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A NOTE ON HOWELL DESIGNS OF ODD SIDE

J. H. Dinitz and D. R. Stinson

A Howell design H(s,2n), with n <s £ 2n -1, is a square
array of side s, where cells are either empty or contain an unordered
pair of elements chosen from a set X of size 2n such that
(1) each member of X occurs exactly once in each row and column of the
array,

(2) each pair of elements of X occurs in at most one cell of the array.

Although much progress has been made in the construction of Howell
designs, the existence question has not been settled. The purpose of this
note is to report some results we have obtained by computer. Combining

our results with previous results we obtain the following.

THEOREM 1. If s < 1000 is odd, n#s -1 and (s,2n) # (5,6), then
there exists an H(s,2n).

The exception (5,6) listed above does not exist [4]. The reader

is referred to [4,5] for results concerning H(s;2s - 2).

We employ a method described by Anderson [1,2] to construct Howell

designs from strong starters.

A strong starter in an additive abelian group G of order 2t +1
is a set S = {{si, ti}:l < i <t} such that
(@D) {si, tizl < i <t} = G6\{0},

(2) {i(si - ti):l < i <t} = G\{0}, and

(3) s.+t,#s,+t, if i #3j with s, +t, #0 for all i.
i i j j i i

Given a strong starter S, define a digraph AS as follows. Let

= {-s, - :1<1i<t
AS have vertices VS and edges ES’ where VS { s; ti. 1 i }

= - = - : = - Voihe
and ES {( s; ti, 2u) u=s, or £ and -2u € S}

It is easy to see that AS is contrafunctional (each vertex has in

degree one), so that each weak component has exactly one directed cycle.

IA

Let AS have weak components Ci""’cﬁ'

let di be the length of the unique directed cycle of Ci’ 1

Let ¢, = |V(C£|, 1<i< 9, and

i=s g

IN

The following is implicit in [2].
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LEMMA 2. Let S be a strong starter of odd order s and A, the

S
2
o o - < -
associated digraph. If e =1 + j_z=:12€i’ where 0 <e, <c, -d  or
e, = ¢y for 1 < i< g, then there esists an H(s, ste) (note s+e is

even).

It can be easily checked that A contains no directed cycles of

S
length less than three. Thus no H(s, 2s-2) or H(s, 2s-4) can be

constructed by this method, and if A contains large cycles several

S
other possibilities will be missed. Except for the class H(s, 2s-2),
the difficulty will be remedied by the following result of Hung and

Mendelsohn [4]. We state their result only for Howell designs of odd side.

LEMMA 3. If s s odd and any one of the following conditions holds,
then there exists an H(s, 2s-2k).

(1) %k >10 and s 2 2k° - 6k + 10;

(2) k=0 or 3<k<10, and s = 2k + 1;
(3) k=2 and s=17.

The condition (3) is caused by the non-existence of H(5,6).

Thus cycles in a A, do not cause problems, provided they

S
are not too large or too numerous. We make use of the following.

LEMMA 4. Let O < di < cy for 1 <is< g, and let d = Zdi,

c = Zci. If c¢=22d, and 0 < f < c—max{di}, then we can write f = Zei,
OSeiSci—di or e = ¢ for 1 <1< Q.

Proof. Induction on &. If & =1 the result is clear. For arbitrary
positive &, assume the result for & - 1. If necessary, permute the

set {1,2,...,2} so that c¢ - c, 2 2(d—d£) (this can be done, since

c =2 2d). Let do = max {di: 1<1i=< 4} and let dé = max{di: 1 <i< g-1}.

Let £f<c¢c-d,. If f<c¢c-¢, -d'

-1
0 2 0° then f = 121 e with the

ei's as required, by induction. If ¢ - c - dd <f<c - dé - dz, then

2 -1
= i < £ = = - e A : .
£ ;é% ei with 0 < ei < ci di and z;'ei c ck d0 (induction) .
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If ¢, S f<c-4d! then f - ¢, = e, by induction, so

-1 4 9-1
f=iz=:1ei+c2. If c~-c, < f<c-4d,, then f=i§;1ci+e2' with

= = ' - q -

0 < e, S ¢, dz. Now dO max{do, dg} so both ¢ dO and c - d,

are at least c - do. Thus it suffices to check that

- L > i - - 1 -

c do d£ > min {cl, c cg}. If not, then 2(c d0 dz) <c, so

2(d6 + dl) >¢. But d 2 dd + dz and 2d £ ¢, so we have a contra-

diction. This establishes the result. 0
a? - 6k +10  if k > 10,

Let f£(k) = 2k + 1 if k=0 or 3 <k <10,

7 if k = 2.

We obtain the following.

LEMMA 5. Suppose there exists a strong starter S of order s, with

digraph A, having largest cycle do, and c z 2d.

S
If £(dy) < s, then there exists an H(s,2n) if n<s < 2n -1
and n#s - 1.

Proof. let 2n =2s - 2k. Then k # 1. If k < d. then H(s,2n)

0
exists by Lemma 3, since s 2 f(do) and f 1is a non-decreasing
s-1 L
function. If k > d., we can write == - k = 2: e, with
0 2 4 i
i=1
0<e,<c, -d, or e, = for 1 <1i <%, by Lemma 4. Then

. " C.»
i i i i i
2
e=2n-s=s5 -2k =1+ 2: 2e,
i=1

i and Lemma 2 implies the result. 0

By computer we have constructed strong starters of all odd orders
s with 53 < s <999 satisfying the hypotheses of Lemma 5. A

description of our algorithm is given in [3].

By means of this strong starter construction and other methods it
had already been established that Howell designs H(s,2n), with s odd,
s <51, n#s -1, and (s,2n) # (5,6) exist. For more details
see [1,4].

ann



Thus Theorem 1 is obtained. Due to space limitations, we
cannot list all the strong starters here. We do however, list strong
starters of orders 53-99, and 999 below, together with the directed
cycles of the associated digraph. A complete listing is on file at the

Ohio State University Mathematics Library.
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