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Abstract Informally, a (t, w, v; m)-threshold scheme is a way o[ distributing partial
information (chosen from a set of v shadows) to w parricipants, so that any t of rhem can easily

calculate one of m possible keys, but no subset of fewer than t participants can determine the

key. A perfect threshold scheme is one in which no subset of fewer rhan t panicipants can

determine any partial information regarding the key. In this paper, we study the number

M(t, w, v), which denotes lhe maxinrum valuc of m such rhat a perfect (r, w, v; m)-threshold
scheme exists. It has been shown previously that M(t, w, v) < (v-r+ l) / (w-r+ l),
with equaliry occurring if and only if there is a Steiner system S(t, w, v) that can be partitioned

into Steiner systems S(t- I,w,v). In this paper, we study the numbers M(t, w, v) in some

cases where this upper bound cannot be attained. In particular, we determine improved bounds

on the values M(3, 3, v) and M(4, 4, v).

l. Introduction

A w-uniform hypergraph is a pair (X, ,), where X is a set of elements called poinrs, and .4 is

a collection of w-subsets (blocks) of X. We allow "4 to contain "repeated" blocks; the

multipliciry of a block is the number of times it occurs in 4. If every subset in .4 has

multiplicity one (i.e. .4 is a set), then we say that (X, ,4) is simple.

Aperfect(t,w,v;m)-thresholdscheme isasimplew-uniformhypergraph (X,A),whereXis
a set of v points (which we refer rc as sluulows), together wirh a panition ol thc block set ,4 into

m pans, say ,? = 14, ..., 4r), such that the following propenies are sarisfied:

1) if Be,4i andB'e .4,,wherei* j,rhenlBn B'l <t(i.e.allblocksconraining
any fixed subset S of r shadows occur in the same ,?;),

2) for any subset S of t' < t shadows, there exisrs a non-negarive inreger ),(S) such

rhat forevery i (1 < i < m) rhere are cxactly 1,(S) blmks B such rhat .S C R e,11
(i.e. there are the same numbcr of bloc'ks containing a subscrr S of r'< t shlrlorvs in

each of'thc rn -41,'s).

We note that property 2) implies that every .4; contains rhe same number of blocks.

The application of threshold schemes is to give partial information (shadows) to w people, so

thar any t of them can determine a ke y, but no grcup of fewer than t can do so. For example, rhe
key could be the combination of a safe, and we might desire that two of rhree specified people be

required in order to determine this combination. 'lltris would correspond to a thre shold scheme
wirht=2andw=3.
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Suppose rhere are m possible keys, namely the integers l, Z, ..., m. Let (X, A)be a perfect
(t, w, v; m)-threshold scheme, which is made known to all w parricipans. Now, suppose we
want to disrribute shadows corrcsponding ro key k (l S k < m). We do this by choosing at
random a block B e Ay. Then, we give each of thc w panicipants a different shadow in B.
Propeny I ) ensures thar any t panicipants can determine rhe s€t Ay, and hcnce the key (namely,
k), from rhc t shadows rhey collecrivcly hold. propcny 2) ensures that it is impossiblc for a
group of t' (< t) participants to obrain cay parrial informarion about the ke y.

These ideas are made rigourous in terms of probability distributions, as follows. We assurne thal
there is a fixed probability disriburion on rhe set of keys (1, ... , m), known to all rhe
panicipants. Suppose a subser of rhe panicipants have been given rhe shadows in rhe set S E B.
They can then calculare a conditional probabiliry distriburion on the keys, given the sha<Jows that
they possess (see, for e xample, t24l). If it happened that p(k) * p(k I S) for some key k, then
these panicipants would have oburined some (parrial) information regarding the actual key that
was sent. Property 2) guarantees rhat p(k) = p(k I S), for every key k, and for every subset S of
fewer than t shadows that occur in some block.

Thrcshold schemes were f,usr described by Shamir tl2l and Blakley t3l in 1979. Since then,
many constructions have been given for threshold schemes. Most of these consmrctions have
employed techniques from lincar algebra. In [14], Stinson and Vansrone investigated the
combinatorial propenies of thre shold schemes, and gavc some new constructions for thrcshold
schemes based on combinatorial designs. They presented construcdons for perfect threshold
schemeswitht=3andw=3and4thathandledmorckeysthanpreviouslyknownschemesdid.
The implementarion of these schemes was also discussed. We continue this investigadon in the
remainder of this paper. We note that all thresholtl schemes discussed in this paper are perfect.

2, A combinatorial characterization of perfect threshold schemes

A characterization of perfect rhreshold schemes in terms of the blocks corresponding to each key
was presenred in [14]. Suppose (X,.4) is a w-uniform hypergraph. Given any inreger r,< w,
define a t'-uniform hypergraph (X , A(t,)), whe re -4 (t,) is rhe multiset union

LJe. * {S:lSl= t', S E A). Note that ,4(t') need nor be simple, even if .4 is. We say thar

(X, 4(t')) is the t'-induced hypergraph of (X, .4).

Two w-uniform hypergraphs (X, A) and (X,A) are defined ro rr'. t-compatibte if rhe
following rwo properties are satisfied:

l) Ait- l) = Az$- l), and

2) hO A A2() =@.

The following rcsult characterizes perfect (t, w, v; m)_threshold schemes in terms of t-compatible
w-uniform hypergraphs.
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Theorem 2.1 [4] There exists a perfect (t, w, v; m)-threshold scheme if and only if there
exist m mutually t-compatiblc w-uniform hypergraphs on v points.

Our interest is in finding rhc maximum number of keys, m, that can be handled by a perfect
threshold scheme, givcn t, w, and v. We shall a.lso require fiat every shadow occurs in ut least
one block (otherwise, we can take the number of shadows to be somc number lcss than v). This
maximum number of keys is denoted M(t, w, v). In vie w of Theore m 2. l, M(t, w, v) also
denotes the maximum number of mutually t-compadble w-uniform hypergraphs on v poinrs (in
which every point crccurs in at least one block). The following upper bound on M(r, w, v) was
presentcd in [4].

Theorem 2.2 tl4) M(t, w, v) < (v - t + l)/(w- t + l).

In I l4], a characrcrization of when equaliry can be mct in the above bound is obtained. This
characterization is given in terms of cenain combinatorial designs (for a general reference on
designtheory,wemention [2]). Let I StSwcv. A Steiner s,ystem S(t,w,v)isasimple w-
uniform hypergraph (X, A) on v points such that every t-subset of points occurs in a (unique)
block. That is, ,4(t) consists of every t-subser of X, occurring once each. We say that the

Steiner system is panitionable if we can panidon rhe block ser .4 inro sers R1, ... , .! (where j
=(v-t+l)/(w-r+l))suchrhateach(X,4)ttSi<j)isaStcinersysrems(t-l,w,v).

Theorem 2.3 tl4l M(t,w,v) = (v-t + l)/(w -r+ 1) if andonly if there exists a Sreiner
system S(t, w, v) that can be paninoned into Steiner sysrems S(t - l, w, v).

As a consequencc of this theorem, the numbers M(t, w, v) can be determined exactly in certair
circumstances.

Theorem 2.4 17,8) Suppose v = I or 3 modulo 6,v >7, and v * 141,283,501,789
1501, or 2365. Then M(3, 3, v) = v - 2.

Proof: In [7, 8], Lu proves that dre ser of all 3-subscts of a v-set (wherc v is as stated above
can be panitioncd into S(2,3, v). I

It is worth rcmarking that, when v = 7, it is impossiblc to partition thc set of all 3-subscts of a v
sct into S(2, 3, v) (see, for example, [a]). The cxisrencc of such a panidon for the remaininl
six exccptions of v in Thcorem 2.4 is unresolved.

Theorem 2.5 [1, l8] For every inreger j > l, M(3, 4,22j) = 22j - | - |

Proof: In [] and [8], it is shown that rhere exists a pamition of rhe planes of the affint
geomctry AG(2j, 2) (which form an S(3,4, 2zj)) into Steincr sysrcms S(2,4, Zlj). I

Exact values of M(2, w, v) are known whenever a resolvable (v, w, l)-BIBD exisrs. Fo
examplc, known results conceming resolvable BIBDs imply thc following.
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Theorem 2.6 l) For all v = 3 modulo 6, M(2, 3, v) = (v - l) 12.

2) For all v = 4 modulo 12, M(2,4, v) = (v - l) / 3.

3) Forall v=5 modulo 20,v 123105, M(2,5,v) = (v -l)14.
4) Forany k2 3, thereexists aconsurntc(k) such that M(2, k,v) = (v - l)/(k- l) forall v >

c(k) such that v = k modulo k(k - l).
5) For any primc power q, M(2, q, q21 = q + l.

Proof: Rcsolvable (v, 3, l)-BIBDs are shown to exist in [9]; resolvablc (v, 4, 1)-BIBDs in [5];
and resolvable (v, .5, l)-BIBDs in [9]. For any k > 3, asymptotic existence of resolvable
(v, k, 1)-BIBDs was shown in [10]. The resolvable BIBDs in 5) are affine planes. I

3. Some upper bounds on M(t, w, v)

One way to approach the consruction of a perfect (t, w, v; m)-tkeshold scheme is to stan with a

fixed (t- l)-uniform hypergraph on v points, say (X,.i), and auempt to find r-compatible w-

uniform hypergraphs At,...,.4- such that,4i(t- 1)=-1,I <i<m(that is,sothat (X,-! is

thc (t - l)-induced hypergraph of (X, ,4), I < i < m). Cive n t, w, v, and .9, we would want to
find the maximum number of such hypergraphs (= the maximum numbcr of keys in the resulting

threshold system). We denote this number by M(t, w, v, ,. I{ence,

M(t, w, v) = max{M(t, w, v, J): (X,.91is a (t - l)-uniform hypergraph on v poinrs)

So, we might learn more about M(t, w, v) by studying the numbers M(t, w, v, -T). The

following upper bound on M(t, w, v, .t) was presented in [al.
Theoreni 3.1 [4] Supposc (X, -f) is a (t - l)-uniform hypergraph on v points. Let ]" be rhe

largest muldplicity of any (t - l)-subse t in J. I-rt u denore the smallest positivc integer such that

( > 1..
)w-r+ I

Then M(t, w, v,.t S (v - t + l) / u

Corollary 3.2 Suppose (X,.f) is a (t - l)-uniform hypergraph on v points which is not
simple. Then M(t, w, v,.t) < (v -t + l)/(w-t +2).

Proof: In Theorem 3.1, L > 2, so u > w - t + 2. I

Corollary 3.2 suggests that we are most likely to maximize M(t, w, v, -f) when (X, -5) is simple,

sincetheupperboundinCorollary3.2isalrcadyafactorof(w-t+l)/(w-t+2)lessthanthe
upper bound of Theorem 2.2.

l*t's now try to improve the bound of Thcorem 3.1, when (X,-f1 is asimple (t- l)-unifonn
hypcrgraph on v points. For any induced (r - 2)-subset B e J(t * 2), define
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N(B)=(x: Bu{x) cJ}.

We say that N(B) is the ncighbourhood of B. Also, define the deficiency of -S to be

d(l) =maxtl L/,. A N(A\ {x))l: A e J}.

Theorem 3.3 Suppose (X,-f1 is a simple (t - l)-uniform hypergraph on v points. Then

M(t, w, v,.f) S (v -t + I -d(r) / (w - t + l).

Proof: Supposc thcrc exist m t-compatible w-uniform hypcrgraphs, A1, ... ,.4*, such that

-4i(t- l)=J,l Si<m. ChooscAe Jsuch rhat lU.. r N(A\ {x})l =d(S). Eachgl
contains a (unique) block Ai such that A q Ai. Suppose x € A, and I S i < m. Then

lN(A\ {x}) n Ail = 0. Also,l(A;\A) n (Aj\A)l= 0 if i * j. It follows that m(w - t + l) <
v - t + I - d($, which gives rhe desired inequaliry. I

4. The numbers M(3, 3, v)

As indicated in Theorem 2.4, the numbers M(3, 3, v) are almost all dctermined when v = I or 3
modulo 6. In this section, we investigare thesc numbers when v = 0, 2, 4, or 5 modulo 6. We
e stablish upper bounds on M(3, 3, v) using the results proved in Secrion 3. Fint, let's note that
M(3,3,v)=lifvS5; henceweshall assumerhatv>6fortheremainderofthissecrion.

(3, 3, v; m)-threshold scheme s are related to packings of pairs into triples. It will be useful ro
define some terminology. A (2, 3)-packing is a 3-uniform hypergraph $, m, such rhar every
pair of points is contained in ar most one block (i.e. A(2) is simplc). The leove of the packing is
the graph A(2f , where the superscripr c denorcs complcmcnr. That is, thc leave consists of all
pairs which do no, occur in a block of the packing.

A (2, 3)-packing (X, ,{) is said to be maximwn if there does nor exist any (2, 3)-packing on lXl
points with morc blocks. The packing number D(2, 3, v) is defined to be rhe number of blocks
in a maximum (2, 3)-packing on v points. The packing numbers D(2, 3, v) and the leaves of the
maximum packings have been derermined exactly, in Il l.l and [13]. We summarize rhese results
in the following rwo rheorems.

Theorem 4.1 [], l3] The packing numbers D(2,3, v) are as follows:

l) If v = I or3 modulo 6, then D(2, 3, v) = v(v - l) I 6.

2) Ifv=5 modulo 6, then D(2, 3,v) = (v(v- l)-8)/6.
3) If v = 0 or 2 modulo 6, then D(2, 3, v) = v(v -Z) I 6.

4) Ifv =4 modulo 6, then D(2, 3, v) = (v(v -2) -2) I 6.

Theorem 4.2 Ul, l3l Leaves of maximum (2,3)-packings are isomolphic ro the following
graphs:
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l) If v = I or 3 nrodulo 6, then rhe leave is (K,)c.

2) If v = 5 modulo 6, then the leave is a 4-cycle.

3) If v = 0 or 2 modulo 6, thcn the leave is a one-facmr.

4) If v = 4 modulo 6, then the leave is the disjoint union of (v - 4) / 2 cdges and one K1,3

In fact, the lcave of any (2,3)-packing musr sarisfy cenain obvious numerical propenies, which
wc sute without proof.

Theorem 4.3 Supposc L is thc lcave of a (2, 3)-packing on v points. Then the following
propenics hold:

i) for any point x, d, = (v - 1) modulo 2, where dr denotes the degree of x in L, and

ii) e = v(v - l) / 2 modulo 3, wherc E denores the number of edges in L.

Now, suppose we have 3-comparible 3-uniform hypergraphs A1, ... ,,{* such thar 4(2) = J;,

I Si<m. 5isa2-hypergraphonvpoinrs (i.e. agraphwith(possibly)repearerledges, burwirh
no isolated venices). If -Shas a repeated edge, rhen M(3,3, v, S) ( (v - 2) /2,by Coroilary
3.2. lf J is simple, then each Ri is a (2, 3)-packing with leave -f . Then, M(3, 3, v, l) <
v -2- d(.f), by Theorem 3.3. A lower bound on d(O will give us an upper bound on

M(3, 3, v, .5). Propcnies of leaves will rhen allow us to find upper bounds on M(3, 3, v).

For cxamplc, when v = 0 or 2 modulo 6, we have the following.

Lemma 4.4 If v = 0 or 2 modulo 6, then M(3, 3, v) < v -4.

Proof: Suppose we have 3-compatible 3-uniform hypergraphs At, ... ,.4- such that A1(2) =
J, I <i(m. Asobservedabove, if -ihasarepeated edge, rhen M(3,3, v,J) ( (v -2) lZ,and
if J is simplc, then M(3, 3, v, .5) < y * 2 - d(r. Since we can assume v 2 6, we will be done
if wc can show that d(, > 2 if J is simple. .Since v is cven, each point x has odd degree in the

leave, .f (Theorem 4.3). It follows that we can find an edge xy of -g such that lN(x) u N(y)l >
2 (notc that this is not true if we allow J to conuin isolated verrices). Hence, d(-i) ) 2, as

required. I

It is also easy to characterize .5 when equality occurs in the above bound.

Lemma 4.5 If v= 0or2modulo6andM(3,3,v,9 =v-4, then each 2; is a maximum
packing of pain into triples.

Proof: For every edge xy of -9, we musr have that lN(x) u N(y)l < d(5) = 2. Also, for every
vencx x, x has odd degree in -f. This can happen only when -f is a one-factor of rhe point ser.

Hence, each 9l; is a maximum packing, by Thcorem 4.2. :

Corollary 4.6 If v =0or2 modulo 6and M(3,3, v,.f) = v -4, then there exists a partition ol
all riplcs which do rD, conain a pair from -f into maximum packings of triples.
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Proof: Thenumberof such rriples isv(v- I)(v -2)16 -v(v-Z)/Z= v(v-2Xv -4)/6.
Each of the v - 4 maximum packings uses v(v - 2) t 0 of these triples, which is all of them. I
We can construct such a set of maximum packings of triples whcnever v = 2 or 6 modulo 12, as

follows.

Theorem 4.7 lf v=2 or 6 modulo 12, v 2 6, v * 14, 282,sffi,1002, 1578,3002, or4730,
then M(3, 3, v) = v - 4.

Proof: Let v = 2v'; then v' = I or 3 modulo 6. Srart with a Stciner system S(3, 3, v') which is

panitionable into a set of v'- 2 Steiner systems S(2,3, v'), say At,...,A",-2, on point set

(1,...,v'). From each Ai, I S i < v' -2, construct two maximum packings, Ai1 and Ai,2,
on point set (1, ... , v), as follows. Define

Ail = ((x, y, z), {x, y + v', z + v'}, (x + v',y, z+ v'}, (x + v', y + v', z}: (x, y, z) e -fl;)

and

A;z=l{x,y,z+v'),{x,y+v',2},{x+v',y,2),{x+v',y+v',2+v'):(x,y,z.)eAil

It is easy to see rhat Ail and hz we both maximum packings, covering every pair except rhose

in the one-factor-f = ttj, j +v'): I Sj <v'). Also,iriseasytoseerharnorwoof these

2(v' -2) = v - 4 packings contain a common triple; hence they are 2-compatible. I

We can also show that M(3,3,8; = 4' see Example 4.1.

Example4.f A(3,3,8;4)-thresholdscheme. The leave.f isthcone-factort{1,5},t2,6},
(3, 7), (4, 8)).

At
{1,2,3}
ts, 6, 7)

{r,4, 7)
(.5, 8, 3 )

{1,6,8}
(s, 2, 4)

{2,7,8}
(6, 3, 4]

Az

1t2,3, 4l

[6,7,8)
(2, s, 8)

(6, 1,4)

12,7 , rl
(6,3, s)
(3,8, 1)

(7,4,5)

At
(3,4, s

(7,8, I

{3, 6, I
17,2, s

{3, 8, 2

d
./44

(4, s, 6)

{8, l, 2}

{4,7 ,21
{8, 3, 6)
(4, l, 3)

[8, 5, 7)
(-5,2,3)

{1,6,7)

[7, 4, 6)

{4, l,2)
(8, s,6)

Next, we consider the case v = 5 modulo 6.

Lemma 4.8 If v = 5 modulo 6, thcn M(3, 3, v) S v - 4.

Proof: As in l-cmma 4.4, ir suffices ro show that d(-f) > 2 if J is simplc. Since v is odd, every
point has cven degree in .f. As wcll, there musr be some point x having positive degree in -f,
since .f has at least one edge (Theorem 4.3). Then, for any y such that such thar xy is an edge
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of l, wc have ttrar lN(x) u N(y)l > 2; hencc, d(.f) > 2, as required. I

Again, cqualiry can occur in thc above bound only when each .{ is a maximum packing.

Lemma 4.9 If v = 5 modulo 6 and M(3, 3, v,-f) = v -4, thcn each A;is amaximum packing
of pars into triplcs.

Proof: It is easy to scc that if d(O = 2, rhen.f is a 4-cycle. I

Example 4.2 Thc following is a (3,3, ll; 7)-threshold scheme. Each of the.Ai,s is a
maximum (2, 3)-packing and cach of them has the sarne leave -f consisting of the 4_cycle
789t.

Az
t79
l8t
120

136

145

724

730

7s6
823

846

850

925

934

9A)
06
r35

t40

Ar
0't9
08t

016

025

034
'n2
735

746
813

826

845

914

923

956

rl5
124

r36

At
279

28t

23t
240

256
736

745

701

835

841

860

930

946

951

t34

r50

16l

A4
379

38t

142

351

360

741

750

762

840

8-s6

812

945

961

902

r46

t-52

r0l

As
479

48t

453

462

401

75r

7ffi
723

852

861

803

950

963

9t2
r-56

fi2
tl3

Ae
519

58t

5&
503

512

76r
702
734
863

801

824

962

9M
913

t60

rl4
t23

At
6't9

6ttt

60s

614

623

70.1

7t3
725

802

815

834

901

924

935

r03

tl2
t45

Finally, wc consider thc case v = 4 modulo 6.

Lemma 4.10 If v = 4 moduto 6, then M(3, 3, v) S v - 6.

Proof: Here, it sufficcs to show that d(j) > 4 if J is simple. Since v is even, every point has
odd dcgrec in .f. Also, there must be some point x having degree > 3 in .f, since .f has more
thanv l2dges (Thcorem4.3). Then,rhere existsaysuchrhatxyisanedgeof Jhaving
lN(x) u N(y)l > 4; hcnce, d(S) > 4, as required. I

Wc now characterize whcn equaliry can occur in the above bound.

Lemma 4.11 If v=4modulo6and M(3,3, v) =v-6, then all the ,{,s are(2,3)_packings
having the sanre leavc.f which must be isomorphic to one of the foUowing four graphs:
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Kr.ru (v-4)lZKz
G1 u (v - 6) l}Kt

Kau (v-4)l2Kz
C2 v (v -B) l2K2

where

cl and G2 =

Proof: It is easy ro see rhar for each -f above, d(_g = 4.

If-f has a vertex ofdegree 5, rhen d(, > 5, and if.f has rwo verrices ofdegree 3 at a distance
greater than 2, then d(-5) > 6. Therefore, we only consider leaves.f having degrees I anrt 3,
and in which the distance between any two vertices of degree 3 is at most 2. Furthermore, rhe
number of venices of degree 3 is congruent to I modulo 3 because .f is the leave of a (2,3\_
packing on v = 4 modulo 6 elements.

Let -f be a leave for which d(.0 = 4. Then the induced subgraph of rhe verrice s of degree 3 in -f
is a connected graph of diameter ar mosr 2. Call this graph T.

To obtain a contradicrion, assume .f has at least 7 venices of degree 3. Then no vertex of T can
have degree I because of rhe diameter and ctegree consrraints. If T has a vertex x of degree 2,
then the diameter and degree consraints imply that T contains a subgmph isomorphic to

v

This complercly determines the neighbourhoods of u and v in .f. Ir follows that lN(x) n N(y)l
= I and hence, d(5) ) 5. This establishes thar T is a 3-regular graph.

IfxandyarerwononadjacentverticesofTandlN(x) n N(y)l=1, rhend(r> 5. Hence,T
must conain a subgraph isomorphic to

u

vxu

w

151
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in which cach of u, v and w has two common neighbours with x. Now, thc disnnce consraint
implies that T contains no further verticcs. Thus we must conclude that T has 7 venices of
degrec 3, which is impossible.

This establishcs that T has cither I or 4 venices. The result now follows by considering all
possiblc induced subgraphs T on 4 venices. I

We now consider the construction of (3, 3, 10; 4)-threshold schemes, for each of the four
possible leaves of lrmma 4. I l.

Example 4.3 A (3, 3, l0; 4)-threshold schcmc

union of Ka with 3 K2.

The leavc of each packing is the disjoint

Ar
157

169

180

258

2ffi
279

359

368

370

450

467

489

A?

257

269

280

3-s8

360

379

4-59

468

4'70

150

t67

189

A2

158

160

t79
2.50

26'1

289

349

368

370
457

480

s69

A3

357

369

380

458

4fi
479

159

r68

170

250

267

289

A4

457

469

480

158

160

t79
259

268

2'70

350

16't

389

Another (3, 3, l0; 4)-thrcshold scheme is given by the following example.

Example 4.4 The leave of each packing is the union of G1 with 2 K2.

Ar
157

169

180

259

268

270

340

36't

389

458

479

560

A3

159

168

170

258

2ffi
279

347

369

380

450

489

567

A4

150

t67

189

257

269

280

348

360

379
459

410

568

t52



Lemma 4.12 There do not exist four comparible packings on l0 points having leaves

K1.3 v 3 K2.

Proof: We consider maximal (2, 3)-packings which have the gpaph

?34

5

I
6

9

I
0

7

I
8

as their leave .f. We will show that Klo \ "f doe s not admir 4 block-disjoint maximal (2, 3)-
packings.

There arc 2 rypes of maximal (2, 3)-pachngs, namely those that contain the block 234 and rhose
that do not. ln order ro establish that theie do nor cxisr four block-d"isjoint maximal (2, 3)-;.
packlngs, lt is sulficient to prove that there do not exisr three such packings which avoid the
block 234.

It can be shown that every maximal (2, 3)-packing which avoids 234 is isomorphic to the
following pachng (1):

uvw
luW
lvU
1wV

23u

2vW
2VU

34v

3wU
3WV

42w

4uV
4LIW

where

{(u, U}, (v, V), (w, w}} = ((5, 6), {7, 8), {9, 0)}

Therefore, without loss of generality, we may assume that the set of blockdisjoint packings we
are seeking contains the panicular packing (2):

5',79

1-50

t76
198

It is easy to see rhat rhere arc only 2 maximal (2,3)-packings which contain the 4 blocks

uvw 23u 34v 42w;

namely, the one exhibited above and one consisting of rhe blocks

235 347 429

270 396 458

286 308 460
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uvw

luV
lvW
lwU

42w

4uW

4UV

23u 34v
2vU 3wV
2VW 3wtr

which wc name (3). (Note that the permutarion (2 3Xv wXV W) is an isomorphism which maps
packing (3) onto (l).) It can be shown rhat there are precisely l2 maximal (2, 3)-packings which
are block-disjoint from packing (2) and avoid the block 2k, namely,

lPl

570

237

340

245

179

160

158

280

269

368

359

467

489

lP2

589

238

349

245

180

r69

157

279

2ffi
36't

350

468

470

lP3

580

238

34-5

240

168

159

170

257

269

379

360

489

467

lP4

679

237

349
246
170

159

168

289

250

3s8

3il
457

4tt0

arl0
680

238

340
246

158

169

170

279

250

367

359

489

45't

Qs

670

236

340

247

169

180

157

250

289

3s8

379

468

459

o
689

239

348

246

t79
158

160

280

257

3-50

167

459

470

!P7

680

236

348

240
158

r69

170

257

289

3s0

379

46't
459

98

6tt0

236

340

248

1.58

169

170

250

279

35't

389

467

459

{Ps

680

238

346
240

1-58

t69
170

267

259

3't9

350

489

457

Prt
680

230

346

248
158

169

170

259

267

389

357

450

419

Ptz
680

230

348

246

158

169

170

289

257

359

367

450
479

Now it is easy to check that every pair of these packings has at le ast one corrrmon block. Hence,
there do not cxisr 3 block-disjoint maximal packings which avoid the block 234. A

Lemma 4.13 There do not exist four compatible packings on l0 points having leaves
G2 U K2.
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Proof: Consider (2, 3)-packings which have rhe graph

)

-56

n7

I

T
o
0

-1

as their comrnon leave -f . Observc that cach of thc edges (pairs) 57, 68, 95, 96,9i ,98, 05, 06,

07 and 08 is contained in precisely four rriples which avoid rhe 9 edges of -f. Hence, if there

are four (2, 3)-packings having this graph as rheir corrrmon leave, rhen all 32 of rhese triples
must appear in the packings. We now show that it is impossible to distribute these 32 pairs
among four packings.

The four triples 572, 514,579 and 570 must each be contained in a differcnt packing. Let us call
these four packings Ar, A4, As, Lt d.4x respcctivety. Now rhe triple 459 cannot be in cither of
Aq o, fu. We have two cases to consider.

Case 1:  59 e A2.

This implies that the packings have the following substructure :

Aa
574

052

9-53

071

972

4

A{
570

952

974

As
579

054

072

A2

5'12

459

0s3

0'14

97t

Now the triple 689 can go in any one of these four packings. Notice that two of thesc subcases
are isomorphic under the isomorphism (l 3)(2 4)(5 7X6 8). In each case, the triplcs containing
69, 89 and 68 can be placed in these packings in only one way. Then the rriples containing 08
cannot be placed without violating the dehnition of a (2, 3)-packing.

Case 2: 459 e fu.

This implies that the packings havc the following substructure

A2

572

A4
574

Ao
570

459

As
s',t9
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935

045

017

947

925

03s

027

917

025

M7
927

This substructurc is isomorphic to that in Case l, by applying the permutation (2 4X6 g). This
establishes that there do not exist four packings which havc C2 u K2 as their common leave.
T

We have presented examples where the bounds of Lemmata 4.g and 4.10 are exact, though we
know of no infinitc classcs of thrcshold schemcs meeting these bounds with equality. However,
bymcansof agcneraliz-arionof Theorem 4.T,wecanconstructinfinite classesof threshold
schernes wherc the number of keys is close to these upper bounds.

Our construction is bascd on thc trivial observarion that one can easily consruct n Larin squares
of ordcr n, on thc same symbol set, such that no two of rhese Latin squares contain rhe same
symbol in thc same cells. (For example, start with any Larin square L of order n, wirh the
symbol setZn. Forevcryi,0<i <n- l, deline \(a,b) = (L(a, b) +i)modulo n.) We say rhar
the n Latin squares are disjoint. This immediately gives rise to the following recursive
construcrion.

Theorem 4.14 For all positivc integers n and v such that v = 0 modulo n, M(3, 3, v) 2
n.M(3,3,v/n).

Proof: Denote v' = v/ n and m = M(3, 3, v,). Irt At,..., A^ h 3-compatible 3-uniform
hypergraphs on a v'-ser X, such that A;(2) = J, 1 < i S m. I.et L:, I S j S n, be n disjoint Latin
squares of order n, on symbol set {1, 2, ... , n}. For every x e X, we will rake n copies of x,
named x;, I S j S n. Imposc an arbirrary ordering on the ele menrs of X.

Now, for every A.r, I S i < m, we construct n 3-uniform hypergraphs on the v points in
(x;: lSjSn, xe X),denoted Ai.j,(l S jSn),asfollows. Define

4;=([xoy6,z.]: (x,y, z) c Ai, lsaSn, I SbSn,L.i(a,b)=c,x<y<z).
It is casy to sec that 4,{2) = Ai.,t(2), for all (i, j) * (i', j,). As.welt Ai.i n Ay.i = @ for atl
(i,j) * (i',j'). Hencc, M(3,3, v) > n.M(3,3, v,). I

Wc notc that Thcorem 4.7 is cssentialty the sperial case of Theorem 4.14 when n = 2.

Corollary 4,15 Suppose v = 4 or 12 modulo 24,v l4 *7,14!,2g3,501,7g9, 1501, or
2365. Thcn M(3, 3, v) ) v - 8.

Prmf: Apply Theorem 4.14 with n = 4. M(3, 3, v I 4)= (v - g) / 4 by Theorem2.4. A

l*ming n = 5, we obtain in a similar fashion the following corollary.
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Corollary 4.16 Suppose v = 5 modulo 30, v / 5 * 7, l4l, 283, 501, 789, 1501, or 2365

Then M(3, 3, v) 2 v - 10.

Finally, wc summarize our rcsults on M(3, 3, v) in Table s I and 2. Table I contains all values

M(3, 3, v) *rat we know for v S 13. For the sakc of cornplctencss, we observc tlrat M(3, 3,7) =
3. It is well-known that thc maximum number of disjoint S(2, 3, 7) designs is 2 (this was fust

shown by Cayley in t4l). However, we can obtain a (3,3,7;3)-threshold scheme as follows.

Example 4.5 A (3, 3, 7; 3)-threshold scheme. The leave of each packing is the triangle 123.

Ar
r45

t6't
246

257

347

3s6

A2
146

157

247

256

345

367

A3
t47
156

245

267

346

3s7

Table I
M(3, 3, v) for v S 13

M(3,3, v) authoriry

6

7

8

9

l0
1l
t2
l3

2

3

4

7

4

7

TN

ll

Theorem 4.7

Examplc 4.5

Examplc 4.1

Thcorem 2.4

Examples 4.3 and 4.4

Example 4.2

Theorem 2.4

Table 2
Bounds on M(3, 3, v)

bounds on M(3, 3, v)

v=lor3modulo6,v>l
v=0,2,or5modulo6,v>2
v=4modulo6,v>4

M(3,3,v)Sv-2
M(3,3,v)<v-4
M(3,3,v)<v-6

v= I or3modulo6,v* l, 7,141,283,501,789, 1501,2365 M(3,3, v)=v *2
y 

= 2 or 6 modulo 12, v I 2 * l, 7, l4l, 283, 501, 789, 1501, 2365 M(3, 3, v) = v - 4

v=4or 12 modulo 24,v I 4*7, 141,283,501,789, 1501, 2365 M(3, 3,v)2v-8
v=5modulo30,v/5*7,141,283,501,789, 1501,2365 M(3,3,v)>v-10
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5. Some bounds on M(4, 4, v)

Shamir's consmrcdon for threshold schemes [12] givcs lower bounds on M(t, w, v) whenever
P=v / w is a primc and p > w. ln this scheme, the key can be any k e GF(p) (so m = p).
Thesetof shadowsX= [(x,y)e CF(p)xCF(p), I SxSw) (sov=pw). Now,forevery
polynomial h(x) e cF(p)[x] having degree ar mosr r - l, we consrruct a block B(h) as follows.
The shadows in B(h) arc (u, h(u)), I < u S w, and the key for B(h) is h(0). Hence, the number
ofblocksb=pt.
It is not difficult to see that the scheme is perfect (see, for examplc, I l4]). Hence , we obtain the
following lower bound on M(t, w, v).

Theorem 5.1 Suppose p =v /w is prime, p> w, and t S w. Then M(t, w, v) > v/w.

For t = w = 3, the bounds of Secdon 4 are superior. However, for most other values of t and w,
this result provides the best known lower bounds on M(t, w, v). In the remainder of this
section, we present some lower bounds on M(4,4, v).

From our gencral results, we know that M(4, 4, v) S v _ 3, with equaliry occurring if and only if
there is a Steiner sysrem S(4, 4, v) which can be partirioned into v - 3 Steiner sysrems
S(3,4, v). This is of course equivalent to finding a set of v _ 3 disjoinr S(3,4, v) (on rhe
same sct of points). Aside from the urvial c&se v = 4, no example is known. The best result in
this direcrion is a consrucrion duc to Lindner [6].

Theorem 5.2 t6l For all v = 8 or 16 modulo 24, rhere exisr at least 3v / 4 d.isjoint S(3, 4, v);
hence M(4, 4, v) 2 3v I 4 for these values of v.

Note rhat this is a considerable improvement over the lower bound of v / 4 given by Theorem
5. l.

The lower bound of v l4 forM(4,4, v) can also be improved when v = 0 or 6 modulo 12, by
mcans of a result of Teirlinck [15]. The resulr concerns designs wirh ], > l; for our purposes it
is sufficient to define an S1(3, 4, v) to be a 4-uniform hypergraph on v points such thar every
three points occur in exactly 1, blocks. Teirlinck pmved the following.

Theorem 5.3 tlSl Uv=0or6modulo 12, then rherc existv/3 disjoinr simple S1(3,4, v);
he ncc M(4, 4, v) > v I 3 for these values of v.

We summarier our bounds on M(4,4, v) in Table 3.
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Table 3
Bounds on M(4, 4, v)

bounds on M(4, 4, v)

all v

v = 8 or 16 modulo 24

v=0or6modulo12
v = 4 or 20 modulo 24,v I 4 a prime power

M(4,4,v)Sv-3

M(4,4,v)>3vl4
M(4,4,v)>v/3
M(4, 4, v)2 v I 4

6. Summary

A very interesting open problem is to improve the lower bounds on M(t, t, v) when t ) 4.

Theorem 5.1 tells us that M(t, t, v) ) v / t under cenain ckcumsances. On the other hand, the

uppcr bound providcd by Theorcm 2.2 is M(t, t, v) S v - t + l. Hence, there is room for an

improvcment by a factor of almost t. One approach to take would be to anempt to dccompose

S(t,t,v)(thcsetofallt-subsetsofav-sct)intoSl(t-l,t,v):thcnM(t,t,v)2(v-t+l)/l'.
Tcirlinck's remarkablc results on thc cxistcnce of t-dcsigns for all t [16, l7] providc such

derompositions; however, the values of the rcsulting l,'s arc too large. In order to improve upon

thc bound of Theorem 5.1, wc would require that l' s t - I in such a decomposition. This is

undoubtedly a difficult problem!

A much more tractable opcn problem would be to finish the determination of the numbers

M(3, 3, v). Can the uppcr bounds givcn in Tablc 2 always bc atuined, pcrhaps with finitcly

many exceptions?

References

1. R. D. Baker, Partitioning the planes of AGz^Q) into 2'designs, Discrete Math. 15

(1976),20s-211.

2. Th. Beth, D. Jungnickel and H. l'*nz, Design Tluory, Bibliographisches Instirut, Zurich'
r985.

3 G. R. Blakley, Safeguarding cryptographic teys, Proc. N. C. C., vol.48, AFIPS

Conference Proccedings 48 (1979), 3 13-3 17.

A. Cayley, On thc tiadic arrangements o^f-1even andfifteen rhings, London, Edinburgh

and DirUlin Philos. Mag. and J. Sci. 37 (18-50), -50-53'
4

5

6

,l

H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs, Discrcte
Math. 3 (1972),75-97.

C. C. Lindne r, On the construction of pairwise disjoint Steiner quadruple s).rrenlt, Ars
Combinatoria 19 (1985), 153-156.

J. X. Lu, Onlarge sets of disjoint Steinertriple systerns I,ll,and ///,J. Comb. Theory A
34 (1983), 140-146, 147-l-55, and l-56-182.

159



8. I: *L.yr91 l91qe s91s 9l disjoint Steincr .rripte systems N, V, and V/, J. Comb. TheoryA 37 (1984), 136163, 164-188, and 189-19j.

9. D. K. R-ay-Chaudhuri and R. M. Wilson, So/ution 
-of 

Kirkman,s schoolgirl problem,
Amcr. Math. Soc. Symp. pure Math. 19 (1971), tg7_2M.

10. D. K. Ray-Chaudhuri and_R. M. Wilson, The exisrence of resolvable block designs, in ,,A
S-urvey of Com-binarola]-I^h-99ry", J. N. Snvasnva et aI; eas., Nontr_fto-iianJilr[iiir,irg
Company, 1973, pp. 361-375.

I l. J. Schonheim, On maxinul sysrems of k-tuples, Studia Sci. Math. Hung. I (19ff), 363-
368.

12. A. Shamir, How to slure a secret, Comm. of the ACM 22, (lg7g),612-613.

13. J. Spencer, Maximal consistent lamilies of triples, J. Comb. Theory 5 (196g), l_g.

14. D. R. Stinson and S. A. Vanstonc, A combinotorial qproach to thresholdsc&ez,f,s, SIAM
J. on Discrcte Math. I (1988), 23G236.

15. f . Teirlinck, On large sets ofdisjoint quadruple systems, Ars Combinatoria 17 (19g4),
t73-176.

I 6. L. Tcirlinck, Non-trivial t-desigrur witlutut repeated blocks exist lor all t, Discretc Math.
65 (1987), 301-31 l.

17. L. Tcirlinck, lncally trivial t-designs and t-designr withow repeared blockr,preprint.

18. C. V. Zaicev, V. A. Zinoviev and N. V. Semal<ov,lnterrelation of preperata and
Hwrvning.c_odes and extension_of Hanning codes to new double error-corre'cring codes,
hoc. 2nd Inrernat._Sympos. Information Theory, Tsahkadsor, Armenia, USSit, l97i
(Akadcmiai Kiado, Budapest, 197 3), 257 -263.

19. Zhu Lic, Chen Dsme ng and Du Beiliang, On rhe existence of (v, S , I )-resolvable BIBD,
preprint.

160


