \) design of type hi hs - - - h, exists, then atransverse t-(vw, t+1, X)
design of type (why)(whs) - - - (wh,) exists for every integer w > 0.

Proof: Takew copies of each point, and replace each bldckf a transverse-(v,t + 1, \) design by the
blocks in a transverse(w(t + 1),t + 1, 1) design of typav' ™, which exists by Theorem 2.1. [

3 Constructing transver se t-designs having specifed automor phism groups

A permutationg on a setX acts on the subsets of in a natural way. Giver C X, we defineg(S) by
g(S) = {g(x) : x € S}. A permutationg is anautomorphism of the transverse desigiX, H, ) provided
that

1. g € Sym(X) (the symmetric group o),
2. g(H) € H for every holeH € H, and

3. g(B) € B for every blockB € B.



A collection of automorphisms ofX, H, B) that forms a group (under composition of permutations) is
called anautomorphism group of the transverse desighX,H,B). If G is an automorphism group of
(X,H,B), thenH and B are each unions of group orbits, where théit of any subsetS C X under
the action ofG is defined to b&7(S) = {¢(S) : g € G}.

It is easy to see that the permutations

a = (0,2)(4,6)(1,3)(5,7)(a,b)(c,d),
g = (0,4)(2,6)(1,5)(3,7)(a,c)(b,d),and
v = (0,2,4)(1,3,5)(a,b,c)

preserve the blocks and holes of the transverse design imeFig Thus the grour = («, 3, ) generated
by them is an automorphism group of the design.

Suppose that a subgroup of Sym(X) preserves the holed = {H;, Hs,...,H,.}. The orbits of
subsets transverse 16 under the action off can be computed if we have one representative for each orbit.
The actual orbits can then be constructed by running thraligihe elements of+, applying them to the
orbit representatives, and removing duplicates.

Orbits of transvers¢k + 1)-element subsets can be obtained by the following methotiRLige a set
of orbit representatives for the orbits of transvekselement subsets of under the permutation groug.
GivenA € R, defineC(A) by

C(A):U{HZ:AﬂHZ:®7Z:172’...774}’

and let
S={Au{z}: AeRandz € C(A)}.

Let " be any orbit of transversg: + 1)-element subsets. Consider any representdsive T'. Writing
B’ = A’ U {2/} for somek-setA’, we see thatl’ € A for some orbitA of transverse:-element subsets.
Thus there is @ € G such thaty(4’) = A € R. Hencel has the orbit representativé U {z}, where
x = g(2"). Thus, applying the permutations in the grasipo eachA U {z}, x € C(A), and keeping the one
that is minimum in lexicographical order, we will constraicé desired lisS of distinct orbit representatives
of transversék + 1)-element subsets. Pseudocode for this method is providatdorithm 3.1.

Algorithm 3.1: TransRep&:, H,R)

S « the empty list
for each A inthe listR
comment computeC = C(A)
C+— 0
foreach H e Hdoif ANH =0 thenC «— CUH
comment compute orbit representatives containifg
for eachx € C
B — A {x}
comment find the minimum orbit representativé* of G(B)
do{ B*~ B
for each g € G doif g(B) < B* in lexicographic order then B* — ¢(B)
if B*is notinthe listS then insertB* into the listS

do




If we can compute the numb@¥[k-+1] of orbits of transversék+1)-element subsets prior to computing
the orbit representatives ¢k + 1)-subsets, then we can possibly abort the computation inrAfgo 3.1
early. In order to do this, we would add the statement

if |S| > N[k +1] then exit

after B* is inserted onto the lisf.

LetH = {Hy, Hs,..., H,} be apartition ofX into holes and le€& be an automorphism group preserv-
ing H. ThenN[k], the number of orbits of transvergeelement subsets, is given by the Cauchy-Frobenius-
Burnside formula:

1 .
NIk] = e g% Fix(k, g),

whereFix(k, g) is the number of transvergeelement subsets fixed by the permutatiorin order to use
this formula, an efficient algorithm is required to comp#gig(k, g). We develop such an algorithm now.
Letg € G and writeg as a product of disjoint cycles:

g =CoC1Cs---Csr.
Forj =0,1,...,s — 1, defineC; by
C; = {i:x € H, for somex € C;}.
If K is atransversé-element subset fixed by, then
1. K is a union of cycle€’;,,C},,...,Cj,,
2. Cj, istransverse t@¢{ forh = 1,2,...,¢, and
3.Cj,NCj, =0foralll <h <h </

Thus, we associate with each permutatjoa G a graphG, = (V, £) whose vertices are the cycles
in g with C; transverse td<, and in whichC} is adjacent taC, if and only if C; andC_j/ are disjoint. If
A C Vis aclique inG,, theng fixes a subset of size

> Len(Cy),

CjeA
whereLen(C}) is the length of the cyclé€’;. The fixed transverse subggtcorresponding to the cliqué is
K ={z:2 € C;andCj € A}.

Example 3.1. Consider the holes

H = {{0}, {1}, {2}, {3}, {4,5,6},{7,8,9}}

and the permutation
a = (0,1)(2,3)(4)(5)(6)(7)(8)(9) = (0,1)(2,3),
which preserve{. In Figure 2, the graply,, is displayed.



Figure 2: The graply, wherea = (0,1)(2, 3).

The vertices in grapf,, areCy = (0,1),Cy = (2,3),C2 = (4),C3 = (5),Cy = (6),C5 = (7),Cs =
(8), andC; = (9). Note, for example, that’; is not adjacent t@’y because”s N Cy = {5}. One clique in
this graph contains verticesy, C1, C, andCs. The size of this clique is four and = {0,1,2,3,6,7} is
the corresponding fixed subset. The sizekois six. d

This process of finding the number of transverse orbits isrgivy the pseudocode in Algorithm 3.2.
Implementation details for Algorithms 3.1 and 3.2 desdaiban be found in [5].

Algorithm 3.2: TransNorl{)

for kK —0to|H|do N[k] < 0
for each g € G

constructg,

for each clique A of G,

do 7«0

do {for each cycleC € Adoj <« j+ Len(C)
N[j] < N[j] +1

for k — 0to|H| do N[k] — NI[k]/|G]|

return (V)

Example 3.2. Let the holes be as in Example 3.1 and let the grGup («, 3, ), where

o = (071)(273)
6 = (072)(173)
v = (0,1,2)(4,5,6)(7,8,9).

We tabulate the numbefSx(k, g), for eachg € G, in Table 1. Each valué'[k] in this table is computed

by summing the entries in the relevant column, and then wigity |G| = 12.
O

Once a possible automorphism groGiphas been chosen, we first find the orbit representativesg usin

the techniques described above. Then we determine thebfossinsverse-designs havings as an auto-

morphism group. The construction of the transvergesigns is done using standard techniques, which we

now summarize briefly.



Table 1: Computation olV [k]

Fix(k, g)
glk=0] 1| 2] 3| 4| 5|6
I 1/10[39[76][79|42]9
oY 1| 6/11]12|19| 6|9
B 1| 6/11]12|19| 6|9
af 1| 6/11]12|19| 6|9
v 1| 1| 0] 1| 1| o]0
72 1| 1, 0] 1| 1| 0]0O
ay 1| 1, 0] 1| 1| 0]0O
By 1| 1| 0] 1| 1| o]0
73 1| 1, 0] 1| 1| 0]O
ay? 1/ 1, 0 1| 1| 0|0
By? 1| 1, 0] 1| 1| 0]O
afy? 1/ 1, 0 1| 1| 0|0
N[k] 1] 3| 6[10[12| 5|3

Given any orbitA of transverse-subsets ofX” and any orbif" of transverseé:-subsets, the quantity
|IK eT': K DT|

is independent of the choice of orbit representafive A (a proof of this fact can for be found, for example,
in [7]). This motivates the following definition.

LetH be a partition ofX, let G be a subgroup abym(X') preservingH, and suppose < ¢t < k < | X|.
Then theorbit incidence matrix for transverse- versusk-subsets (with respect to the partitidf) is the N [¢]
by N[k] matrix A such that

1. the rows ofd,; are labeled by the orbitA;, As, ..., Ay, of transverseg-element subsets,
2. the columns ol are labeled by the orbifs;, I'y, . . . I' v Of transverse:-element subsets, and
3. the[A;, Tj]-entry isAy, (A, T';] = {K € I'; : K O T} whereT' € A, is any fixed representative.

The following theorem, in the case of transverse designgpa 1 (i.e., the ordinaryt-designs), first
appeared in [6]. The matrices in this case are often calledthmer-Mesner matrices.

Theorem 3.1 If thereisa (0, 1)-valued solution U to the matrix equation
AU = MJ,
where J = [1,1,...,1]7, then thereis a (Smple) transverse t-(v, k, \) design with holes .

Proof: The k-element subsets in the union of the orliits whereU[j] = 1, form the blocks of the desired
transverse-design. |

We can solve the matrix equatioh, U = AJ for a(0, 1)-valued solutiorl/ using a simple backtracking
procedure if the size of the matrig,;, is sufficiently small. Other methods are described in [7].
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4 Transverse Steiner quadruple systems

4.1 Necessary conditions

An investigation of transverse STS (i.e., group-divisibksigns with block size three) was done by Col-
bourn [1], who determined the existence of transverse STél pbssible types on at most 60 points. The
following theorem establishes some necessary conditiona fransverse SQS to exist. Note that a trans-
verse SQS with one or two holes trivially exists becauseetihaee no transverse triples. On the other hand,
no transverse SQS with three holes can exist because tlsgdran triples cannot be covered by transverse
quadruples.

Theorem 4.1 Suppose that a transverse SQSof type hihs - - - hy, exists, wheren > 4. Thenv = > | h;
and the following hold:

1 hi+hj=v (mod 2) forall i# j,

2. Thereexistsa transverse STS of type Hhi forall £=1,2,....n,and
it

3. Z hihjhy =0 (mod 4).

1<i<j<k<n

Proof: Let (X,H,B) be a transverse SQS with holés = {Hi,...,H,}, where|H;| = h; for i =
1,2,...,n. Suppose # j and letx € H; andy € H,. Then, for each € |J,_, H/\{H; U H,}, there is
a unique block{z, y, z, 2’} that containse, y, z. This induces a pairing, 2’ of the points not inf; U H;.
Therefore

Z |H)| — |H;| — |Hj| =0 (mod 2).
=1

Hence,

h; + hj = ’HZ‘ + ‘H]‘ = Z ‘Hg‘ =0 (mod 2),
=1
yielding condition 1. Now let: € H, and consider the blocks that containLet

T ={B\{z}:z € B € B},

and letP = X\ H,. Then every paiy € H;,z € H;, wherei # j # ¢ # i is in a unique block3 of B and
hence in a unique tripl&\{z} in T". Thus(P, H \ {H,},T) is a transverse STS of tydd, ., h;.

Lastly, there arg , _,_; ,<,, hihjh transverse triplesyz, each in a unique block. Thus, because each
block contains four of themi must divide this sum. [

Corollary 4.2 Suppose that a transverse SQSof type hihs - - - h,, exists, wheren > 4. Thenv = Y | h;
and the following hold:

1. hy=hg=---=h, (mod 2),and
2. v=0 (mod 2).



Proof: Let (X,H,B) be a transverse SQS with holéé = {H,...,H,}, where|H;| = h; fori =

1,2,...,n. Now fixi andj wherel < i < j < n. Then, because > 4, there exists & such that
1 <k <nandk #i,j. By Theorem 4.1 part |; + hy, = hj + hy, (mod 2). Thereforeh; = h; (mod 2)
for all i andj. The fact thaw is even now follows from Theorem 4.1, part 1. |

4.2 Uniform designs

The following result about uniform transverse SQS was éistadal by Mills in [10].

Theorem 4.3 (Mills, 1990) For u > 4, u # 5, atransverse SQSof type h* exists only if and only if hu is
evenand h(u — 1)(u —2) =0 (mod 3).

Remarks: With reference to the case = 5, Mills [10] notes the non-existence of a transverse SQS of
type 2° (which was proved by Stanton and Mullin in [11]). The existerof a transverse SQS of type

is shown by Mills in [9, Lemma 7]. Mills reports the existenoka transverse SQS of ty@é, but he does
not present a construction for it. We give a constructiorhim Appendix. Hartman and Phelps [3, Section
7] comment on the relevance of this design to the Granvibettdan bound for embeddings of SQS.

Now we state and prove a theorem on the existence of (unifsemyverse SQS of type.
Theorem 4.4 There exists a transverse SQSof type h° for all h = 0,4,6, or 8 (mod 12).

Proof: Apply Theorem 2.4 witht = 3, starting with transverse SQS of typg€sand6° (these designs are
constructed in the Appendix and [9, Lemma 7], respectively) |

It is an open problem to settle the existence of transversd &@ypeh® whenh = 2 or 10 (mod 12),
h > 2.

4.3 New constructions

In this section, we give several new constructions for ndfoum transverse SQS.

Theorem 4.5 Thereexistsa transverse SQSof typem?®((s—2)m)! ifand onlyif s(s—1)m? = 0 (mod 6),
(s —1)m =0 (mod 2),and (m,s) # (1,7).

Proof: Lei [8] showed that a large set of transverse STS of typeexist if and only ifs(s — 1)m? = 0
(mod 6), (s —1)m =0 (mod 2), and(m, s) # (1,7). Apply Theorem 2.2, witht = 2.. |

The next series of theorems modify tBeubling One-Factor (or DOF) construction, which was first
described by Hanani as a recursive construction for Stejnadruple systems. This method constructs a
one-factorization of<, on each of two disjoint SQ®). It then uses a pairing between the one-factors from
each SQ%&v) to construct a set of quadruples with the property that edgle iconsisting of one point from
one SQ%v) and two points from the other SQ& is covered by exactly one of the quadruples. The result
isan SQ%2v).

Theorem 4.6 If there exists a transverse SQSof type m® and one of type n¥, where z,y > 2 and m(x —
1) = n(y — 1), then there exists a transverse SQSof type m*nY.



Proof: Let (X,H,B) be a transverse SQS of type” and let(X’, H', B’) be a transverse SQS of type
nY, wherem(x — 1) = n(y — 1). Then the complete-partite graphi<,, ,,. .., (Whose parts are the holes
in H) is a regular graph of degre¥ = m(z — 1), wheremx is even, and, so it has a one-factorization,
F ={F\, Fs,...,Fyn}. The complete-partite graphk’,, ,, . ,, (whose parts are the holes’f) is also a
regular graph of degre®’, and it has a one-factorizatiotfy’ = {F}, I, ..., Fy}. Thus we can pair the
one-factors ofF andF’, constructing a set of blocks

B" = {{a,b,d,d'} :abe F;,dd € F],1 <j < N}.

Now, an admissible triple of points frofd is in a unique block ir3; an admissible triple of points from
X' is in a unique block ir3’; and an admissible triple consisting of two points frafrand one point from
X', or two points fromX’ and one point fromX, is in a unique block i8”. Therefore, we have a transverse
SQS of typen®n¥, namely(X U X', HUH',BUB' UB"). [

Corollary 4.7 If there exists a transverse SQSof type m® with z > 2 and g = m(x — 1), then there exists
atransverse SQSof type m®g>.

Proof: Atransverse SQS of typg is a trivial design having no blocks. Therefore it followsHyeorem 4.6
that there exists a transverse SQS of typea;>. |

Theorem 4.8 Suppose mn is even, there exists a transverse SQSof type (mn)" (s + t)! and there exists a
transverse SQSof type m”s't!. Then there exists a transverse SQSof type m'"s't!.

Proof: Let Hq, Hs,...,H, and X be disjoint sets withH;| = mn (i = 1,2,...r) and|X| = s + t.
Construct a transverse SQS of typen)” (s + t)*, having blocks3, where these + 1 sets are the holes.

Next, for eachi = 1,2,...,r, partition H; into subsetsH; 1, H; 2, ..., H; , where|H, ;| = m for
j=1,2...,n Also, partitionX = S UT, where|S| = sand|T| = ¢t. For1l < i < r, construct a
transverse SQS of type"s't! on the hole{H; 1, H; 2, ..., H;», S, T}, having block sef;.

Finally, for1 <7 < j < r, we construct a set of blocks containedHdy U H; that correspond to the
blocks B” in the construction given in Theorem 4.6. More precisely,1fa< ¢ < r, construct am-partite
graphG; = K, m,....m Whose parts are the holesiy, EachG; is a regular graph of degréé = (n —1)m
having an even number of vertices, and hence it has a onaritatton, F; = {F}, F?,..., F/V}. Then for
each pair, j with 1 <4 < j < r, we can pair the one-factors &f and.F;, constructing a set of blocks

Bij={{a,b,d,d}:abe F' ,dd € F},1<h< N}
The desired design has blocks
Bul |J B |ul U B
1<i<r 1<i<j<r
It can be shown that this design is a transverse SQS ofitypie!t!. |
We close this section with a nonexistence result.

Theorem 4.9 There does not exist a transverse SQSof type 1'3°.
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Proof: If atransverse SQS of type 3° were to exist, then the derived design with respect to thetfilothe
hole of sizel would be a transverse STS of type Adding a “point at infinity”,co, to the remaining holes
(each having siz8), we get a linear space (or pairwise balanced desigrisqmoints having five blocks of
size four that intersect in the poind, and30 blocks of size three. Thei6 non-isomorphic linear spaces of
this type were enumerated by Heathcote in [4]. For each skthé linear spaces, we deleted the pasat
and applied a backtracking algorithm to try to extend it tcaagverse SQS of typee 3°. No extension was
possible. |

4.4 Small transverse Steiner quadruple systems

In this section, we present two tables that summarize thetemde and nonexistence results we have for
transverse Steiner Quadruple systems on at fwgbints. Only the types of designs that are admissible
according to Theorem 4.1 are listed in the tables. New ded@md by the algorithms described in Section 3
are noted in the tables, and the designs appear in the Appendi

5 Conclusion and open problems

The parameter casg?39' in Table 3 is particularly interesting. If such a design wareexist, it would
have several interesting properties. The derived desigmmaigh the nine points in the group of sige
would yield nine disjoint Steiner triple systems of ord@ron the remaining 3 points. This would leave
52 triples uncovered, which would therefore be covered ®yuadruples. It can be shown that that these
13 quadruples would form a projective plane of or@ei.e., a2-(13,4,1) design. Hence, the problem of
constructing a transverse SQS of typé9! is equivalent to taking a projective plane of ordethere is

a unique one, up to isomorphism) and partitioning all the-oolfinear triples of points into nine block-
disjoint Steiner triple systems of ordes.

The problem of constructing transverseéesigns withé > 3 remains difficult (other than the designs
corresponding to orthogonal arrays, of course). Here idmteeesting infinite class of transvergalesigns
that we construct by using a result of Etzion. In [2, Corglldt, Etzion established the existence of a large
set of transverse SQS of typé for everyr > 2 andg > 2. There arex = (2" — 3)g designs in the large
set. Then, applying Theorem 2.2, we have the following tesul

Theorem 5.1 Letr > 2 and g > 2, and denote n = (2" — 3)g. Then atransverse 4-(2"¢g + n, 5, 1) design
of type g% n! exists.

It would be of interest to find additional constructions fartsverse-designs witht > 3 and\ = 1.
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Table 2: Transverse SQS dno, . . ., 18 points

v type existence| remarks

4 14 Yes Theorem 4.3

v type existence| remarks

8 18 Yes Theorem 4.3
24 Yes Theorem 4.3

v type existence| remarks

10 110 Yes Theorem 4.3
20 No Remark following Theorem 4.3
1432 Yes Appendix or Corollary 4.7

v type existence| remarks

12 [ 3% Yes Theorem 4.3
2441 Yes Appendix or Theorem 4.5
175! No Theorem 4.5

v type existence| remarks

14 |14 Yes Theorem 4.3
27 Yes Theorem 4.3

v type existence| remarks

16 116 Yes Theorem 4.3
28 Yes Theorem 4.3
11331 Yes Appendix
11032 Yes Appendix
1733 Yes Appendix
1434 Yes Appendix
1135 No Theorem 4.9
44 Yes Theorem 4.3
1971 Yes Theorem 4.5

v type existence| remarks

18 |36 Yes Theorem 4.3
2741 Yes Appendix
2144 Yes Appendix
11351 ? ?
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Table 3: Transverse SQS @f, 22 and24 points
v type existence| remarks
20 120 Yes Theorem 4.3
11371 ? ?
210 Yes Theorem 4.3
47 Yes Appendix
54 Yes Theorem 4.3
2462 Yes Appendix or Corollary 4.7
2081 Yes Theorem 4.5
276! ? ?
3°51 ? ?
v type existence| remarks
22 122 Yes Theorem 4.3
163371 ? ?
11034 Yes Theorem 4.6
123t7t | 2 ?
11391 ? ?
11632 Yes Theorem4.8{=t=3,m=1,n=r =4)
1436 Yes Appendix
1872 Yes Appendix or Corollary 4.7
ol Yes Theorem 4.3
278! Yes Appendix
3571 ? ?
446! Yes Appendix
v type existence| remarks
24 125170 |2 ?
1454 ? ?
113111 Yes Theorem 4.5
11951 ? ?
27101 Yes Theorem 4.5
21041 Yes Appendix or Theorem 4.&(=2,t =4, m=2,n=1r = 3)
2444 ? ?
204181 ? ?
38 Yes Theorem 4.3
3%9! Yes Theorem 4.5
4481 Yes Theorem 2.4 or Theorem 4.3
6* Yes Theorem 4.3
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A Small transverse Steiner quadruple systems

In this appendix, we list the transverse Steiner quadruygtems we found using the algorithms described
in Section 3. For each design, we give its type, an automsmplgroupG, and a set of base blocks. The
base blocks, when developed by the automorphism géaupill yield the blocks of the design. The holes
are always written a$H,, Ho, ..., H,} where|H;| < |Hy| < --- < |H,|. H; consists of the firstH, |
points, H, consists of the next,| points, etc.

TYPE LB,

G= ((0,1)(2,3),(0,2)(1,3), (0,1,2)(4,5,6)(7,8,9)
Base blocks: {0,1,2,3}, {0,1,4,9}, {0,1,5,8}, {0,1,6,7}

YR 2 A

G = ((0,2)(4,6)(1,3)(57)(8,9)(10,11), (0,4)(2,6)(1,5(%8,10)(9,11),
(0,2,4)(1,3,5)(8,9,10)).

Base blocks: {0,2,4,11}, {0,2,5,9}, {0,3,5,10}, {1,3,5,11}

TYPE L 3

G = ((0)(1,2,3)(4,5,6)(7,8,9)(10, 11, 12)(13, 14, 15)).

Base blocks: {0,1,2,3}  {0,1,4,15}  {0,1,5,12}  {0,1,6,9} {0,1,7,14}
{0,1,8,10}  {0,1,11,13} {0,4,5,6} {0,4,8,14}  {0,4,9,12}  {0,4,10,13}
{0,7,8,9}  {0,7,11,15} {0,10,11,12} {1,2,4,11}  {1,2,5,9} {1,2,6,15}
{1,2,7,13}  {1,2,8,12}  {1,2,10,14} {1,4,5,7}  {1,4,6,13}  {1,4,9,14}
{1,4,10,12} {1,5,6,11}  {1,5,8,15}  {1,5,10,13} {1,6,7,8} {1,6,12,14}
{1,7,9,10}  {1,7,12,15} {1,8,9,13}  {1,8,11,14} {1,9,11,12}  {1,10,11,15}
{4,5,8,12}  {4,5,9,13}  {4,5,11,15}  {4,7,8,10}  {4,7,9,15}  {4,7,12,13}
{4,8,11,13} {4,9,10,11} {4,11,12,14} {7,8,12,14} {7,10,11,14}

TYPE L 032

G = ((1,2,3)(4,5,6)(7,8,9)(10,11,12)(13, 14, 15)).

Base blocks: {0,1,2,3}, {0,1,4,15}, {0,1,5,12}, {0,1,6,9}, {0,1,7,14},
{0,1,8,10}, {0,1,11,13}, {0,4,5,6}, {0,4, 8,14}, {0,4,9,12}, {0,4,10, 13},
{0,7,8,9},  {0,7,11,15}, {1,2,4,11}, {1,2,5,8},  {1,2,6,15}, {1,2,7,10},
{1,2,9, 14}, {1,2,12,13}, {1,4,5,9}, {1,4,6,13}, {1,4,8,12}, {1,4,10, 14},
{1,5,6,11}, {1,5,7,13}, {1,5,10,15}, {1,6,7,8}, {1,6,12,14}, {1,7,9,11},
{1,7,12,15}, {1,8,9,15}, {1,8,11,14}, {1,9,10,13}, {4,5,7,11}, {4,5,8,13},
{4,5,12,15}, {4,7,8,10}, {4,7,9,14}, {4,7,12,13}, {4,8,11,15}, {4,9,11,13},
{7,8,11,13}.
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177610 A

G = ((0,1,2)(3,4,5)(7,10,13)(8,11,14)(9,12,15},8,9)(10, 11, 12)(13, 14, 15)).
Base blocks: {0,1,2,6},  {0,1,3,15}, {0,1,4,11}, {0,1,5,7},  {0,1,8,14},
{0,1,9,12},  {0,1,10,13}, {0,3,4,12}, {0,3,5,13}, {0,3,6,11}, {0,3,7,14},
{0,3,9,10}, {0,4,5,8}, {0,4,6,7}, {0,4,9, 14}, {0,4,10,15}, {0,5,6,15},
{0,5,9,11}, {0,5,10,14}, {0,6,8,10}, {0,6,9,13}, {0,6,12,14}, {0,7,11,15},
{0,7,12,13}, {0,8,11,13}, {0,8,12,15}, {3,4,5,6}, {3,4,8,11}, {3,4,9,15},
{3,4,10,13}, {3,6,7,15}, {3,6,8,12}, {3,6,10,14}, {3,7,11,13}, {3,8,10,15},
{3,9,11,14}, {3,9,12,13}, {6,7,10,13}, {6,8,11,14}, {6,9,12,15}.
YR LB
G = ((0,1)(2,3)(4,7)(10,13)(5,8)(11,14)(6,9)(12,15),
(0,2)(1,3)(4,10)(7,13)(5,11)(8,14)(6,12)(9,15)
Base blocks:  {0,1,2,3},  {0,1,4,15}, {0,1,5,14}, {0,1,6,13}, {0,2,4,12},
{0,2,5,11}, {0,2,7,15}, {0,2,8,14}, {0,3,4,9}, {0,3,5,7}, {0,3,6,8},
{0,4,7,14}, {0,4,8,10}, {0,4,11,13}, {0,5,8,13}, {0,5,9,12}, {0,5,10,15},
{0,6,7,11}, {0,6,9,15}, {0,6,12,14}, {0,7,10,13}, {0,8,12,15}, {0,9,11,14},
{4,7,12,15}, {4,8,11,15}, {4,8,12,14}, {4,9,10,15}, {4,9,12,13}, {5,8,11,14}.
VP 2 A
G = (0,2,4)(1,3,5)(6,8,10)(7,9,11)).
Base blocks:  {0,2,4,17}  {0,2,5,16}  {0,2,6,15}  {0,2,7,14}  {0,2,8,13}
{0,2,9,11}  {0,2,10,12} {0,3,5,13}  {0,3,6,9}  {0,3,7,10}  {0,3,8,17}
{0,3,11,15}  {0,3,12,14} {0,5,6,11}  {0,5,7,17}  {0,5,8,10}  {0,5,9,14}
{0,5,12,15}  {0,6,8,14}  {0,6,10,17} {0,6,12,16} {0,7,8,15}  {0,7,11,12}
{0,7,13,16}  {0,8,11,16} {0,9,10,16} {0,9,12,17} {0,9,13,15}  {0,10,13,14}
{0,11,13,17} {1,3,5,16}  {1,3,6,11}  {1,3,7,17}  {1,3,8,15}  {1,3,9,12}
{1,3,10,14}  {1,6,8,12}  {1,6,9,14}  {1,6,13,16} {1,7,9,16}  {1,7,11,15}
{1,7,13,14}  {1,8,10,16} {1,8,13,17} {1,9,11,13} {1,10,12,17} {1,10,13,15}
{1,11,12,16} {6,8,10,15} {6,8,11,13} {6,9,11,17} {6,9,12,15}  {6,11,12,14}
{7,9,11,14}
YR 2 A
G = ((2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16, 17),
(2,5)(3,4)(6,9)(7,8)(10, 13)(11,12)(14, 17)(15, 16)).
Base blocks:  {0,2,6,17},  {0,2,7,15}, {0,2,8,13}, {0,2,9,10}, {0,2,11,16},
{0,2,12,14}, {0,6,10,15}, {0,6,12,16}, {1,2,6,12}, {1,2,7,11}, {1,2,8,14},
{1,2,9,16},  {1,2,10,15}, {1,2,13,17}, {1,6,11,17}, {1,6,13,14}, {2,6,10,16},
{2,6,11,14}, {2,6,13,15}, {2,7,10,14}, {2,7,12,17}, {2,7,13,16}, {2,8,10,17},
{2,8,11,15}, {2,8,12,16}, {2,9,11,17}, {2,9,12,15}, {2,9,13,14}.
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37/ =

G = ((0,4,8,12,16)(1,5,9,13,17)(2,6,10,14,18)(3,7,11.9F).

Base blocks:  {0,4,8,19}  {0,4,9,18}  {0,4,10,14}  {0,4,11,13}  {0,4,12,17}
{0,5,9,15}  {0,5,10,18} {0,5,11,19}  {0,5,13,17}  {0,6,8,14}  {0,6,9,13}
{0,6,11,17}  {0,6,15,19} {0,7,8,17}  {0,7,10,12}  {0,7,11,15}  {0,7,13,18}
{0,7,14,19}  {0,9,14,17} {0,10,13,19} {0,10,15,17} {0,11,14,18} {1,5,9,14}
{1,5,15,19}  {1,6,10,19} {1,6,11,18}  {1,7,9,19}  {1,7,10,13}  {1,7,11,14}
{1,10,14,18} {2,6,11,14} {2,7,11,19}

TYPE 202, o

G = ((0,1)(3,2)(4,5)(6,7)(8,14)(9,15)(10,16)(11,17)(1@(13,19),
(0,3)(1,2)(4,6)(5,7)(8,9,10,11,12,13)(14,15,16,8719) .

Base blocks: {0,2,4,7}, {0,2,5,6}, {0,2,8,18}, {0,3,4,6}, {0,3,5,7},
{0,3,8,19}, {0,4,8,17}, {0,4,9,18}, {0,5,8,16}, {0,5,9,19}, {0,6,8,15},
{0,6,9,16}, {0,7,8,14}, {0,7,9,15}, {4,6,8,19}, {4,7,8,16}.

TYPE LA 30 .

G = ((4,5,6)(7,8,9)(10,11,12)(13, 14, 15)(16, 17, 18)(19, 20, 21),
(4,7,10)(5,8,11)(6,9,12)(13,16,19)(14, 17, 20)(15, 18, 21)).

Base blocks: {0,1,2,3}, {0,1,4,21}, {0,2,4,20}, {0,3,4,19}, {0,4,7,18},
{0,4,8,17},  {0,4,9,16},  {0,13,16,21}, {1,2,4,19},  {1,3,4,20},  {1,4,7,17},
{1,4,8,16}, {1,4,9,18}, {1,13,16,19}, {1,13,17,21}, {1,13,18,20}, {2,3,4,21},
{2,4,7,11},  {2,4,13,18}, {2,4,14,17}, {2,4,15,16}, {3,4,7,10},  {3,4,8,12},
{3,4,9,11},  {3,4,13,17}, {3,4,14,16}, {3,4,15,18}, {4,7,12,20}, {4,7,13,16},
{4,7,14,19}, {4,7,15,21}, {4,8,13,21}, {4,8,14,20}, {4,8,18,19},  {4,9,13,20},
{4,9,14,21}, {4,9,15,19}, {4,15,17,20}.
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YR IO T2, o

G = ((0,1)(2,3)(4,5)(6,7)(0,3)(1,2)(4,7)(5,6)).
Base blocks: {0,1,2,7}, {0,1,4,5}, {0,1,8,21}, {0,1,9,20}, {0,1,10,19},
{0,1,11,18}, {0,1,12,17}, {0,1,13,16}, {0,1,14,15}, {0,2,4,6}, {0,2,8,20},
{0,2,9,21},  {0,2,10,18}, {0,2,11,19}, {0,2,12,16}, {0,2,13,15}, {0,2,14,17},
{0,3,4,7},  {0,3,8,19}, {0,3,9,18},  {0,3,10,21}, {0,3,11,20}, {0,3,12,15},
{0,3,13,17}, {0,3,14,16}, {0,4,8,18}, {0,4,9,17}, {0,4,10,16}, {0,4,11,15},
{0,4,12,21}, {0,4,13,20}, {0,4,14,19}, {0,5,6,7},  {0,5,8,17}, {0,5,9,19},
{0,5,10,15}, {0,5,11,16}, {0,5,12,20}, {0,5,13,21}, {0,5,14,18}, {0,6,8,16},
{0,6,9,15},  {0,6,10,20}, {0,6,11,17}, {0,6,12,19}, {0,6,13,18}, {0,6,14,21},
{0,7,8,15},  {0,7,9,16}, {0,7,10,17}, {0,7,11,21}, {0,7,12,18}, {0,7,13,19},
{0,7,14,20}, {4,5,8,21},  {4,5,9,20}, {4,5,10,19}, {4,5,11,18}, {4,5,12,17},
{47 57 137 16}7 {47 57 147 15}7 {47 67 87 20}7 {47 67 97 21}7 {47 67 107 18}7 {47 67 117 19}7
{4,6,12,16}, {4,6,13,15}, {4,6,14,17}, {4,7,8,19}, {4,7,9,18}, {4,7,10,21},
{4,7,11,20}, {4,7,12,15}, {4,7,13,17}, {4,7,14,16}.
YR 2 . L
G = ((0,2,4,6,8,10,12)(1,3,5,7,9,11,13)(14, 15, 16,17, 18, 19, 20)).
Base blocks: {0,2,42¢ {0,2518 {0,2,6,13 {0,27,1% {0,2,8,1%
{0,2,9,16  {0,2,10,2% {0,2,11,14 {0,3.4,13 {0,359  {0,3,6,2¢
{03,719 {03814 {03,016 {0,3,11,23 {0,3,13,18 {0,4,8,18
{0,4919  {04,131% {05618 {05724 {0582¢ {0511,19
{0,5,13,14 {0,7,9,14 {0,7,11,2¢0 {0,7,13,16 {0,9,11,18 {0,9,13,23
{0,11,13,1% {1,3,5,16 {1,3,9,2¢0 {1,3,11,19 {1,5,9,13
YR A O, o
G = ((0,1,2)(4,5,6)(8,9,10)(12,13,14)(16, 17, 18)(19, 20, 21),
(0,3)(1,2)(4,7)(5,6)(8,11)(9,10)(12, 15)(13, 14)).
Base blocks: {0,4, 8,12}, {0,4,9,21}, {0,4,13,18}, {0,5,8,20}, {0,5,9, 18},
{0,5,10,15}, {0,5,11,17}, {0,5,12,16}, {0,5,13,21}, {0,5,14,19}, {0,8,13,17},
{0,9,12,20}, {0,9,13,19}, {0,9,15,17}, {4,8,13,19}, {4,9,12,16}, {4,9,13,17},
{4,9,14,19}.
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TYPE 2 A

G =

(0,2)(6,8)(12,14)(1,3)(7,9)(13,15)

Base blocks:
{0,2,11,20
{0,3,10,20
{0,6,8,14
{0,7,12,2%
{0,8,12,18%
{0,9,17,23
{0,14,17,20
{1,3,11,20
{1,6,18,23
{1,7,19,2%
{1,9,11,18
{1,13,18,22
{6,8,11,22
{6,9,16,20
{6,14,16,19
{7,12,18,23
{7,15,17,18

{0,2,4,23
{0,2,16,19
{0,3,11,23
{0,6,12,23
{0,7,13,20
{0,8,16,23
{0,12,18,20
{0,15,17,2}
{1,3,16,19
{1,6,19,22
{1,8,10,18
{1,9,12,15
{1,13,19,20
{6,8,16,23
{6,9,17,23
{6,14,17,18
{7,12,19,20
{12,14,16,23

{0,2,5,22
{0,2,17,18
{0,3,12,14
{0,6,13,22
{0,7,18,22
{0,8,17,22
{0,12,19,22
{1,35,22
{1,3,17,18
{1,7,9,14
{1,8,11,19
{1,9,16,23
{1,14,16,20
{6,8,17,20
{6,12,18,22
{6,15,17,19
{7,13,18,2}
{12,14,17,23

((0,2,4)(6,8,10)(12,14,16)(1,3,5)(7,9,11)(13,15,17),

{0,2,6,13
{0,3,5,23
{0,3,13,15
{0,6,18,23
{0,7,19,23
{0,9,11,19
{0,13,18,23
{1,3,6,14
{1,6,8,13
{1,7,12,22
{1,8,13,14
{1,9,17,22
{1,14,17,2}
{6,9,11,23
{6,12,19,2}
{7,9,11,22
{7,13,19,22
{12,15,17,23

19

{0,2,7,14
{0,369
{0,3,16,18
{0,6,19,2Q
{0,8,10,19
{0,9,13,14
{0,13,19,2}
{1,3,7,1
{1,6,12,20
{1,7,13,23
{1,8,16,22
{1,12,18,2}
{1,15,17,20
{6,9,12,14
{6,13,18,20
{7,9,16,23
{7,14,16,18
{13,15,17,23

{0,2,10,23
{0,37.8
{0,3,17,19
{0,7,9,13
{0,8,11,18
{0,9,16,22
{0,14,16,2}
{1,3,10,23
{1,6,13,23
{1,7,18,20
{1,8,17,23
{1,12,19,23
{6,8,10,23
{6,9,13,15
{6,13,19,23
{7,9,17,20
{7,14,17,19



