ON THE EXISTENCE OF INCOMPLETE DESIGNS OF BLOCK SIZE FOUR HAVING ONE HOLE

Rolf Rees
Mount Allison University
and
D. R. Stinson
University of Manitoba

Abstract

The obvious necessary conditions for the existence of a $(v, 4,1)$ balanced incomplete block design (BIBD) containing as a subdesign a ($w, 4,1$)-BIBD are $v \equiv 1$ or 4 modulo $12, w \equiv 1$ or 4 modulo 12 , and $v \geq 3 w+1$. More generally, we can consider the existence of pairwise balanced designs on ν points, having blocks of size 4, except for one block of size w. Such a design can exist only if $v \geq 3 w+1$; and $v \equiv 1$ or 4 modulo 12 and $w \equiv 1$ or 4 modulo 12 , or $v \equiv 7$ or 10 modulo 12 and $w \equiv 7$ or 10 modulo 12. We show that these conditions are sufficient for the existence of such a design.

1. Introduction.

A pairwise balanced design (or, PBD) is a pair (X, \mathcal{A}), such that X is a set of elements (called points) and \mathcal{A} is a set of subsets of X (called blocks), such that every unordered pair of points is contained in a unique block of \mathcal{A}. If v is a positive integer and K is a set of positive integers, then we say that (X, \mathcal{A}) is a ($v ; K$)-PBD if $|X|=v$, and $|A| \in K$ for every $A \in \mathcal{A}$. The integer v is called the order of the PBD.

Using this notation, we can define ($v, 4,1$)-BIBD to be a $(v ;\{4\})$-PBD. It is of course well-known that a $(v, 4,1)$-BIBD exists if and only if $v \equiv 1$ or 4 modulo 12.

Let (X, \mathcal{A}) be a PBD. If a set of points $Y \subseteq X$ has the property that, for any $A \in \mathcal{A}$, either $|Y \cap A| \leq 1$ or $A \subseteq Y$, then we say that Y is a subdesign or flat of the PBD. The order of the subdesign is $|Y|$. The subdesign Y is proper if $Y \neq X$. If Y is a subdesign, then we can delete all blocks $A \subseteq Y$ and replace them by a single block, Y, and the result is a PBD. Also, any block or point of a PBD is itself a subdesign.

The problem of constructing ($v, 4,1$)-BIBDs containing subdesigns was first studied by Brouwer and Lenz ([7] and [8]) and more recently by Wei and Zhu ([28] and [29]). The obvious necessary conditions for the existence of a $(v, 4,1)$ BIBD containing a ($w, 4,1$)-BIBD as a proper subdesign are $v \geq 3 w+1, v \equiv 1$ or 4 modulo 12 , and $w \equiv 1$ or 4 modulo 12. An almost complete solution to the problem has recently been given by Wei and Zhu. They have proved the following in [28] and [29].

Theorem 1.1. Suppose $v \equiv 1$ or 4 modulo $12, w \equiv 1$ or 4 modulo $12, v>w$, and $w \geq 88, w \neq 133$. Then there exists $a(v, 4,1)$-BIBD containing $a(w, 4,1)$ BIBD as a subdesign if and only if $v \geq 3 w+1$.

In this paper, we shall prove an analogous result for the remaining small values of w not covered by Theorem 1.1, thus completing the spectrum.

If we allow a subdesign of a PBD to be missing (i.e., a hole), we have an incomplete PBD, as follows. An incomplete PBD (or IPBD) is a triple (X, Y, \mathcal{A}), where X is a set of points, $Y \subseteq X$, and \mathcal{A} is a set of blocks which satisfies the following properties:

1) for any $A \in \mathcal{A},|A \cap Y| \leq 1$, and
2) any two points x, y, not both in Y, occur in a unique block.

Hence, Y is the hole. Note that (X, Y, \mathcal{A}) is an IPBD if and only if $(X, \mathcal{A} \cup\{Y\})$ is a PBD. We say that (X, Y, \mathcal{A}) is a $(v, w ; K)$-IPBD if $|X|=v,|Y|=w$, and $|A| \in K$ for every $A \in \mathcal{A}$.

There is $\mathbf{a}(v, w ;\{4\})$-IPBD whenever the hypotheses of Theorem 1.1 are satisfied. However, existence of a ($v, w ;\{4\}$)-IPBD does not require that $v \equiv 1$ or 4 modulo 12 and $w \equiv 1$ or 4 modulo 12 . The necessary conditions (when $v>w$) are easily seen to be as follows:

1) $v \geq 3 w+1$, and
2) $v \equiv 1$ or 4 modulo 12 and $w \equiv 1$ or 4 modulo 12 ;
or $v \equiv 7$ or 10 modulo 12 and $w \equiv 7$ or 10 modulo 12 .
An ordered pair (v, w), where $v>w$, which satisfies 1) and 2), is said to be admissible.

The existence of $(v, 7 ;\{4\})$-IPBDs was studied by Brouwer in [4]. He proved the following result.

Theorem 1.2. For all $v \equiv 7$ or 10 modulo $12, v \geq 22$, there is $a(v, 7,\{4\})-$ $I P B D$.

A similar result concerning ($v, 10 ;\{4\}$)-IPBDs was proved by Bermond and Bond in [2].

Theorem 1.3. For all $v \equiv 7$ or 10 modulo $12, v \geq 31$, there is $a(v, 10,\{4\})$ IPBD.

In this paper, we study the existence of ($v, w ;\{4\}$)-IPBDs for $w \equiv 7$ or 10 modulo $12, w \geq 19$. We show that there exists a $(v, w ;\{4\}$)-IPBD for all admissible ordered pairs (v, w).

Let us also observe that a ($v, w ;\{4\}$)-IPBD is equivalent to another type of design introduced in [11]. A parallel class is a set of blocks that form a partition of the point set. A partially resolvable partition $\operatorname{PRP} 2-(p, s, v ; m)$ can be defined to be a $(\nu ;\{p, s\})-\mathrm{PBD}$ in which the blocks of size p can be partitioned into m parallel classes. It is not difficult to see that a $\operatorname{PRP} 2-(s-1, s, v ; m)$ is equivalent
to a ($v+m, m ;\{s\}$)-IPBD. Thus, our results completely determine the spectrum of PRP 2-($3,4, v ; m$).

Finally, let us remark that the existence of $(v, w ;\{3\})$-IPBDs has been determined in [9] and [11].

2. Definitions and results concerning related designs.

We need to define several types of designs. First, we define a useful generalization of a PBD called a group-divisible design. A group-divisible design (or GDD), is a triple $(X, \mathcal{G}, \mathcal{A})$, which satisfies the following properties:

1) \mathcal{G} is a partition of X into subsets called groups,
2) \mathcal{A} is a set of subsets of X (called blocks) such that a group and a block contain at most one common point, and
3) every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a $\operatorname{GDD}(X, \mathcal{G}, \mathcal{A})$ is the multiset $\{|G|: G \in \mathcal{G}\}$. We usually use an "exponential" notation to describe group-types: a group-type $1^{i} 2^{j} 3^{k} \ldots$ denotes i occurrences of $1, j$ occurrences of 2 , etc. As with PBDs, we will say that a GDD is a K-GDD if $|A| \in K$ for every $A \in \mathcal{A}$.

We will also use the notation $\operatorname{GD}[K, M ; x]$ to denote a $\operatorname{GDD}(X, \mathcal{G}, \mathcal{A})$ where $|X|=x,|G| \in M$ for every $G \in \mathcal{G}$, and $|A| \in K$ for every $A \in \mathcal{A}$.

As our first observation, we note that a $(v, w ;\{4\})$-IPBD is equivalent to a $\{4\}$-GDD of type $3^{(\nu-w) / 3}(w-1)^{1}$.

In this paper, we shall make extensive use of $\{4\}$-GDDs. The following result has been proved by Brouwer, Hanani and Schrijver [6] concerning \{4\}-GDDs where every group has the same size.

Theorem 2.1. Suppose $u>1$. Then, there exists a $\{4\}$-GDD of type t^{u} if and only if $u \geq 4, t(u-1) \equiv 0$ modulo $3, t^{2} u(u-1) \equiv 0$ modulo 4, and $(t, u) \neq(2,4)$ or $(6,4)$.

A PBD or GDD is resolvable if the block set can be partitioned into parallel classes. It is not difficult to see that if a $\{k\}-G D D$ is resolvable, then all groups have the same size. We also observe that we can add a "point at infinity" to any parallel class in a design. Hence, it follows that a resolvable $\{k\}$-GDD of type t^{u} is equivalent to a $\{k+1\}$-GDD of type $t^{u} r^{1}$, where $r=t(u-1) /(k-1)$. We call this process completing the resolvable design.

The existence of resolvable $\{3\}$-GDDs has recently been studied in several papers. The following summarizes the known results.

Theorem 2.2. ([18], [1]) Suppose g and u are positive integers such that $u \geq 3$, $t u \equiv 0$ modulo $3, t(u-1)$ is even, and $(t, u) \neq(2,3),(2,6)$, or $(6,3)$. Then, there exists a resolvable $\{3\}-G D D$ of type t^{u}, except possibly when $t \equiv 2$ or 10 modulo 12 and $u=6$.

Of course, this result contains as a special case the result that a resolvable ($v, 3,1$)-BIBD (i.e., a Kirkman triple system of order v, or $\operatorname{KTS}(v)$) exists if and only if $v \equiv 3$ modulo 6 ([17]). As well, we note that the designs having group-size two are known as nearly Kirkman triple systems.

The authors have also studied the existence of Kirkman triple systems which contain subdesigns which also are Kirkman triple systems (where we require that the parallel classes of the subdesign are induced from the larger design). The following is proved in [20].

Theorem 2.3. Suppose $v \equiv w \equiv 3$ modulo 6 and $v \geq 3 w$. Then there is a Kirkman triple system of order v which contain as a subdesign a Kirkman triple system of order w.

The existence of resolvable ($v, 4,1$)-BIBDs was determined by Hanani, RayChaudhuri and Wilson [10]. They proved the following.

Theorem 2.4. There exists a resolvable $(v, 4,1)-$ BIBD if and only if $v \equiv 4$ modulo 12.

Now, we define the idea of a GDD with a hole. Informally, an incomplete GDD, or IGDD, is a GDD from which a sub-GDD is missing (this is the "hole"). We give a formal definition. An IGDD is a quadruple $(X, Y, \mathcal{G}, \mathcal{A})$ which satisfies the following properties:

1) X is a set of points, and $Y \subseteq X$,
2) \mathcal{G} is a partition of X into groups,
3) \mathcal{A} is a set of blocks, each of which intersects each group in at most one point,
4) no block contains two members of Y, and
5) every pair of points $\{x, y\}$ from distinct groups, such that at least one of x, y is in $X \backslash Y$, occurs in a unique block of \mathcal{A}.
We say that an $\operatorname{IGDD}(X, Y, \mathcal{G}, \mathcal{A})$ is a $K-\operatorname{IGDD}$ if $|A| \in K$ for every block $A \in \mathcal{A}$. The type of the IGDD is defined to be the multiset of ordered pairs $\{(|G|$, $|G \cap Y|): G \in \mathcal{G}\}$. As with GDDs, we shall use an exponential notation to describe types. Note that if $Y=\phi$, then the IGDD is a GDD.

We have already defined the idea of a PBD having a hole. We also employ a more general type of incomplete PBD. We are interested in the situation when we have two subdesigns, of given sizes, which intersect in a third subdesign of a given size. However, as usual, the subdesigns need not be present, that is, we allow holes. We will refer to these designs as \diamond-IPBDs, in order to suggest the structure of the holes. We give a formal definition. A $\diamond-I P B D$ is a quadruple $\left(X, Y_{1}, Y_{2}, \mathcal{A}\right)$, where $Y_{1} \subseteq X, Y_{2} \subseteq X$, and \mathcal{A} is a set of blocks such that every pair of points $\{x, y\}$ occurs in a unique block, unless $\{x, y\} \subseteq Y_{1}$ or $\{x, y\} \subseteq Y_{2}$, in which case the pair occurs in no block. We say that the \diamond-IPBD is
$\mathrm{a}\left(v ; w_{1}, w_{2} ; w_{3} ; K\right)-\diamond$-IPBD if $|X|=v,\left|Y_{1}\right|=w_{1},\left|Y_{2}\right|=w_{2},\left|Y_{1} \cap Y_{2}\right|=w_{3}$, and $|A| \in K$ for every $A \in \mathcal{A}$.

We also utilize (incomplete) transversal designs, which we now define. A transversal design $\operatorname{TD}(k, n)$ is a $\{k\}$-GDD of type n^{k}. It is well-known that a $\operatorname{TD}(k, n)$ is equivalent to $k-2$ mutually orthogonal Latin squares (MOLS) of order n We also define a $\operatorname{TD}(k, n)-\operatorname{TD}(k, m)$ (an incomplete transversal design) to be a $\{k\}$-IGDD of group-type $(n, m)^{k}$.
We now record the known results concerning TDs with 4,5, or 6 groups (see [3], [22], [26], and [27]).

Theorem 2.5. There exists a $\operatorname{TD}(4, n)$ if and only if $n \neq 2$ or 6 . There exists a $T D(5, n)$ if $n \geq 4, n \neq 6,10$. There exists a $T D(6, n)$ if $n \geq 5, n \neq 6$, $10,14,18,22,26,28,30,34,38,42,44$, or 52 .

We shall make extensive use of incomplete TDs with four groups. The existence of these designs was completely determined by Heinrich and Zhu in [12].

Theorem 2.6. For all positive integers v and w such that $v \geq 3 w,(v, w) \neq$ $(6,1)$, there is a $\operatorname{TD}(4, v)-T D(4, w)$.

Finally, we record the existence of several small GDDs which we shall use in recursive constructions.

Theorem 2.7. There exist $\{4\}$-GDDs of the following types: $6^{4} 3^{1}, 6^{1} 3^{5}, 6^{2} 3^{4}$, $6^{4} 9^{1}, 6^{5} 9^{1}, 6^{6} 3^{1}, 6^{5} 12^{1}, 6^{4} 12^{2}, 9^{4} 6^{1}, 9^{5} 6^{1}, 9^{2} 3^{6}, 18^{2} 3^{12}$, and $6^{5} 12^{1} 15^{1}$. Also, there exists a resolvable $\{4\}-G D D$ of type 3^{8}.

Proof: The designs of types $6^{4} 3^{1}, 9^{4} 6^{1}, 9^{5} 6^{1}$, and $9^{2} 3^{6}$ are constructed in [19]. The designs of types $6^{6} 3^{1}$ and $6^{2} 3^{4}$ are constructed in [21]. The design of type $6^{5} 9^{1}$ is constructed in [18]. The designs of types $6^{4} 12^{2}, 18^{2} 3^{12}$, and $6^{5} 12^{1} 15^{1}$ are constructed in the Appendix. A resolvable $\{4\}$-GDD of type 3^{8} is constructed in [13]. The remaining three designs are obtained by completing resolvable $\{3\}$-GDDs.

Theorem 2.8. There exists a $\{5\}$-IGDD of type $(16,4)^{6}$.
Proof: Start with a $\{5\}$-GDD of type 4^{6} (obtained from an affine plane of order 5) and give every point weights $(4,1)$. Apply the Fundamental Construction (defined in Section 3), using $\{5\}$-IGDDs of type $(4,1)^{5}$, which are just $\operatorname{TD}(5,4)$ $\mathrm{TD}(5,1)$.

Theorem 2.9. For $k=5$ and 6 , and for all $0 \leq i \leq k$, there exists a $\{4\}-I G D D$ of type $(9,3)^{i}(6,0)^{k-i}$.

Proof: These designs are constructed in [18], [19], and [21].

3. General constructions for designs containing subdesigns.

It will be necessary for us to build families of IGDDs. Our basic construction for IGDDs is the "Fundamental IGDD Construction" (see [16] and [19]).
Construction 3.1 Fundamental IGDD Construction: Suppose $(X, Y, \mathcal{G}, \mathcal{A})$ is an IGDD, and let $t, s: X \rightarrow \mathbf{Z}^{+} \cup\{0\}$ be functions such that $t(x) \leq s(x)$, for every $x \in X$. For every block $A \in \mathcal{A}$, suppose that we have a K-IGDD of type $\{(s(x), t(x)): x \in A\}$. Suppose also that we have a K-IGDD of type $\left\{\left(\sum_{x \in G \cap Y}\right.\right.$ $\left.\left.s(x), \sum_{x \in G \cap Y} t(x)\right): G \in \mathcal{G}\right\}$. Then there exists a K-IGDD of type $\left\{\left(\sum_{x \in G}^{x \in G \cap Y}\right.\right.$ $\left.\left.s(x), \sum_{x \in G} t(x)\right): G \in \mathcal{G}\right\}$.

As an immediate corollary, we obtain Wilson's Fundamental GDD construction (see [30]).
Construction 3.2 Fundamental GDD Construction: Suppose $(X, \mathcal{G}, \mathcal{A})$ is a GDD, and let $s: X \rightarrow \mathbf{Z}^{+} \cup\{0\}$ be a function. For every block $A \in \mathcal{A}$, suppose that we have a K-GDD of type $\{s(x): x \in A\}$. Then there exists a K-GDD of type $\left\{\sum_{x \in G} s(x): G \in \mathcal{G}\right\}$.

We will refer to both Constructions 3.1 and 3.2 by the abbreviation FC. It will be clear from the context which applies.

We defined \diamond-IPBDs in Section 2. Our main application of these designs involves using them to fill in the groups of IGDDs. The next construction was presented in [25].
Construction 3.3 Filling in groups: Let K be a set of positive integers, and let $b \geq a \geq 0$. Suppose that the following designs exist:

1) a K-IGDD of type $\left\{\left(t_{1}, u_{1}\right),\left(t_{2}, u_{2}\right), \ldots,\left(t_{n}, u_{n}\right)\right\}$;
2) $\mathrm{a}\left(t_{i}+b ; u_{i}+a, b ; a ; K\right)-\diamond$-IPBD, for $1 \leq i \leq n-1$; and
3) a $\left(t_{n}+b, u_{n}+a ; K\right)$-IPBD.

Then there exists $\mathrm{a}(t+b, u+a ; K)$-IPBD, where $t=\sum t_{i}$ and $u=\sum u_{i}$.
As a simpler form of filling in groups, we have the following corollary (see, for example, [16]).
Construction 3.4 Filling in groups: Let K be a set of positive integers, and let $a \geq 0$. Suppose that the following designs exist:

1) a K-IGDD of type $\left\{\left(t_{1}, u_{1}\right),\left(t_{2}, u_{2}\right), \ldots,\left(t_{n}, u_{n}\right)\right\}$; and
2) $\mathrm{a}\left(t_{i}+a ; u_{i}+a ; K\right)-\mathrm{IPBD}$, for $1 \leq i \leq n$.

Then there exists a $(t+a, u+a ; K)$-IPBD, where $t=\sum t_{i}$ and $u=\sum u_{i}$.
Finally, we mention the special case when we start with a GDD (see, for example, [30]).
Construction 3.5 Filling in groups: Let K be a set of positive integers, and let $a \geq 0$. Suppose that the following designs exist:

1) a K-GDD of type $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$; and
2) $\mathrm{a}\left(t_{i}+a ; a ; K\right)-\mathrm{IPBD}$, for $1 \leq i \leq n-1$.

Then there exists a $\left(t+a, t_{n}+a ; K\right)$-IPBD, where $t=\sum t_{i}$.
We refer to any of Constructions 3.3, 3.4, or 3.5 as Filling in Groups. Again, it will be clear from the context which one applies. We will say that the new points have been adjoined to the groups of the IGDD or GDD.

We now mention several constructions which are known as the product constructions. The most general form is the following, first stated in [25].
Construction 3.6: (Generalized singular indirect product, or GSIP) Suppose there exists a TD $(4, r-b)-\operatorname{TD}(4, s-a)$, an $(r ; s, b ; a ;\{4\})-\diamond$-IPBD, and a $(b, a ;\{4\})$-IPBD. Then there is $\mathrm{a}(4(r-b)+b, 4(s-a)+a ;\{4\})$-IPBD.

The following special case of GSIP was first stated in [16].
Construction 3.7: (Singular indirect product, or SIP) Suppose there exists a $\operatorname{TD}(4, r-a)-\operatorname{TD}(4, s-a)$, and an $(r, s ;\{4\})$-IPBD. Then there is a $(4(r-$ $a)+a, 4(s-a)+a ;\{4\})-$ IPBD.

A further specialization of SIP is as follows.
Construction 3.8: (Singular direct product, or SDP) Suppose there is a TD $(4, r-s)$ and an $(r, s ;\{4\})$-IPBD. Then there is a $(4(r-s)+s, s ;\{4\})$-IPBD and a $(4(r-s)+s, r ;\{4\})$-IPBD.

Now, we present several specific constructions for designs with block-size four, by applying the recursive constructions described above. All GDDs required as ingredients have been shown to exist in Section 2.

Lemma 3.9. Suppose there is $a(v, w ;\{k: k \equiv 0$ or 1 modulo 4\}) -IPBD. Then there exists $a(3 v+1,3 w+1 ;\{4\})-I P B D$.

Proof: Give every point weight 3 , and apply FC. We require $\{4\}$-GDDs of types 3^{k}, for all relevant $k \equiv 0$ or 1 modulo 4 . Then adjoin $a=1$ new point, filling in (4; \{4\})-PBDs.

Lemma 3.10. Suppose there is a $T D(5, m)$, and $0 \leq u \leq m$. Then there is a $\{4\}-G D D$ of type $(3 m)^{4}(3 u)^{1}$.

Proof: Give points in four groups of the TD weight 3, give the points in the fifth group weights 0 or 3 . Apply FC, filling in $\{4\}$-GDDs of types 3^{4} or 3^{5}.

Lemma 3.11. Suppose there is a $T D(6, m)$, and $m \leq u \leq 2 m$. Then there is a $\{4\}-G D D$ of type $(3 m)^{4}(6 m)^{1}(3 u)^{1}$.

Proof: Give points in four groups of the TD weight 3, give the points in the fifth group weights 3 or 6 , and give the points in the sixth group weight 6 . Apply FC, filling in $\{4\}$-GDDs of types $3^{4} 6^{2}$ or $3^{5} 6^{1}$.

Lemma 3.12. Suppose there is a $\operatorname{TD}(6, m)$, and $0 \leq u \leq m$. Then there is a $\{4\}$-GDD of type $(3 m)^{5}(6 u)^{1}$.

Proof: Give points in five groups of the TD weight 3, and give the points in the sixth group weights 0 or 6 . Apply FC, filling in $\{4\}$-GDDs of types 3^{5} or $3^{5} 6^{1}$.

Lemma 3.13. Suppose there is a $T D(6, m)$, and $m \leq u^{\prime} \leq 2 m$, and $m \leq u \leq$ $2 m$. Then there is a $\{4\}$-GDD of type $(6 m)^{4}(6 u)^{1}\left(6 u^{\prime}\right)^{1}$.

Proof: Give points in four groups of the TD weight 6 , and give the points in the fifth and sixth groups weights 6 or 12. Apply FC, filling in $\{4\}$-GDDs of types $6^{6}, 6^{5} 12^{1}$, or $6^{4} 12^{2}$.

4. Designs with large holes.

In this section, we give several constructions for ($v, w ;\{4\}$)-IPBDs when $3 w<$ $v<4 w$. These constructions are generalizations and/or modifications of constructions used by Brouwer and Lenz, and by Wei and Zhu.

Lemma 4.1. Suppose there is a resolvable $\{4\}$-GDD of type t^{4}, and $0 \leq s \leq$ $t(u-1) / 3$. Let $b \geq a \geq 0$. Suppose there is $a(3 t+b ; t+a, b ; a ;\{4\})-\diamond-I P B D$, and $a(3 s+b, a ;\{4\})-I P B D$. Then there is $a(3 t u+3 s+b, t u+a ;\{4\})$-IPBD.

Proof: Adjoin infinite points to s of the parallel classes of the GDD. This produces a $\{4,5\}$-GDD of type $t^{u} s^{1}$ in which every block of size 5 hits the group of size s. Assign weights $(3,1)$ to every point of the original GDD, and assign weights $(3,0)$ to the s infinite points. Apply FC, using $\{4\}$-IGDDs of types $(3,1)^{4}(3,0)^{1}$ and $(3,1)^{4}$. (These arise by deleting a block from $\{4\}$-GDDs of types 3^{5} and 3^{4}, respectively.) This yields a $\{4\}$-IGDD of type $(3 t, t)^{u}(3 s)^{1}$. Then, we fill in the groups of this IGDD with \diamond-IPBDs. This gives us the desired IPBD.

Lemma 4.2. (Brouwer and Lenz [7], Wei and Zhu [28]). Suppose $w \equiv 4$ modulo 12, $v \equiv 1$ or 4 modulo 12, and $3 w+1 \leq v \leq 4 w-3$. Then there is a $(\nu, w ;\{4\})-I P B D$ and $a(v, v-3 w ;\{4\})-I P B D$.

Proof: Set $t=4, u=w / 4, s=(v-3 w-1) / 3, b=1$, and $a=0$. Apply Lemma 4.1. There is a resolvable $\{4\}$-GDD of type 4^{u} for all $u \equiv 1$ modulo 3 (Theorem 2.4). We fill in ($13 ; 4,1 ; 0 ;\{4\}$) - \bigcirc-IPBDs, which are just $(13,4 ;\{4\})$-IPBDs; and a $(3 s+1,0 ;\{4\})$-IPBD, which is just a $(v-3 w ;\{4\})$-PBD.

Lemma 4.3. For allt $\equiv 0$ modulo 3 , there is $a(3 t+4 ; t+1,4 ; 1 ;\{4\})-$-IPBD.
Proof: This design is constructed by adjoining $t+1$ points at infinity to the parallel classes of a resolvable $(2 t+3,3,1)$-BIBD (Theorem 2.2). A block of size four is then deleted, giving the desired \diamond-IPBD.

Lemma 4.4. Suppose $w \equiv 1$ modulo $12, w \neq 13$ or $25, v \equiv 1$ or 4 modulo 12 , and $3 w+1 \leq v \leq(15 w+1) / 4$. Then there is $a(v, w ;\{4\})-I P B D$.
Proof: Set $u=4, t=(w-1) / 4, s=(v-3 w-1) / 3, b=4$, and $a=1$. Apply Lemma 4.1. The necessary \diamond-IPBDs are constructed in Lemma 4.3.

Lemma 4.5. For all $t \equiv 0$ modulo $3, t \geq 3$, there is $a(4 t+1 ; t+1$, $t+1 ; 1 ;\{4\})-\diamond-I P B D$.

Proof: The desired designs are equivalent to $\{4\}$-GDDs of type $t^{2} 3^{2 t / 3}$. For $t \equiv$ 0 or 3 modulo 12 , start with a TD $(4, t)$, and replace each of two groups by $\{4\}$ GDDs of type $3^{t / 3}$. For $t=6,9$, and 18 , the designs are given in Theorem 2.7. For $t \equiv 6$ or 9 modulo $12, t \geq 21$, we proceed as follows. Start with a $\operatorname{TD}(4, t)$ -TD $(4,6)$. Replace each of two groups by $\{4\}$-GDDs of type $6{ }^{1} 3^{(t-6) / 3}$ (such a GDD is obtained by deleting a point from a $(t+1,7 ;\{4\})$-IPBD). Now, we have a $\{4\}$-IGDD of type $(t, 6)^{2}(3,0)^{(2 t-12) / 3}(6,6)^{2}$. Fill in the hole with a $\{4\}$-GDD of type $6^{2} 3^{4}$. This produces the required GDD.
Remark: For $t \neq 6,9,18,21$, and 33, similar designs were constructed by Wei and Zhu in [29].
Lemma 4.6. Suppose $w \equiv 1$ modulo $12, w \neq 13$ or $25, v \equiv 1$ or 4 modulo 12 , and $(13 w-9) / 4 \leq v \leq 4 w-3$. Then there is $a(v, w ;\{4\})-I P B D$.

Proof: Set $u=4, t=(w-1) / 4, s=(4 v-13 w+9) / 12, b=t+1$, and $a=1$. Apply Lemma 4.1. The necessary \diamond-IPBDs are constructed by Lemma 4.5.

Combining Lemmata 4.4 and 4.6, we have
Lemma 4.7. Suppose $w \equiv 1$ modulo $12, w \neq 13$ or $25, v \equiv 1$ or 4 modulo 12 , and $3 w+1 \leq v \leq 4 w-3$. Then there is $a(v, w ;\{4\})-I P B D$.

We derive two more corollaries to Lemma 4.1.
Lemma 4.8. Suppose $w \equiv 7$ modulo $12, w \geq 67, v \equiv 7$ or 10 modulo 12 , and $3 w+1 \leq v \leq(15 w-17) / 4$. Then there is a $(v, w ;\{4\})$-IPBD.

Proof: Set $u=4, t=(w-7) / 4, s=(v-3 w-1) / 3, a=7$, and $b=22$. The required \diamond-IPBDs can be constructed from a Kirkman triple system of order $(w+23) / 2$ which contains as a subdesign a Kirkman triple system of order 15 (Theorem 2.3).
Lemma 4.9. Suppose $w \equiv 10$ modulo $12, w \geq 94, v \equiv 7$ or 10 modulo 12, and $3 w+1 \leq v \leq(15 w-26) / 4$. Then there is $a(v, w ;\{4\})-I P B D$.
Proof: Set $u=4, t=(w-10) / 4, s=(v-3 w-1) / 3, a=10$, and $b=31$. The required \diamond-IPBDs can be constructed from a Kirkman triple system of order $(w+32) / 2$ which contains as a subdesign a Kirkman triple system of order 21 (Theorem 2.3).

Finally, we note the following.

Lemma 4.10. For all $w \equiv 1$ modulo 3, there exists a $(3 w+1, w ;\{4\})$-IPBD.
Proof: Adjoin w infinite points to a resolvable ($2 w+1,\{3\}$)-PBD (which is just a Kirkman triple system of order $2 w+1$).

5. A general construction when $v-w \equiv 3$ or 9 modulo 12 .

In this section, we prove an analogue of Lemma 3.2 in [21]. This is a general construction that applies when v and w are of opposite parity.
Lemma 5.1. Suppose $(X, \mathcal{G}, \mathcal{A})$ is a $G D\{5,6\},\{2,3,4,5,6,7,8,9,10,11$, $\left.\left.15, r^{\star}\right\} ; s\right]$, where $r \geq 1$, having more than one group. Let O_{g} denote the number of groups having odd size, and suppose $3 O_{g} \leq u \leq 3 s, u \equiv 3 O_{g}$ modulo 6 . Then there is a $G D\left[4,\left\{3, u^{\star}\right\}, 6 s+u+3\right]$.
Proof: Let G^{\prime} be the group of size r. Define $d: X \rightarrow\{0,3\}$ such that the following conditions are satisfied:

1) for every group $G,|\{x \in G: d(x)=3\}| \equiv|G| \bmod 2$,
2) $\sum_{x \in X} d(x)=u$, and
3) $\sum_{x \in G^{\prime}} d(x)=0,3$, or $3 r$.

This can always be done, as follows. Suppose r is even (the argument is similar if r is odd). We can define d satisfying 1) so that $\sum_{x \in X \backslash C^{\prime}} d(x)$ takes on any value $\equiv 3 O_{g}$ modulo 6 between $3 O_{g}$ and $3(s-r)$. Also, $\sum_{x \in G^{\prime}} d(x)$ can take on the value 0 or $3 r$. Hence, we can attain all desired values u provided $3 O_{g}$ $+3 r \leq 3(s-r)+6$, or equivalently, $O_{g}+2 r \leq s+2$. Now, no group has size 1 (since r is even), so we have $O_{g} \leq(s-r) / 3$. Also, every block has size at least 5, so we have $s \geq 4 r+1$. These two inequalities imply that $O_{g}+2 r \leq(9 s-5) / 12$ $<s+2$, as desired.

Next, define $w(x)=6+d(x)$ for every $x \in X$, and apply the Fundamental IGDD Construction (Construction 3.1). For each block $A \in \mathcal{A}$, we require an IGDD of type $(9,3)^{i}(6,0)^{|A|-i}$, for some $i, 0 \leq i \leq|A|$. Since $|A|=5$ or 6 for every $A \in \mathcal{A}$, the required IGDDs exist by Theorem 2.9. We now fill in the groups of this large IGDD with the $\{4\}$-GDDs listed in Table 1 (incorporating $a=3$ new points). These GDDs have the form $3^{u} t^{1}$. When $t=3$, the GDDs exist by Theorem 2.1. When $t=6$ or 9 , the GDDs are constructed by deleting points from ($v, 7 ;\{4\}$)-IPBDs or from ($v, 10 ;\{4\}$)-IPBDs, which exist by Theorem 1.2 and Theorem 1.3. When $t=(3 u-3) / 2$, the desired $\{4\}$-GDD is obtained by adjoining t infinite points to a Kirkman triple system of order $3 u$, as indicated in Table 1. The remaining GDDs are constructed later in this paper or elsewhere; we give references in Table 1.

Table 1

| IGI | $1(x \in C$ | G : | | (4)-GDD | \|G| | $11 x \in G$ | G: d | | (4)-GDD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | | 0 | 3^{5} | | 2 | | 2 | | (KTS(15)) |
| 3 | | 1 | 3^{8} | | 3 | | 3 | | (KTS(21)) |
| 4 | | 0 | 39 | | 4 | | 2 | $3^{9} 6$ | |
| 4 | | 4 | | ${ }^{1} 12^{1}(\mathrm{KTS}(27))$ | 5 | | 1 | 312 | |
| 5 | | 3 | | 1191 | 5 | | 5 | 3^{111} | 51 (KTS(33)) |
| 6 | | 0 | 3^{13} | | 6 | | 2 | $3{ }^{13} 6$ | |
| 6 | | 4 | | ${ }^{13} 12^{1}$ (Thm. 6.1) | 6 | | 6 | $3{ }^{13} 1$ | $8^{1}(\mathrm{KTS}(39))$ |
| 7 | | 1 | 316 | | 7 | | 3 | 3159 | |
| 7 | | 5 | | ${ }^{15151}$ (Thm. 6.1) | 7 | | 7 | 3152 | ${ }^{1}(\mathrm{KTS}(45))$ |
| 8 | | 0 | 31 | 17 | 8 | | 2 | $3{ }^{17} 6$ | |
| 8 | | 4 | | ${ }^{17} 12^{1}$ (Table 2) | 8 | | 6 | $3{ }^{17} 1$ | 1 [15] |
| 8 | | 8 | | 17241 (KTS(51)) | 9 | | 1 | 320 | |
| 9 | | 3 | | 1991 | 9 | | 5 | 3191 | 51 (Table 2) |
| 9 | | 7 | | 1921 ${ }^{1}$ [14] | 9 | | 9 | 3192 | 71 (KTS(57)) |
| 10 | | 0 | 32 | | 10 | | 2 | 3^{216} | |
| 10 | | 4 | | ${ }^{21} 12^{1}$ (Table 2) | 10 | | 6 | $3^{21} 1$ | ${ }^{1}$ [15] |
| 10 | | 8 | | 21241 (Thm. 6.1) | 10 | | 10 | 3213 | ${ }^{1}(\mathrm{KTS}(63))$ |
| 11 | | 1 | 32 | | 11 | | 3 | 3^{239} | |
| 11 | | 5 | | ${ }^{23} 15^{1}$ (Table 2) | 11 | | 7 | $3^{23} 2$ | 1^{1} [14] |
| 11 | | 9 | | ${ }^{23} 27^{1}$ (Lem. 4.2) | 11 | | 11 | $3^{23} 3$ | $3^{1}(\mathrm{KTS}(69))$ |
| 15 | | 1 | 33 | | 15 | | 3 | 3^{319} | |
| 15 | | 5 | | ${ }^{31} 15^{1}$ (Table 2) | 15 | | 7 | $3^{31} 2$ | 1^{1} [14] |
| 15 | | 9 | | ${ }^{31} 27^{1}$ (Thm. 6.1) | 15 | | 11 | $3^{31} 3$ | 3^{1} (Table 5) |
| 15 | | 13 | | ${ }^{31} 3^{1}$ (Lem. 4.2) | 15 | | 15 | $3^{31} 4$ | 5^{1} (KTS(93)) |
| r | | r | $3^{2 r+1}(3 \mathrm{r})^{1}(\mathrm{KTS}(6 \mathrm{r}+3))$ | | | | | | |
| r (even) | | 0 | $3^{2 r+1}$ | | | | | | |
| r (odd) | | 1 | $3^{2 x+2}$ | | | | | | |

Lemma 5.2. Suppose $(X, \mathcal{G}, \mathcal{A})$ is a $G D[\{5,6\},\{2,3,4,5,6,7,8,9,10$, $\left.\left.11,15, r^{\star}\right\} ; s\right]$, where $r \geq 1$, having more than one group. Let O_{g} denote the number of groups having odd size, and suppose $4 O_{g}+1 \leq s$. Finally, suppose that $v-w=6 s+3,3 w+1 \leq v \leq 9 w+4$, and (v, w) is admissible. Then there is a $(v, w,\{4\})-I P B D$.

Proof: Since $v \leq 9 w+4$, we have $v-w \leq 8 w+4$. But $v-w=6 s+3 \geq$ $6\left(4 O_{g}+1\right)+3=24 O_{g}+9$. Hence, $w \geq\left(24 O_{g}+9-4\right) / 8>3 O_{g}$. Furthermore, since (v, w) is admissible, it follows that $w-1 \equiv 3 O_{g}$ modulo 6. Hence, Lemma 5.1 can be applied.

Theorem 5.3. Suppose that $v-w=6 s+3,3 w+1 \leq v \leq 9 w+4$, and (v, w) is admissible. If $s \geq 24, s \neq 31,32,33,34$, then there is $\boldsymbol{a}(v, w,\{4\})$-IPBD.
Proof: It suffices to show that there exist GDDs which satisfy the hypotheses of Lemma 5.2 for the stated values of s. For $s \in\{24,25,28,29,30,36,40,44,45$,
$52,59,60,63,64,65\} \cup\{n: 68 \leq n \leq 80\} \cup\{n \geq 88\}$, the GDDs constructed in [21, Theorem 3.4] satisfy the requirements. The remaining values of s are handled as follows.

```
\(s=26,27 \quad\) adjoin a group of size 1 or 2 to an affine plane of order 5
\(35 \leq s \leq 42\) delete \(42-s\) points from a group of a TD \((6,7)\)
\(s=43 \quad\) delete 5 points from a group of a \(\mathrm{TD}(6,8)\)
\(45 \leq s \leq 54\) delete \(54-s\) points from a group of a \(\operatorname{TD}(6,9)\)
\(55 \leq s \leq 66\) delete \(66-s\) points from a group of a \(\operatorname{TD}(6,11)\)
\(s=67\)
\(81 \leq s \leq 87\) delete \(90-s\) points from a group of a \(\operatorname{TD}(6,15)\).
adjoin a group of size two to a resolvable \((65,5,1)\)-BIBD
```

It is easy to check that $4 O_{g}+1 \leq s$ in each case.
We can do most of the cases corresponding to $s=31$, as follows.
Lemma 5.4. Suppose that $v-w=189,28 \leq w \leq 94$, and (v, w) is admissible. Then there is $a(v, w,\{4\})-I P B D$.

Proof: Apply Lemma 5.1 with $s=31$, using a $\{5\}$-GDD of type $3^{8} 7^{1}$ (this GDD is constructed by completing the resolvable $\{4\}$-GDD of type 3^{8} constructed in Theorem 2.7). Adjoin one new point to the groups of the resulting GDD.

6. BIBDs with subdesigns: completing the spectrum.

The following result, proved by Wei and Zhu in [28], will be useful.
Theorem 6.1. Suppose $w \equiv 1$ or 4 modulo $12, v \equiv 1$ or 4 modulo 12 , and $4 w-12 \leq v \leq 5 w-4$. Then there is a $(v, w ;\{4\})$-IPBD.

Recall that there always exists a $(3 w+1, w,\{4\})$-IPBD (Lemma 4.10). After applying Theorems 5.3 and 6.1, and Lemmata 4.2, 4.7 and 5.4, the only cases remaining when $v-w$ is odd and $v \leq 9 w+4$ are listed in Table 2, together with constructions in each case.

Table 2
Construction

1364 Lemma 3.9, delete 4 points from a group of a $\operatorname{TD}(5,5), 21=4 \cdot 5+1$
1376 Lemma 3.9, (25, 4, 1)-BIBD
1388 Lemma 3.9, adjoin a point at infinity to a resolvable (28, 4, 1)-BIBD.
13100 Lemma 3.9, delete 7 points from a group of a $\operatorname{TD}(5,8)(33=4.8+1)$
13112 Lemma 3.9, delete 8 points from a group of a $\operatorname{TD}(5,9)(37=4.9+1)$
1685 Lemma 3.9, adjoin infinite points to the groups and to 3 parallel classes of a resolvable $\{4\}-$ GDD of type 3^{8}, constructing a $\{4,5\}$ GDD of type 4^{7}

Table 2 (continued)

So, to this point, we have proved the following.
Theorem 6.2. If $v \equiv 1$ or 4 modulo $12, w \equiv 1$ or 4 modulo $12, v-w$ is odd and $3 w+1 \leq v \leq 9 w+4$, then there exists $a(v, w ;\{4\})$-IPBD.

Next, we consider when $v-w$ is even. Brouwer and Lenz have proven several results concerning these cases in [7] and [8]. However, they do not deal with small values of w. Here, we give a complete proof for all values of w, using very similar techniques.

Lemma 6.3. Suppose $(X, \mathcal{G}, \mathcal{A})$ is a $G D D$ in which every block has size at least 4. Let $a=1$ or 4 . Then, for every $G \in \mathcal{G}$, there is $a(12|X|+a, 12|G|+a$, $\{4\})-I P B D$.

Proof: Give every point weight 12 and apply FC, using \{4\}-GDDs of type 12^{k}, $k \geq 4$. Then adjoin a new points.

Applying Lemma 6.3 to truncated TDs, we have the following.

Lemma 6.4.

i) Suppose there is a $\operatorname{TD}(k, t)$, where $k \geq 4$. Let $a=1$ or 4 . Then for all s such that $4 t \leq s \leq k t$, there is $a(12 s+a, 12 t+a,\{4\})-I P B D$.
ii) Suppose there is a $\operatorname{TD}(k, n)$, where $k \geq 5$. Let $a=1$ or 4 and let $0 \leq t \leq n$. Then for all s such that $4 n+t \leq s \leq(k-1) n+t$, there is $a(12 s+a, 12 t+a,\{4\})-I P B D$.

Define $T_{6}=\{n \geq 5\} \backslash\{6,10,14,18,22,26,28,30,34,38,42,44,52\}$. Then, for every $n \in T_{6}$, there exists a $\operatorname{TD}(6, n)$ (Theorem 2.5). The following property can be easily verified.

Lemma 6.5. If $n \in T_{6}$ and $n \geq 7$, then there exists an $n_{1}>n$ such that $n_{1} \in T_{6}$ and $4 n_{1} \leq 5 n+1$.

Consequently, we obtain
Lemma 6.6. Suppose $t \geq 1, n \in T_{6}$ and $n \geq \max \{7, t\}$. Then, for all $s \geq$ $4 n+t$, and for $a=1,4$, there is $a(12 s+a, 12 t+a,\{4\})-I P B D$.

Proof: This is an immediate consequence of Lemmata 6.4 and 6.5.
Similarly, we have
Lemma 6.7. Suppose $t \in T_{6}$ and $t \geq 7$. Then, for all $s \geq 4 t$, and for $a=1,4$, there exists a $(12 s+a, 12 t+a,\{4\})-I P B D$.

Some missing cases will be supplied by

Lemma 6.8. Suppose there is a $\operatorname{TD}(5, t+1)$, where $t \geq 4$. Let $a=1$ or 4 , and let $r=1,2$, or 3 . Then there exists $a(12(5 t+r)+a, 12 t+a,\{4\}-I P B D)$.
Proof: Delete $5-r$ points from a block of a $\operatorname{TD}(5, t+1)$. Take the blocks (and group) through one of the deleted points as groups of a new GDD. Apply Lemma 6.3.

Now, we have
Lemma 6.9. Suppose $t \geq 7$ and $s \geq 4 t$. Let $a=1$ or 4 . Then there is a $(12 s+a, 12 t+a,\{4\})-I P B D$.

Proof: If $t \in T_{6}, t \geq 7$, then Lemma 6.7 applies. If $t \notin T_{6}, t \geq 7$ proceed as follows. First, applying Lemma 6.6 with $n=t+1$ handles the cases $s \geq 5 t+4$. Lemma 6.8 handles the cases $5 t+1 \leq s \leq 5 t+3$, and then, Theorem 6.1 handles the cases $4 t \leq s \leq 5 t$.

At this point, we consider the cases corresponding to $t \leq 6$. Some constructions for these cases are done in Table 3. These include all cases corresponding to $t \geq 4$ and $s \geq 4 t$, proving
Lemma 6.10. Suppose $4 \leq t \leq 6$ and $s \geq 4 t$. Let $a=1$ or 4 . Then there is a $(12 s+a, 12 t+a,\{4\})-$ IPBD.

Table 3

t	s	Construction
2	$22 \leq s \leq 27$	apply Lemma 6.4 ii) with $\mathrm{k}=6$ and $\mathrm{n}=5$
3	$23 \leq s \leq 28$	apply Lemma 6.4 ii) with $\mathrm{k}=6$ and $\mathrm{n}=5$
4	$\mathrm{s} \geq 32$	apply Lemma 6.6
4	$s=30,31$	apply Lemma 6.3 , adjoining 2 or 3 points to a resolvable ($28,4,1$)-BIBD
4	$24 \leq s \leq 29$	apply Lemma 6.4 ii) with $\mathrm{k}=6$ and $\mathrm{n}=5$
4	$20 \leq s \leq 24$	apply Lemma 6.3, deleting up to 4 points from a group of a (5) -GDD of type 4^{6}
4	$16 \leq s \leq 20$	Theorem 6.1
5	$s \geq 33$	apply Lemma 6.6
5	$s=31,32$	a resolvable $\mathrm{TD}(5,7)$ gives rise to a $\{5,7\}$-GDD of type 5^{7}. Delete 3 or 4 points from a group of this GDD and apply Lemma 6.3.
5	$20 \leq s \leq 30$	apply Lemma 6.4 i) with $\mathrm{k}=6$ and $\mathrm{t}=5$
6	$s \geq 34$	apply Lemma 6.6
6	$31 \leq s \leq 33$	Lemma 6.8
6	$24 \leq s \leq 30$	Theorem 6.1

Next, the cases corresponding to $t=1$ are easy.
Lemma 6.11. Suppose $s \geq 4$, and $a=1$ or 4 . Then there is $a(12 s+a, 12+a$, $\{4\})-I P B D$.
Proof: Adjoin $a=1$ or 4 new points to a $\{4\}$-GDD of type 12^{s}.
When $t=2$ and 3 , observe that we have ($12 s+a, 12 t+a,\{4\}$)-IPBDs for $s \geq 28+t$, applying Lemma 6.6 with $n=7$. The cases $20+t \leq s \leq 25+t$ were done in Table 3. So, it remains to do the following cases (when $s \geq 4 t$):

$$
\begin{aligned}
& t=2, \quad 8 \leq s \leq 21, \quad s=28,29 \\
& t=3, \quad 12 \leq s \leq 22, \quad s=29,30
\end{aligned}
$$

Four difficult cases are done in Lemmata 6.12 and 6.13, and the remaining cases are handled in Table 4. Most of the constructions are applications of the singular indirect product. Many of the others consist of adjoining $a=1$ or 4 points to a suitable $\{4\}$-GDD.
Lemma 6.12. There is a 205,$37 ;\{4\})$-IPBD and $a(208,40 ;\{4\})-I P B D$.
Proof: Delete three points from a block of a $\operatorname{TD}(5,4)$, constructing a $\{4,5\}$ IGDD of type $(4,1)^{2} 3^{3}$. Give every point weight 12 and apply FC, obtaining a $\{4\}$-IGDD of type $(48,12)^{2} 36^{3}$. To construct a $(205,37 ;\{4\})$-IPBD, adjoin $a=1$ infinite point, filling in $(49,13 ;\{4\})$-IPBDs and ($37 ;\{4\}$)-PBDs, and a $(25,\{4\})$-PBD. To construct a $(208,40 ;\{4\})$-IPBD, adjoin $a=4$ infinite points, filling in $(52,16 ;\{4\})$-IPBDs, $(40,4 ;\{4\})$-IPBDs, and a $(28,4,\{4\})$ IPBD.
Lemma 6.13. There is $\operatorname{s}(349,37 ;\{4\})$-IPBD and $a(352,40 ;\{4\})$-IPBD.
Proof: Adjoin 2 infinite points to a resolvable ($28,4,1$)-BIBD, and then delete an old point, constructing a $\{4,5\}$-IGDD of type $(4,1)^{2} 3^{7}$. Proceed as in Lemma 6.12.

Table 4
Construction
(4)-GDD of type 24^{4}

2	8	1	25	97
2	9	1	25	109
2	10	1	25	121
2	11	1	25	133
2	12	1	25	145
2	13	1	25	157
2	14	1	25	169
2	15	1	25	181
2	16	1	25	193
2	17	1	25	205

apply SIP, $109=4(31-5)+5,25=4(10-5)+5$
apply SIP, $121=4(31-1)+1,25=4(7-1)+1$
apply SIP, $133=4(34-1)+1,25=4(7-1)+1$
(4)-GDD of type 24^{6}
apply SIP, $157=4(43-5)+5,25=4(10-5)+5$
apply SIP, $169=4(43-1)+1,25=4(7-1)+1$
apply SIP, $181=4(46-1)+1,25=4(7-1)+1$
(4)-GDD of type 24^{8}
apply SIP, $205=4(55-5)+5,25=4(10-5)+5$

Table 4 (continued)

2	18	1	25	217
2	19	1	25	229
2	20	1	25	241
2	21	1	25	253
2	28	1	25	337
2	29	1	25	349
2	8	4	28	100
2	9	4	28	112
2	10	4	28	124
2	11	4	28	136
2	12	4	28	148
2	13	4	28	160
2	14	4	28	172
2	15	4	28	184
2	16	4	28	196
2	17	4	28	208
2	18	4	28	220
2	19	4	28	232
2	20	4	28	244
2	21	4	28	256
2	28	4	28	340
2	29	4	28	352
3	12	1	37	145
3	13	1	37	157

apply SIP, 217 $=4(55-1)+1,25=4(7-1)+1$ apply SIP, $229=4(58-1)+1,25=4(7-1)+1$ [4]-GDD of type 2410
apply SIP, $253=4(67-5)+5,25=4(10-5)+5$
(4)-GDD of type 24^{14}
apply SIP, $349=4(91-5)+5,25=4(10-5)+5$
(4)-GDD of type 24^{4}
apply SIP, $112=4(31-4)+4,28=4(10-4)+4$
apply SIP, $124=4 \cdot 31,28=4.7$
apply SIP, $136=4.34,28=4.7$
(4) -GDD of type 246
apply SIP, $160=4(43-4)+4,28=4(10-4)+4$
apply SIP, $172=4.43,28=4.7$
apply SIP, $184=4.46,28=4.7$
(4) -GDD of type 24^{8}
apply SIP, $208=4(55-4)+4,28=4(10-4)+4$
apply SIP, $220=4 \cdot 55,28=4 \cdot 7$
apply SIP, $232=4 \cdot 58,28=4 \cdot 7$
(4)-GDD of type 2410
apply SIP, $256=4(67-4)+4,28=4(10-4)+4$ (4)-GDD of type 2414
apply SIP, $352=4(91-4)+4,28=4(10-4)+4$ apply SIP, $145=4(40-5)+5,37=4(13-5)+5$ (4)-GDD of type 24536^{1} (give every point in a \{4\}-GDD of type $6^{5} 9^{1}$ weight 4 and apply FC)
apply SIP, $169=4(43-1)+1,37=4(10-1)+1$
apply SIP, $181=4(46-1)+1,37=4(10-1)+1$
apply SIP, $193=4(52-5)+5,37=4(13-5)+5$
Lemma 6.12
apply SIP, $217=4(55-1)+1,37=4(10-1)+1$
apply SIP, $229=4(58-1)+1,37=4(10-1)+1$
apply SIP, $241=4(64-5)+5,37=4(13-5)+5$
(4)-GDD of type 36^{7}
apply SIP, $265=4(67-1)+1,37=4(10-1)+1$
Lemma 6.13
apply SIP, $361=4(91-1)+1,37=4(10-1)+1$
apply SIP, $148=4(40-4)+4,40=4(13-4)+4$
(4)-GDD of type $24^{5} 36^{1}$ (give every point in a (4)-GDD of
type $6^{5} 9^{1}$ weight 4 and apply FC)
apply SIP, $172=4 \cdot 43,40=4 \cdot 10$
apply SIP, $184=4 \cdot 46,40=4 \cdot 10$
apply SIP, $196=4(52-4)+4,40=4(13-4)+4$
Lemma 6.12
apply SIP, $220=4 \cdot 55,40=4 \cdot 10$
apply SIP, 232 $=4 \cdot 58,40=4 \cdot 10$
apply SIP, $244=4(64-4)+4,40=4(13-4)+4$
[4]-GDD of type 36^{7}
apply SIP, $268=4 \cdot 67,40=4 \cdot 10$
Lemma 6.13
apply SIP, $364=4.91,40=4.10$

So, we have the result for $t=2$ and 3 .
Lemma 6.14. Suppose $t=2$ or 3 and $s \geq 4 t$. Let $a=1$ or 4 . Then there is a $(12 s+a, 12 t+a,\{4\})-I P B D$.

We now can prove our main Theorem.
Theorem 6.15. Suppose $v \equiv 1$ or 4 modulo 12 and $w \equiv 1$ or 4 modulo 12. Then there exists a $(v, 4,1)$-BIBD containing $a(w, 4,1)-$ BIBD as a subdesign if and only if $v \geq 3 w+1$.
Proof: First, suppose $v-w$ is even. If $v \geq 4 w-3$, then the design exists by Lemmata $6.9,6.10,6.11$ and 6.14. If $3 w+4 \leq v<4 w-3$, then the design exists by Lemmata 4.2 and 4.7, unless $w=25$ and $v=85$. This case is done by adjoining $a=1$ point to $a\{4\}$-GDD of type $12^{5} 24^{1}$ (to construct this GDD, give every point in a $\{4\}$-GDD of type $3^{5} 6^{1}$ weight 4 and apply FC).

Next, suppose $v-w$ is odd. If $3 w+1 \leq v \leq 9 w+4$, apply Theorem 6.2. If $v>9 w+4$, then there exists a $(3 w+1, w ;\{4\})$-IPBD by Lemma 4.10, and a $(v, 3 w+1 ;\{4\})$-IPBD, since $v-(3 w+1)$ is even. Hence, the desired ($v, w ;\{4\}$)-IPBD exists. This completes the proof.
7. IPBDS where $v-w \equiv 3$ or 9 modulo $12,3 w+1 \leq v \leq 9 w+4$.

We have noted that there always exists a $(3 w+1, w ;\{4\})$-IPBD (Lemma 4.10). After applying Theorem 5.3, the only cases remaining when $v-w$ is odd and $v \leq 9 w+4$ are listed in Table 5, together with constructions in most cases.

Table 5
Construction

w v

Mills [15]
Mills [15]
using Construction 3.12 with $\mathrm{m}=5, \mathrm{u}=2$, build a $\{4\}$-GDD of type $15^{5} 12^{1}$. Adjoin $\mathrm{a}=7$ points, filling in (22, 7; $\{4\}$)-IPBDs.
Mills [15]
delete 3 points from a group of a $\operatorname{TD}(5,8)-\operatorname{TD}(5,1)$, constructing a $\{4,5\}$-IGDD of type $(8,1)^{4}(5,0)^{1}$. Give every point weight 3 and apply FC, to build a (4)-IGDD of type $(24,3)^{4}(15,0)^{1}$. Adjoin $a=7$ new points, filling in (31, $10 ;\{4\})$-IPBDs and a $(22,7 ;\{4\})$-IPBD.
delete 4 points from a group of a $\operatorname{TD}(5,9)-\operatorname{TD}(5,1)$, constructing a $\{4,5\}$-IGDD of type $(9,1)^{4}(5,0)^{1}$. Give every point weight 3 and apply FC, to build a $\{4\}$-IGDD of type $(27,3)^{4}(15,0)^{1}$. Adjoin a $=7$ new points, filling in (34, 10; $\{4\}$)-IPBDs and a $(22,7 ;\{4\})$-IPBD. delete a block from a (4)-GDD of type 9^{5}, constructing a (4)-IGDD of type $(9,1)^{4}(9,0)^{1}$. Give every point weight 3 and apply FC, to build a $\{4\}$-IGDD of type $(27,3)^{4}(27,0)^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (34, 10; (4))-IPBDs and a $(34,7 ;(4))$-IPBD.
start with a $\{4\}$-GDD of type $9^{5} 6^{1}$. Give every point weight 3 and apply FC, producing a $\{4\}$-GDD of type $27^{5} 18^{1}$. Now, adjoin $\mathrm{a}=1$ new point, filling in (28, $\{4\}$)-PBDs.

Table 5 (continued)

教

Mills [14]
Mills [14]
Mills [15]
Mills [14]
start with a TD $(5,8)-\operatorname{TD}(5,1)$, give every point weight 3 and apply FC, to build a (4)-IGDD of type $(24,3)^{5}$. Adjoin $a=7$ new points, filling in (31,$10 ;\{4\}$)-IPBDs.
delete 1 point from a group of a $\operatorname{TD}(5,9)-\operatorname{TD}(5,1)$, constructing a $\{4,5\}$-IGDD of type $(9,1)^{4}(8,1)^{1}$. Give every point weight 3 and apply FC, to build a $(4\}$-IGDD of type $(27,3)^{4}(24,3)^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (34, 10; (4))-IPBDs and a (31, 10; (4))-IPBD. a $\operatorname{TD}(6,10)-\operatorname{TD}(6,2)$ is presented in [5]. Delete all points in the hole, to construct a a $\{5\}$-GDD of type 8^{6}. Then, delete a block from this design, constructing a $\{5\}$-IGDD of type $(8,1)^{5}(8,0)^{1}$. Give every point weight 3 and apply FC, to build a $\{4\}$-IGDD of type $(24,3)^{5}(24,0)^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (31, $\left.10 ;(4\}\right)$ IPBDs and a $(31,7 ;(4))$-IPBD.
Mills [15]
start with a $\operatorname{TD}(5,8)-\operatorname{TD}(5,2)$ (see $[24]$). Delete one point of the hole from each group, producing a $\{4,5\}$-IGDD of type $(7,1)^{5}$ in which every block of size 5 hits the hole. Give the 30 original points weight $(3,1)$ and give the 5 new points weight $(3,0)$ and then apply FC. In this way, we build a $\{4\}$-IGDD of type $(21,6)^{5}$. Now, adjoin one new point, filling in (22,$7 ;\{4\}$)-IPBDs.
delete 3 points from a group of a $\operatorname{TD}(5,8)$, constructing a $(4,5)$-GDD of type $8{ }^{4} 5^{1}$. Give every point weight 3 and apply FC, to build a (4)GDD of type $24^{4} 15^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (31, 7; (4\})IPBDs and a (22, 7; (4))-IPBD. a (43, 10; $\{4\}$)-IPBD gives rise to a $\{4\}$-GDD of type $1^{33} 10^{1}$. Give every point weight 3 and apply FC, obtaining a \{4\}-GDD of type $3^{33} 30^{1}$. Fill in $\mathrm{a}=1$ new point.
start with a $\operatorname{TD}(5,5)-\operatorname{TD}(5,1)$. Give every point weight 6 , except for 3 points in the last group which get weight 3 . Apply FC to build a (4)-IGDD of type $(30,6)^{4}(21,6)^{1}$. Adjoin a $=1$ new point, filling in (31,$7 ;(4\})$-IPBDs and a $(22,7 ;(4\})$-IPBD.
154 start with a $\operatorname{TD}(5,5)-\operatorname{TD}(5,1)$. Give every point weight 6 and apply FC, to build a (4)-IGDD of type $(30,6)^{5}$. Adjoin $b=4$ new points, incorporating $\mathrm{a}=1$ of them into the hole, filling in $(34 ; 7,4 ; 1 ;(4))-0$ IPBDs and a (34,$7 ;(4)$)-IPBD. start with a $\operatorname{TD}(6,5)-\operatorname{TD}(6,1)$, and delete 3 points from a group, constructing a $\{5,6\}$-IGDD of type $(5,1)^{5}(2,0)^{1}$. Give every point weight 6 and apply FC, to build a $\{4\}$-IGDD of type $(30,6)^{5}(12,0)^{1}$. Adjoin $b=4$ new points, incorporating $a=1$ of them into the hole, filling in ($34 ; 7,4 ; 1 ;[4]$)-0-IPBDs and a ($16,\{4\}$)-PBD.
start with a TD $(9,9)$, and delete 8 points from a block, constructing an $\{8,9\}$-GDD of type $8^{8} 9^{1}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $24^{8} 27^{1}$. Adjoin $a=7$ new points, filling in (31,$7 ;\{4\}$)-IPBDs and a (34,$7 ;\{4\}$)-IPBD.
start with a $\operatorname{TD}(6,7)$. Delete a point, and let a group be the hole in a new $\{6,7\}$-IGDD of type $(5,1)^{7}(6,0)^{1}$. Next, delete two points from the hole, constructing a $\{5,6,7\}$-IGDD of type $(5,1)^{5}(4,0)^{2}(6,0)^{1}$.

Table 5 (continued)

Give one point in the group of size 6 weight 9 , and give all other points weight 6 . Apply FC. This builds a (4)-IGDD of type $(30,6)^{5}(24,0)^{2}(39,0)^{1}$. Adjoin $\mathrm{a}=1$ new point, filling in (31, 7 ; (4))-IPBDs, (25, (4\})-PBDs, and a (40; (4\})-PBD.

34235 start with a $\operatorname{TD}(9,9)$, and delete 5 points from a block, constructing a $(4,8,9)$-GDD of type $8^{5} 9^{4}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $24^{5} 27^{4}$. Adjoin $\mathrm{a}=7$ new points, filling in (34,$7 ;(4)$)-IPBDs and (31,$7 ;(4\})$-IPBDs.
Mills [15]
$43 \quad 142$
$43 \quad 154$
43166
$43 \quad 178$
$43 \quad 250$
SDP with the equation $115=4(34-7)+7$
delete 1 point from a group of a $\operatorname{TD}(5,8)$, constructing a $\{4,5\}$-GDD of type $8^{4} 71$. Give every point weight 3 and apply FC, to build a $\{4\}$ GDD of type $24^{4} 21^{1}$. Adjoin $\mathrm{a}=10$ new points, filling in (34, 10 ; (4))-IPBDs and a (31, 10; (4))-IPBD.
delete 1 point from a group of a $\operatorname{TD}(5,9)$, constructing a $(4,5\}$-GDD of type $9^{4} 8^{1}$. Give every point weight 3 and apply FC, to build a (4)GDD of type $27^{4} 24^{1}$. Adjoin $a=7$ new points, filling in (34,$7 ;(4)$)IPBDs and a (31,7 ; (4))-IPBD.
start with a $\operatorname{TD}(6,5)-\operatorname{TD}(6,1)$. Delete two points in a group, constructing a $\{5,6\}$-IGDD of type $(5,1)^{5}(3,0)^{1}$. Give every point weight 6 , except for 1 point in the last group which gets weight 9 . Apply FC to build a $\{4\}$-IGDD of type $(30,6)^{5}(21,0)^{1}$. Adjoin $\mathrm{a}=4$ new points, filling in (34,10 ; $\{4\}$)-IPBDs and a (25,$4 ;(4\}$)-IPBD.

Mills [15]
start with a TD $(5,4)$, give every point weight 9 , except for 3 points in the last group, one of which gets weight 6 and two of which get weight 0 . Apply FC, to build a (4)-GDD of type $36^{4} 151$. Adjoin $a=7$ new points, filling in (43, 7; \{4\})-IPBDs and a (22, 7; (4\})-IPBD. start with a TD $(5,4)$, give every point weight 9 , except for 3 points in the last group, which get weight 6 . Apply FC, to build a (4)-GDD of type $36^{4} 27^{1}$. Adjoin $a=7$ new points, filling in (43, 7; \{4\})-IPBDs and a (34,7 ; 44)-IPBD. start with a $\operatorname{TD}(6,13)$, and delete 6 points from one group, giving rise to a $\{5,6\}$-GDD of type $13^{5} 7^{1}$. Give the points in the group of size 7 weight 6 , and give all other points weight 3 . Apply FC, constructing a (4)-GDD of type $39^{5} 42^{1}$. Adjoin $\mathrm{a}=1$ new point, filling in (40, (4))PBDs.
start with a $\operatorname{TD}(5,19)-\operatorname{TD}(5,3)$ (see $[23])$. Delete 14 points in a group, constructing a $(4,5\}$-IGDD of type $(19,3)^{4}(5,0)^{1}$. Give every

Table 5 (continued)

point weight 3 and apply FC, building a \{4\}-IGDD of type $(57,9)^{4}(15,0)^{1}$. Adjoin $a=7$ new points, filling in $(64,16 ;\{4\})$ IPBDs and a (22, 7; (4))-IPBD.
start with a $\operatorname{TD}(6,7)$, give every point in 5 groups weight 3 , and give every point in the last group weight 6 . Apply FC, to build a (4)-GDD of type $21^{5} 42^{1}$. Adjoin $a=4$ new points, filling in (25,$\left.4 ;(4\}\right)$-IPBDs. start with a $\mathrm{TD}(6,7)$, give every point in 4 groups weight 3 , give every point in the fifth group weight 6 , give 4 points in the sixth group weight 6 , and give the remaining 3 points in the sixth group weight 3 . Apply FC. This builds a (4)-GDD of type $21^{4} 42^{1} 33^{1}$. Adjoin a $=4$ new points, filling in $(25,4 ;\{4)$)-IPBDs, and a (37,$4 ;(4)$)-IPBD. start with a $\operatorname{TD}(5,4)$, give every point weight 9 , except for 3 points in the last group, two of which get weight 6 , and one of which gets weight 0 . Apply FC. This builds a (4)-GDD of type $36^{4} 21^{1}$. Adjoin $\mathrm{a}=10$ new points, filling in (46,$10 ;\{4\}$)-IPBDs and $\mathrm{a}(31,10 ;\{4\})$ IPBD.
start with a TD $(5,4)$, give every point weight 9 , except for 1 point in the last group which gets weight 6 . Apply FC, building a $\{4\}$-GDD of type $366^{4} 331$. Adjoin $\mathrm{a}=10$ new points, filling in $(46,10 ;(4\})$-IPBDs and a (43, 10; (4))-IPBD.

46247 start with a $\operatorname{TD}(6,8)$. Delete a point, yielding a new $\{6,8\}$-GDD of type 5^{87}. Next, delete 7 points from B, one of the blocks of size 8 , constructing a $\{5,6,8\}$-GDD of type $4^{7} 5^{1} 7^{1}$. Give all points weight 6 , except for the point not deleted from B, which gets weight 9 . Apply FC. This builds a (4)-GDD of type $24^{7} 33^{1} 42^{1}$. Adjoin $a=4$ new points, filling in (28,$4 ;(4\})$-IPBDs and a (37,$4 ;\{4\}$)-IPBD.
apply Lemma 3.11 with $m=8, u=9$, to construct a $\{4\}$-GDD of type $24^{4} 48^{1} 27^{1}$. Adjoin $a=7$ new points, filling in (31,$7 ;\{4\}$)-IPBDs and a (34, 7; [4])-IPBD.
apply Lemma 3.11 with $m=8, u=13$, to construct a $\{4\}$-GDD of type $24^{4} 48^{1} 39^{1}$. Adjoin a $=7$ new points, filling in (31, 7; (4))-IPBDs and a (46, 7; [4])-IPBD.
start with a TD $(5,17)$, and delete 4 points from a block, constructing a $\{4,5\}$-GDD of type $16^{4} 17^{1}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $48^{4} 51^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (55, 7; (4))-IPBDs and a $(58,7 ;(4\})$-IPBD.
start with a $\operatorname{TD}(5,20)-\operatorname{TD}(5,4)$ (this can be constructed by taking the direct product of a $\operatorname{TD}(5,4)$ and $\operatorname{TD}(5,5)$). Delete 15 points in a group, constructing a $\{4,5\}$-IGDD of type $(20,4)^{4}(5,0)^{1}$. Give every point weight 3 and apply FC, building a \{4\}-IGDD of type $(60,12)^{4}(15,0)^{1}$. Adjoin $a=7$ new points, filling in (67,$\left.19 ;\{4\}\right)$ IPBDs (Table 7) and a (22, 7; (4\})-IPBD.
apply Lemma 3.11 with $m=8, u=11$, to construct a (4)-GDD of type $24^{4} 48^{1} 33^{1}$. Adjoin a $=10$ new points, filling in (34, 10; \{4\})-IPBDs and a (43, $10 ;\{4\}$)-IPBD.
apply Lemma 3.11 with $m=8, u=15$, to construct a $\{4\}$-GDD of type $24^{4} 48^{1} 45^{1}$. Adjoin $\mathrm{a}=10$ new points, filling in (34, 10; (4))-IPBDs and $\mathrm{a}(55,10 ;(4))$-IPBD.

Table 5 (continued)

$\begin{array}{ll}58 & 247 \\ \text { Lemma } 5.4\end{array}$
58259 start with a $\operatorname{TD}(5,17)$, and delete 1 point from a group, constructing a (4, 5)-GDD of type $17^{4} 16^{1}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $51^{4} 481$. Adjoin $a=7$ new points, filling in (58,7 ; (4))-IPBDs and a (55,7 ; (4))-IPBD.
67262 start with a $\operatorname{TD}(5,20)$, and delete 15 points from a group, constructing a $\{4,5\}$-GDD of type $20^{4} 5^{1}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $60^{4} 15^{1}$. Adjoin $\mathrm{a}=7$ new points, filling in (67,$7 ;(4)$)-IPBDs and $\mathbf{a}(22,7 ;(4))$-IPBD.
67274 start with a $\operatorname{TD}(5,20)$, and delete 11 points from a group, constructing a $\{4,5\}$-GDD of type $20^{4} 91$. Give every point weight 3 and apply FC, building a (4)-GDD of type $60^{4} 27$. Adjoin a $=7$ new points, filling in $(67,7 ;(4))$-IPBDs and a $(34,7 ;(4))$-IPBD.
70259 Lemma 5.4
70271 start with a $\operatorname{TD}(5,20)$, and delete 13 points from a group, constructing a $(4,5)$-GDD of type $20^{4} 7^{1}$. Give every point weight 3 and apply FC, building a (4)-GDD of type $60^{4} 21^{1}$. Adjoin a $=10$ new points, filling in (70,10 ; 44)-IPBDs and a (31,$10 ;(4\})$-IPBD.
79274 Lemma 4.8
79286 Lemma 4.8
82271 Lemma 5.4
82283 apply Lemma 3.11 with $m=12, u=19$, to construct a (4)-GDD of type $36^{4} 72^{1} 57^{1}$. Adjoin $\mathrm{a}=10$ new points, filling in (46, 10; (4))IPBDs and a (67, 10; $\{4\}$)-IPBD.
¢1 286 Lemma 4.8
91298 Lemma 4.8
94295 Lemma 4.9
Hence, we have
Lemma 7.1. Suppose $w \equiv 7$ or 10 modulo $12, v \equiv 7$ or 10 modulo $12, v-w$ is odd, and $3 w+1 \leq v \leq 9 w+4$. Then there is $a(v, w ;\{4\})-I P B D$.

8. IPBDS where $v-w \equiv 0$ modulo12.

First, we shall consider the situation when $v \geq 4 w-30, w \equiv 7$ or 10 modulo 12 , and $v-w \equiv 0$ modulo 12 . We construct many of the designs in this section by giving all points in a GDD weight 12 , and then filling in groups with 7 or 10 new points. We will use the ($v, 7,\{4\}$)-IPBDs and ($v, 10 ;\{4\}$)-IPBDs from Theorems 1.2 and 1.3. These constructions are analogous to ones given in Section 6.

Lemma 8.1.

i) Suppose $(X, \mathcal{G}, \mathcal{A})$ is a $G D D$ in which every block has size at least 4 , and every group has size at least 2 . Let $a=7$ or 10 . Then, for every $G \in \mathcal{G}$, there is $a(12|X|+a, 12|G|+a,\{4\})-I P B D$.
ii) Suppose $(X, \mathcal{G}, \mathcal{A})$ is a GDD in which every block has size at least 4 , and every group has size at least 2 , except for one group G_{0}, which has size 1 .

Let $a=7$ or 10 . Then there is $a(12|X|+a, 12+a,\{4\})-I P B D$.
iii) Suppose $(X, \mathcal{G}, \mathcal{A})$ is a GDD in which every block has size at least 4 , and every group has size at least 4 . Let $a=19$ or 22 . Suppose that there exists $a(12|G|+a, a ;\{4\})-I P B D$, for every $G \in \mathcal{G}$. Then, for every $G \in \mathcal{G}$, there is $a(12|X|+a, 12|G|+a,\{4\})$-IPBD.

Proof: Give every point weight 12 and apply FC, using \{4\}-GDDs of type 12^{k}, $k \geq 4$. Then adjoin a new points. When $a=7$ or 10 , the necessary designs exist by Theorems 1.2 and 1.3 .

Then, analogous to Lemma 6.4, we have

Lemma 8.2.

i) Suppose there is a $\operatorname{TD}(k, t)$, where $k \geq 4$. Let $a=7$ or 10 . Then for all s such that $4 t \leq s \leq k t, s \neq 4 t+1$, there is a $(12 s+a, 12 t+a$, $\{4\})-I P B D$.
ii) Suppose there is a $\operatorname{TD}(k, n)$, where $k \geq 5$. Let $a=7$ or 10 and let $0 \leq t \leq n$. Then for all s such that $4 n+t \leq s \leq(k-1) n+t$, $s \neq 4 n+t+1$, there is $a(12 s+a, 12 t+a,\{4\})-I P B D$.

One can easily verify
Lemma 8.3. If $n \in T_{6}$ and $n \geq 7$, then there exists an $n_{1}>n$ such that $n_{1} \in T_{6}$ and $4 n_{1} \leq 5 n-1$.

As a consequence of the two preceding lemmata, we get
Lemma 8.4. Suppose $t \geq 1, n \in T_{6}$ and $n \geq \max \{7, t\}$. Then, for all $s \geq$ $4 n+t, s \neq 4 n+t+1$, and for $a=7,10$, there is a $(12 s+a, 12 t+a,\{4\})-I P B D$.

Similarly, we have
Lemma 8.5. Suppose $t \in T_{6}$ and $t \geq 7$. Then, for all $s \geq 4 t, s \neq 4 t+1$, and for $a=7,10$, there is $a(12 s+a, 12 t+a,\{4\})-I P B D$.

Some missing cases will be supplied by
Lemma 8.6. Suppose there is a $T D(6, t+1)$, where $t \geq 6$. Let $a=7$ or 10 , and let $r=1,2,3$, or 5 . Then there is $a(12(5 t+r)+a, 12 t+a,\{4\})-I P B D$. Proof: When $r=1,2$, or 3 , delete $4-r$ points from a group of a $\operatorname{TD}(5, t+1)$. From another group of the TD, delete a point x, and take the blocks (and group) through x as groups of a new GDD. When $r=5$, delete all the points in a block B of a $\operatorname{TD}(6, t+1)$. For some group G, delete $t-5$ further points in G. Take the blocks (and group) through any point $x \in B \backslash G$ as groups of a new GDD. Apply Lemma 8.1.

Another class of missing cases is dealt with as follows.

Lemma 8.7. Suppose $s=4 t+1, t \geq 5$. Let $a=7$ or 10 . Then there is a $(12 s+a, 12 t+a,\{4\})-I P B D$.

Proof: Start with a TD $(5,4 t-4)$, and delete $4 t-20$ points from one group. Give all points weight 3 , and apply FC. This yields a $\{4\}$-GDD of type ($12 t-$ 12) ${ }^{4}(48)^{1}$. Now adjoin $12+a$ new points, filling in $(12 t+a, 12+a ;\{4\})$-IPBDs and a $(60+a, 12+a ;\{4\})-\operatorname{IPBD}$ (these are $(v, 19 ;\{4\})-\operatorname{IPBDS}$ or $(v, 22 ;\{4\})-$ IPBDs, and will be shown to exist in this section).
Theorem 8.8. Suppose $t \geq 7$ and $s \geq 4 t$. Let $a=7$ or 10 . Then there is a $(12 s+a, 12 t+a,\{4\})-I P B D$.

Proof: If $t \geq 7, t \in T_{6}$, then apply Lemmata 8.5 and 8.7. If $t \geq 7, t \notin T_{6}$, then proceed as follows. Apply Lemma 8.4 with $n=t+1$ to handle $s \geq 5 t+4$, $s \neq 5 t+5$. When $s \in\{5 t+1,5 t+2,5 t+3,5 t+5\}$, apply Lemma 8.6. When $t \neq 10,4 t \leq s \leq 5 t, s \neq 4 t+1$, delete points from a group of a $\operatorname{TD}(5, t)$ and apply Lemma 8.1. When $s=4 t+1$, apply Lemma 8.7. It remains only to handle the cases when $t=10,4 t \leq s \leq 5 t, s \neq 4 t+1$. The case $t=10, s=40$ is done by Lemma 8.1 i), using a $\operatorname{TD}(4,10)$. The cases $t=10,42 \leq s \leq 50$ are done by Lemma 8.1 iii , by deleting points from two groups of a $\operatorname{TD}(6,9)$ (the required IPBDs are given in Table 7). This completes the proof.

We still have to handle the cases corresponding to $t \leq 6$. Some further constructions are given in Table 6.

Table 6
s
$\leq s \leq 26$
$\leq s \leq 27$
$\leq s \leq 28$
$\leq s \leq 20$
$\leq s \leq 24$
$\leq s \leq 29$
31

$\leq s \leq 30$
$\leq s \leq 34$

Construction
apply Lemma 8.2 ii) with $n=5, k=6$
apply Lemma 8.1, using a $\{4\}$-GDD of type $3^{4} 6^{2}$
apply Lemma 8.2 ii) with $n=5, k=6$
apply Lemma 8.2 i) with $k=5$
apply Lemma 8.2 i) with $\mathrm{k}=5$
delete 0,1 , or 2 points from a group of a (5)-GDD of type 4^{6} and apply Lemma 8.1 i)
apply Lemma 8.2 ii) with $n=5, k=6$
adjoin 2 or 3 infinite points to a $\operatorname{RBIBD}(28,4,1)$ and apply
Lemma 8.1 i)
apply Lemma 8.2 i) with $\mathrm{k}=6$
Lemma 8.7
apply Lemma 8.2 i) with $k=6$
a resolvable $\mathrm{TD}(5,7)$ gives rise to a $\{5,7\}$-GDD of type 5^{7}. Delete 1,2 , or 3 points from a group of this GDD and apply Lemma 8.1 i)

6	24	apply Lemma 8.1 i), using a (4)-GDD of type 3^{4}
6	25, 26	apply Lemma 8.1 iii), deleting 0 or 1 point from a $\operatorname{TD}(5,5)$ (see Table 7)
6	27	apply Lemma 8.1 i), using a (4)-GDD of type $3^{1} 6^{4}$
6	29, 30	apply Lemma 8.1 iii), deleting a point from 1 or 2 groups of a TD(6,5) (see Table 7)
6	$31 \leq s \leq 33$	Lemma 8.6
6	35	Lemma 8.6

By Lemma 8.4 , we already have constructed ($12 s+a, 12 t+a,\{4\}$)-IPBDs for $s \geq 28+t, s \neq 29+t$. So, it remains to do the cases corresponding to the following values of t and s.

$$
\begin{aligned}
& t=1, \quad 5 \leq s \leq 20, \quad s=22,27,28,30 \\
& t=2, \quad 8 \leq s \leq 21, \quad s=23,28,29,31 \\
& t=3, \quad 12 \leq s \leq 22, \quad s=29,30,32 . \\
& t=4, \quad s=17,21,25,33 \\
& t=5, \quad s=31 . \\
& t=6, \quad s=28 .
\end{aligned}
$$

At this point, we eliminate several of the more difficult cases.
Lemma 8.9. There is $a(91,19 ;\{4\})-I P B D$ and $a(94,22 ;\{4\})$-IPBD.
Proof: Adjoin infinite points to the groups, and to 5 parallel classes of a resolvable $\{4\}$-GDD of type 3^{8}, constructing a $\{4,5\}$-GDD of type $4^{6} 6^{1}$. Give every point weight 3 and apply FC, obtaining a $\{4\}$-GDD of type $12^{6} 18^{1}$. Adjoin $a=1$ or 4 new points, filling in ($12+a, a ;\{4\}$)-IPBDs.

Lemma 8.10. There is a $(187,19 ;\{4\})$-IPBD and $a(190,22 ;\{4\})$-IPBD.
Proof: Delete a point from a $\operatorname{TD}(5,7)$, constructing a $\{5,7\}$-GDD of type 4^{7} 6^{1}. Give every point on the group of size 6 weight 3 , and give every other point weight 6. Apply FC, obtaining a $\{4\}$-GDD of type $24^{7} 18^{1}$. Adjoin $a=1$ or 4 new points, filling in $(24+a, a ;\{4\})$-IPBDs.
Lemma 8.11. There is a 235,$19 ;\{4\})$-IPBD .
Proof: Use Lemma 4.8 to construct a $(235,67 ;\{4\})$-IPBD. Now fill in a $(67$, 19; \{4\})-IPBD (see Table 7).

Lemma 8.12. There is $\boldsymbol{a}(331,19 ;\{4\})$-IPBD and $a(334,22 ;\{4\})$-IPBD.
Proof: Adjoin w points to a resolvable $(88,4,1)$-BIBD. Then, apply Lemma 3.9 with $(v, w)=(110,22)$ and $(111,23)$ to build a $(331,67 ;\{4\})$-IPBD and a $(334,70 ;\{4\})$-IPBD. Now fill in a $(67,19 ;\{4\})$-IPBD and a $(70,22 ;\{4\})$ IPBD, respectively (see Table 7).

Lemma 8.13. There is $a(238,22 ;\{4\})-I P B D$ and $a(238,70 ;\{4\})-I P B D$.
Proof: Start with a $\{4\}$-GDD of type $6^{5} 12^{1} 15^{1}$ (Theorem 2.7). Give every point weight 4 and apply FC, constructing a $\{4\}$-GDD of type $24^{5} 48^{1} 60^{1}$. Now, adjoin $a=10$ new points, filling in (34,$10 ;\{4\}$)-IPBDs and $\mathbf{a}(58,10 ;\{4\})$-IPBD. This yields a 238,$70 ;\{4\}$)-IPBD. If we construct a $(70,22 ;\{4\})$-IPBD on the hole (Table 7), we get a (238,$22 ;\{4\}$)-IPBD.
Lemma 8.14. There is $a(211,43 ;\{4\})$-IPBD and $a(214,46 ;\{4\})-I P B D$.
Proof: Delete a point from a TD $(5,7)$, constructing a $\{5,7\}$-GDD of type $4^{7} 6^{1}$. Give every point weight 6 and apply FC, obtaining a $\{4\}$-GDD of type $24^{7} 36^{1}$. Adjoin $a=7$ or 10 new points, filling in ($24+a, a ;\{4\}$)-IPBDs.

Lemma 8.15. There is $a(355,43 ;\{4\})$-IPBD and $a(358,46 ;\{4\})-I P B D$.
Proof: Adjoin 5 infinite points to a resolvable $\{4\}$-GDD of type 3^{8}, constructing a $\{4,5\}$-GDD of type $3^{8} 5^{1}$. Give every point weight 12 and apply FC, obtaining a $\{4\}$-GDD of type $36^{8} 60^{1}$. Adjoin $a=7$ or 10 new points, filling in ($36+$ $a, a ;\{4\})$-IPBDs and $a(60+a, a ;\{4\})$-IPBD.
Lemma 8.16. There is $a(379,67 ;\{4\})-I P B D$ and $a(382,70 ;\{4\})-I P B D$.
Proof: Adjoin infinite points to the groups, and to 5 parallel classes of a resolvable $\{4\}$-GDD of type 3^{8}, constructing a $\{4,5\}$-GDD of type $4^{6} 6^{1}$. Give every point weight 12 and apply FC, obtaining a $\{4\}$-GDD of type $48^{6} 72^{1}$. Adjoin $a=19$ or 22 new points, filling in $(48+a, a ;\{4\})$-IPBDs and $a(72+a, a ;\{4\})$-IPBD (Table 7).

We now eliminate all the remaining cases in Table 7. Most are done by means of the singular indirect product. Also, several make use of $\{4\}$-GDDs constructed by completing resolvable $\{3\}$-GDDs given in Theorem 2.2 (when we complete a resolvable $\{3\}$-GDD of type t^{4}, we get a $\{4\}$-GDD of type $t^{u} r^{1}$, where $r=$ $t(u-1) / 2)$.

Table 7

construction

(4)-GDD of type $12^{4} 18^{1}$
apply SIP, $79=4(22-3)+3,19=4(7-3)+3$
Lemma 8.9
apply SIP, $103=4(31-7)+7,19=4(10-7)+7$
apply SIP, $115=4(31-3)+3,19=4(7-3)+3$
apply SIP, $127=4(34-3)+3,19=4(7-3)+3$
adjoin 6 points to a resolvable ($40,4,1$)-BIBD and apply
Lemma 3.9 with $(v, w)=(46,6)$
apply SIP, $151=4(43-7)+7,19=4(10-7)+7$
apply SIP, $163=4(43-3)+3,19=4(7-3)+3$
apply SIP, $175=4(46-3)+3,19=4(7-3)+3$
Lemma 8.10
apply SIP, $199=4(55-7)+7,19=4(10-7)+7$

Table 7 (continued)

Table 7 (continued)

2	11	10	34	142
2	12	10	34	154
2	13	10	34	166
2	14	10	34	178
2	15	10	34	190
2	16	10	34	202
2	17	10	34	214
2	18	10	34	226
2	19	10	34	238
2	20	10	34	250
2	21	10	34	262
2	23	10	34	286
2	28	10	34	346
2	29	10	34	358
2	31	10	34	382
3	12	7	43	151
3	13	7	43	163

apply SIP, $142=4(40-6)+6,34=4(13-6)+6$
(4) -GDD of type 24^{6}
apply SIP, $166=4(43-2)+2,34=4(10-2)+2$
apply SIP, $178=4(46-2)+2,34=4(10-2)+2$
apply SIP, $190=4(52-6)+6,34=4(13-6)+6$
(4) -GDD of type 24^{8}
apply SIP, $214=4(55-2)+2,34=4(10-2)+2$
apply SIP, $226=4(58-2)+2,34=4(10-2)+2$
apply SIP, $238=4(64-6)+6,34=4(13-6)+6$
(4)-GDD of type 24^{10}
apply SIP, $262=4(67-2)+2,34=4(10-2)+2$
apply SIP, $286=4(76-6)+6,34=4(13-6)+6$
(4)-GDD of type 24^{14}
apply SIP, $358=4(91-2)+2,34=4(10-2)+2$
apply SIP, $382=4(100-6)+6,34=4(13-6)+6$
apply SIP, $151=4(40-3)+3,43=4(13-3)+3$
(4)-GDD of type $24^{5} 36^{1}$ (give every point in a (4)-GDD of type 6^{591} weight 4 and apply FC)
apply SIP, $175=4(49-7)+7,43=4(16-7)+7$
apply SIP, $187=4(49-3)+3,43=4(13-3)+3$
apply SIP, $199=4(52-3)+3,43=4(13-3)+3$
Lemma 8.14
apply SIP, $175=4(61-7)+7,43=4(16-7)+7$
apply SIP, $235=4(61-3)+3,43=4(13-3)+3$
apply SIP, $247=4(64-3)+3,43=4(13-3)+3$
[4\}-GDD of type $36^{5} 72^{1}$ (give every point in a \{4\}-GDD of type $3^{5} 6^{1}$ weight 12 and apply FC)
apply SIP, $271=4(73-7)+7,43=4(16-7)+7$
Lemma 8.15
apply SIP, $367=4(97-7)+7,43=4(16-7)+7$
apply SIP, $391=4(100-3)+3,43=4(13-3)+3$
apply SIP, $154=4(40-2)+2,46=4(13-2)+2$
(4)-GDD of type $24^{5} 36^{1}$ (give every point in a (4)-GDD of type $6^{5} 9^{1}$ weight 4 and apply FC)
apply SIP, $178=4(49-6)+6,46=4(16-6)+6$
apply SIP, $190=4(49-2)+2,46=4(13-2)+2$
apply SIP, $202=4(52-2)+2,46=4(13-2)+2$
Lemma 8.14
apply SIP, $226=4(61-6)+6,46=4(16-6)+6$
apply SIP, $238=4(61-2)+2,46=4(13-2)+2$
apply SIP, $250=4(64-2)+2,46=4(13-2)+2$
(4)-GDD of type 36^{5721} (give every point in a \{4\}-GDD of type $3^{5} 6^{1}$ weight 12 and apply FC)
apply SIP, $274=4(73-6)+6,46=4(16-6)+6$
Lemma 8.15
apply SIP, $370=4(97-6)+6,46=4(16-6)+6$
apply SIP, $394=4(100-2)+2,46=4(13-2)+2$
apply SIP, $211=4(58-7)+7,55=4(19-7)+7$
apply SIP, $259=4(76-15)+15,55=4(25-15)+15$
apply SIP, $307=4(88-15)+15,55=4(25-15)+15$

4	33	7	55	403
4	17	10	58	214
4	21	10	58	262
4	25	10	58	310
4	33	10	58	406
5	31	7	67	379
5	31	10	70	382
6	28	7	79	343
6	28	10	82	346

$$
\begin{aligned}
& \text { apply SIP, } 403=4(112-15)+15,55=4(25-15)+15 \\
& \text { apply SIP, } 214=4(58-6)+6,58=4(19-6)+6 \\
& \text { apply SIP, } 262=4(76-14)+14,58=4(25-14)+14 \\
& \text { apply SIP, } 310=4(88-14)+14,58=4(25-14)+14 \\
& \text { apply SIP, } 406=4(112-14)+14,58=4(25-14)+14 \\
& \text { Lemma } 8.16 \\
& \text { Lemma } 8.16 \\
& \text { apply Lemma } 3.9 \text { with }(v, w)=(114,26) \\
& \text { apply Lemma } 3.9 \text { with }(v, w)=(115,27)
\end{aligned}
$$

The constructions given in Tables 6 and 7 prove the following.

Lemma 8.17. Suppose $w \equiv 7$ or 10 modulo $12, v \equiv w$ modulo 12 , and $v \geq$ $4 w-30$. Then there is $a(v, w ;\{4\})$-IPBD.

We have several cases to consider when $w \leq 82,3 w+1<v<4 w-30$. Constructions are given in Table 8. As in Table 7, most of the required $\{4\}$-GDDs are obtained by completing resolvable $\{3\}$-GDDs.

Table 8

w	v	construction
43	139	\{4]-GDD of type $12^{8} 42^{1}$
46	142	(4)-GDD of type $4^{24} 46^{1}$
55	175	(4)-GDD of type $12^{10} 54^{1}$
55	187	apply SIP, $187=4(49-3)+3,55=4(16-3)+3$
58	178	(4)-GDD of type $4^{30} 581$
58	190	apply SIP, $190=4(49-2)+2,58=4(16-2)+2$
67	211	(4)-GDD of type ${ }^{12}{ }^{12} 66^{1}$
67	223	apply SIP, $223=4(58-3)+3,67=4(19-3)+3$
67	235	Lemma 4.8
70	214	(4)-GDD of type $4^{36} 70^{1}$
70	226	apply SIP, $226=4(58-2)+2,70=4(19-2)+2$
70	238	Lemma 8.13
79	247	(4)-GDD of type $12^{14} 781$
79	259	apply Lemma 3.11 with $\mathrm{m}=12, \mathrm{u}=12$ to build a (4)-GDD of type $36^{5} 72^{1}$. Adjoin $\mathrm{a}=7$ new points.
79	271	apply Lemma 3.11 with $m=12, u=16$ to build a (4)-GDD of type $36^{4} 72^{1} 48^{1}$. Adjoin $a=7$ new points.
79	283	apply Lemma 3.11 with $m=12, u=20$ to build a $\{4\}$-GDD of type $36^{4} 72^{1} 60^{1}$. Adjoin $\mathrm{a}=7$ new points.
82	250	(4) -GDD of type $4^{42} 82^{1}$
82	262	apply Lemma 3.11 with $\mathrm{m}=12, \mathrm{u}=12$ to build a $\{4\}$-GDD of type $36^{5} 72^{1}$. Adjoin $\mathrm{a}=10$ new points.
82	274	apply Lemma 3.11 with $\mathrm{m}=12, \mathrm{u}=16$ to build a (4)-GDD of type $36^{4} 72^{1} 48^{1}$. Adjoin $a=10$ new points.
82	286	apply Lemma 3.11 with $\mathrm{m}=12, \mathrm{u}=20$ to build a $\{4\}$-GDD of type $36^{4} 72^{1} 60^{1}$. Adjoin $a=10$ new points.

So, we have proved
Lemma 8.18. Suppose $w \equiv 7$ or 10 modulo $12, w \leq 82$, and $v \equiv w$ modulo 12. Then there is a $(v, w ;\{4\})-I P B D$.

Finally, we consider the interval $3 w+1<v<4 w-30, v-w \equiv 0$ modulo 12, $w \geq 91$.

We use the following four corollaries to Lemma 3.11.
Lemma 8.19. Suppose $w \equiv 7$ modulo 24, $w \geq 55, w \neq 175$, 271, or 319 , $v \equiv 7$ or 10 modulo 12 , and $(7 w-35) / 2 \leq v \leq 4 w-21$. Then there is a $v, w ;\{4\})-I P B D$.

Proof: Apply Lemma 3.11 with $m=(w-7) / 6$ and $u=(v-18 m-7) / 3$. Then a TD $(6, m)$ exists, and $m \leq u \leq 2 m$. This builds a $\{4\}$-GDD of type $(3 m)^{4}(6 m)^{1}(3 u)^{1}$. Note that every group size is $\equiv 0$ or 3 modulo 12 , so we can fill in groups with $a=7$ new points.

Similarly, we have the following three variations, using $a=10,19$, and 22 new points.

Lemma 8.20. Suppose $w \equiv 10$ modulo $24, w \geq 58, w \neq 178,274$, or 322 , $v \equiv 7$ or 10 modulo 12 , and $(7 w-50) / 2 \leq v \leq 4 w-30$. Then there is a ($v, w ;\{4\}$)-IPBD.
Lemma 8.21. Suppose $w \equiv 19$ modulo 24, $w \geq 115, w \neq 187,283$, or 331, $v \equiv 7$ or 10 modulo 12 , and $(7 w-95) / 2 \leq v \leq 4 w-57$. Then there is a $(v, w ;\{4\})-I P B D$.

Lemma 8.22. Suppose $w \equiv 22$ modulo $24, w \geq 118, w \neq 190,286$, or 334 , $v \equiv 7$ or 10 modulo 12 , and $(7 w-110) / 2 \leq v \leq 4 w-66$. Then there is a $(\nu, w ;\{4\})-I P B D$.

After application of Lemmata 4.8, 4.9, and 8.19-8.22, several cases remain. Some of these are disposed of in Table 9.
w v

175 655, 66

178670

271 1015, 1027, 1039, 1051 apply Lemma 3.13 with $m=24, u=44, u^{\prime}=28,30$, 32 , and 34 . Adjoin $\mathrm{a}=7$ new points.
274 1030, 1042, 1054 apply Lemma 3.13 with $m=24, u=44, u^{\prime}=30,32$, and 34. Adjoin $\mathrm{a}=10$ new points.
283 1063, 1075 apply Lemma 3.13 with $m=24, u=46, u^{\prime}=34$ and 36. Adjoin $\mathrm{a}=7$ new points.
apply Lemma 3.13 with $\mathrm{m}=24, \mathrm{u}=46, \mathrm{u}^{\prime}=36$. Adjoin $\mathrm{a}=10$ new points.
apply SIP, $1195=4(304-7)+7,319=4(85-7)+7$ apply SIP, $1243=4(316-7)+7,331=4(88-7)+7$

Lemma 8.23. Suppose $w=319$ and $v=1207,1219,1231$, or 1243 ; or $w=$ 322 and $v=1210,1222,1234$, or 1246. Then there is a $(v, w ;\{4\})$-IPBD.
Proof: If $w=319$, apply Lemma 3.10 with $m=80$ and $u=56,60,64$, or 68 . This constructs a $\{4\}$-GDD of type $240^{4}(3 u)^{1}$. Then, adjoin $a=79$ new points, filling in $(319,79 ;\{4\})$-IPBDs and a $(3 u+79,79 ;\{4\})$-IPBD. If $w=322$, adjoin $a=82$ new points.
Lemma 8.24. Suppose $w=331$ and $v=1255$ or 1267; or $w=334$ and $v=1258$ or 1270 . Then there is $a(v, w ;\{4\})$-IPBD.

Proof: If $w=331$, apply Lemma 3.10 with $m=84$ and $u=56$ or 60 . This constructs a $\{4\}$-GDD of type $252^{4}(3 u)^{1}$. Then, adjoin $a=79$ new points, filling in (331,$79 ;\{4\}$)-IPBDs and $(3 u+79,79 ;\{4\})$-IPBD. If $w=334$, adjoin $a=82$ new points.

Also, for all $w \equiv 19$ modulo 24 , we need to handle $v=4 w-45$ and $4 w-33$; and for all $w \equiv 22$ modulo 24 , we need to handle $v=4 w-54$ and $4 w-42$.

Lemma 8.25. Suppose $w \equiv 19$ modulo 24 and $v=4 w-45$; or $w \equiv 22$ modulo $24, v=4 w-54$, and $w \geq 67$. Then there is a $(v, w ;\{4\})$-IPBD.

Proof: For $w \equiv 19$ modulo $24, w \leq 163$, we have $(15 w-17) / 4 \geq 4 w-45$. Similarly, for $w \equiv 22$ modulo $24, w \leq 190$, we have $(15 w-26) / 4 \geq 4 w-54$. Hence, Lemma 4.8 or Lemma 4.9 applies in these cases. Hence, we can assume that $w \geq 187$. If $w \equiv 19$ modulo 24 , apply Lemma 3.10 with $m=(w-55) / 3$ and $u=40$. This constructs a $\{4\}$-GDD of type $(w-55)^{4} 120^{1}$. Now, adjoin $a=55$ new points, filling in ($w, 55 ;\{4\}$)-IPBDs and a (175,$55 ;\{4\}$)-IPBD. If $w \equiv 22$ modulo 24 , apply Lemma 3.10 with $m=(w-58) / 3$ and $u=40$, and adjoin $a=58$ new points.

Lemma 8.26. Suppose $w \equiv 19$ modulo 24 and $v=4 w-33$, or $w \equiv 22$ modulo 24 and $v=4 w-42$, and $w \geq 91$. Then there is $a(v, w ;\{4\})$-IPBD.

Proof: For $w \equiv 19$ modulo $24, w \leq 115$, we have $(15 w-17) / 4 \geq 4 w-33$. Similarly, for $w \equiv 22$ modulo $24, w \leq 142$, we have $(15 w-26) / 4 \geq 4 w-42$. Hence, Lemma 4.8 or Lemma 4.9 applies in these cases. Hence, we can assume that $w \geq 139$. If $w \equiv 19$ modulo 24 , apply Lemma 3.10 with $m=(w-43) / 3$ and $u=32$. This constructs a $\{4\}$-GDD of type $(w-43)^{4} 96^{1}$. Now, adjoin $a=43$ new points, filling in ($w, 43 ;\{4\}$)-IPBDs and $\mathrm{a}(139,43 ;\{4\})$-IPBD. If $w \equiv 22$ modulo 24 , apply Lemma 3.10 with $m=(w-46) / 3$ and $u=32$, and adjoin $a=46$ new points.

Now, summarizing previous results, we can prove
Lemma 8.27. Suppose $w \equiv 7$ or 10 modulo $12, v \equiv w$ modulo 12 and $v>3 w$. Then there is $a(v, w ;\{4\})-I P B D$.

Proof: When $v \geq 4 w-30$, Lemma 8.17 applies, and when $w \leq 82$, Lemma 8.18 applies. Hence, assume $3 w+1 \leq v \leq 4 w-33$ and $w \geq 91$. These cases are covered by Lemmata 4.8, 4.9, 8.19-8.26, and Table 9.

Theorem 8.28. Suppose $w \equiv 7$ or 10 modulo $12, v \equiv 7$ or 10 modulo 12 and $v>3 w$. Then there is $a(v, w ;\{4\})$-IPBD.
Proof: If $v-w$ is even, apply Lemma 8.27. If $v-w$ is odd and $v \leq 9 w+4$, Lemma 7.1 applies. If $v-w$ is odd and $v>9 w+4$, then there exists a $(3 w+1, w ;\{4\})$ IPBD by Lemma 4.10, and a $(v, 3 w+1 ;\{4\})$-IPBD, since $v-(3 w+1)$ is even. Hence, the desired ($v, w ;\{4\})$-IPBD exists.

Acknowledgement.

We are grateful to W.H. Mills for drawing our attention to reference [14], and for giving computer constructions for 7 designs which we could not handle by recursive methods. These designs are presented in [15].

References

1. A.M. Assaf and A. Hartman, Resolvable group divisible designs with block size 3, Annals of Discrete Math. (to appear).
2. J.C. Bermond and J. Bond, Combinatorial designs and hypergraphs of diameter one, Proc. First China-U.S.A. Conf. on Graph Theory (to appear).
3. T. Beth, D. Jungnickel and H. Lenz, "Design Theory", Bibliographisches Institut, Zurich, 1985.
4. A.E. Brouwer, Optimal packings of K_{4} 's into a K_{n}, J. Comb. Theory A 26 (1979), 278-297.
5. A.E. Brouwer, Four MOLS of order 10 with a hole of order 2, J. Statist. Planning and Inference 10 (1984), 203-205.
6. A.E. Brouwer, H. Hanani and A. Schrijver, Group divisible designs with block size four, Discrete Math. 20 (1977), 1-10.
7. A. Brouwer and H. Lenz, Unterraume von Blockplanen, in "Geometrie Symp. Siegen 1977", Birkhauser Verlag, Basel, 1979, pp. 383-389.
8. A. Brouwer and H. Lenz, Subspaces of linear spaces of line size four, Europ. J. Combin. 2 (1981), 323-330.
9. J. Doyen and R.M. Wilson, Embeddings of Steiner triple systems, Discrete Math. 5 (1973), 229-239.
10. H. Hanani, D.K. Ray-Chaudhuri and R.M. Wilson, On resolvable designs, Discrete Math. 3 (1972), 75-97.
11. C. Huang, E. Mendelsohn and A. Rosa, On partially resolvable t-partitions, Annals of Discrete Math. 12 (1982), 169-183.
12. K. Heinrich and L. Zhu, Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1986), 69-78.
13. E.R. Lamken and S.A. Vanstone, Elliptic semiplanes and group divisible designs, Aequationes Math. 30 (1986), 80-92.
14. W.H. Mills, On the covering of pairs by quadruples II, J. Combin. Theory A15 (1973), 138-166.
15. W.H. Mills, Certain pairwise balanced designs, Utilitas Math. (to appear).
16. R.C. Mullin, P.J. Schellenberg, S.A. Vanstone and W.D. Wallis, On the existence of frames, Discrete Math. 37 (1981), 79-104.
17. D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's school-girl problem, Amer. Math. Soc. Symp. Pure Math. 19 (1971), 187-204.
18. R. Rees and D.R. Stinson, On resolvable group-divisible designs with block size 3, Ars Combinatoria 23 (1987), 107-120.
19. R. Rees and D.R. Stinson, Kirkman triple systems with maximum subsystems, Ars Combinatoria 25 (1988), 125-132.
20. R. Rees and D.R. Stinson, On the existence of Kirkman triple systems containing Kirkman subsystems, Ars Combinatoria 25 (1988), 125-132.
21. R. Rees and D.R. Stinson, On combinatorial designs with subdesigns, Annals of Discrete Math. (to appear).
22. R. Roth and M. Peters, Four pairwise orthogonal Latin squares of order 24, J. Comb. Theory A 44 (1987), 152-155.
23. E. Seiden and C. Wu, On construction of three mutually orthogonal Latin squares by the method of sum composition, in "Essays in Probability and Statistics", Shinko Tsusho Co. Ltd., Tokyo, pp. 57-64.
24. D.R. Stinson, The equivalence of certain incomplete transversal designs and frames, Ars Combinatoria 22 (1986), 81-87.
25. D.R. Stinson, A new proof of the Doyen-Wilson theorem, J. Austral. Math. Soc. A (to appear).
26. D.T. Todorov, Three mutually orthogonal Latin squares of order 14, Ars Combinatoria 20 (1985), 45-58.
27. D.T. Todorov, Four mutually orthogonal Latin squares of order 20, Ars Combinatoria (to appear).
28. R. Wei and L. Zhu, Embeddings of Sleiner systems $S(2,4, v)$, Annals of Discrete Math. 34 (1987), 465-47).
29. R. Wei and L. Zhu, Embeddings of $S(2,4, v)$, Europ. J. Combin. (submitted).
30. R.M. Wilson, Constructions and uses of pairwise balanced designs, Math. Cent. Tracts 55 (1974), 18-41.

Appendix

A $\{4\}$-GDD of type $12^{2} 6^{4}$
points: $\left(\mathbf{Z}_{12} \times\{1,2,3\}\right) \cup\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\} \cup\left\{\infty_{i}: 1 \leq i \leq 8\right\}$
groups: $\left\{\mathbf{Z}_{12} \times\{3\}\right\} \cup\left\{\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\} \cup\left\{\infty_{i}: 1 \leq i \leq 8\right\}\right\} \cup$
$\{\{0+i, 2+i, 4+i, 6+i, 8+i, 10+i\} \times\{j\}: i=0,1, j=1,2\}$
blocks: develop the following modulo 12 (second coordinates are written as subscripts; develop subscripts on a and b modulo 2):

$$
\begin{array}{llll}
\left\{0_{1}, 1_{1}, 0_{2}, 3_{2}\right\} & \left\{0_{3}, a_{0}, 0_{1}, 3_{1}\right\} & \left\{0_{3}, a_{1}, 0_{2}, 5_{2}\right\} & \left\{0_{3}, b_{0}, 1_{1}, 6_{1}\right\} \\
\left\{0_{3}, b_{1}, 1_{2}, 2_{2}\right\} & \left\{0_{3}, \infty_{1}, 2_{1}, 6_{2}\right\} & \left\{0_{3}, \infty_{2}, 4_{1}, 9_{2}\right\} & \left\{0_{3}, \infty_{3}, 5_{1}, 11_{2}\right\} \\
\left\{0_{3}, \infty_{4}, 7_{1}, 4_{2}\right\} & \left\{0_{3}, \infty_{5}, 8_{1}, 3_{2}\right\}\left\{0_{3}, \infty_{6}, 9_{1}, 10_{2}\right\} & \left\{0_{3}, \infty_{7}, 10_{1}, 82\right\} \\
\left\{0_{3}, \infty_{8}, 11_{1}, 7_{2}\right\} &
\end{array}
$$

A $\{4\}$-GDD of type $18^{2} 3^{12}$
points: $\left(\mathbf{Z}_{18} \times\{1,2,3\}\right) \cup\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}, e_{0}, e_{1}\right\} \cup$ $\left\{\infty_{i}: 1 \leq i \leq 7\right\}$
groups: $\{$ $\left\{\mathbf{Z}_{18} \times\{3\}\right\} \cup\left\{\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}, e_{0}, e_{1}\right\} \cup\right.$ $\left.\left\{\infty_{i}: 1 \leq i \leq 7\right\}\right\} \cup\{\{0+i, 6+i, 12+i\} \times\{j\}: i=0,1,2,3,4,5$, $j=1,2\}$
blocks: develop the following modulo 18 (second coordinates are written as subscripts; develop subscripts on a modulo 3 , and on b, c, d, and e modulo 2):

$\left\{0_{1}, 9_{1}, 0_{2}, 9_{2}\right\}$	$\left\{0_{1}, 8_{1}, 1_{2}, 5_{2}\right\}$	$\left\{1_{1}, 5_{1}, 0_{2}, 8_{2}\right\}$	$\left\{0_{3}, a_{0}, 0_{1}, 6_{2}\right\}$
$\left\{0_{3}, a_{1}, 9_{2}, 11_{2}\right\}$	$\left\{0_{3}, a_{2}, 1_{1}, 3_{1}\right\}$	$\left\{0_{3}, b_{0}, 6_{1}, 9_{1}\right\}$	$\left\{0_{3}, b_{1}, 3_{2}, 8_{2}\right\}$
$\left\{0_{3}, c_{0}, 8_{1}, 15_{1}\right\}$	$\left\{0_{3}, c_{1}, 4_{2}, 15_{2}\right\}$	$\left\{0_{3}, d_{0}, 4_{1}, 17_{1}\right\}$	$\left\{0_{3}, d_{1}, 0_{2}, 17_{2}\right\}$
$\left\{0_{3}, e_{0}, 10_{1}, 11_{1}\right\}$	$\left\{0_{3}, e_{1}, 7_{2}, 10_{2}\right\}$	$\left\{0_{3}, \infty_{1}, 2_{1}, 16_{2}\right\}$	$\left\{0_{3}, \infty_{2}, 11_{1}, 2_{2}\right\}$
$\left\{0_{3}, \infty_{3}, 5_{1}, 13_{2}\right\}$	$\left\{0_{3}, \infty_{4}, 13_{1}, 5_{2}\right\}$	$\left\{0_{3}, \infty_{5}, 12_{1}, 14_{2}\right\}$	$\left\{0_{3}, \infty_{6}, 14_{1}, 12_{2}\right\}$
$\left\{0_{3}, \infty_{7}, 7_{1}, 1_{2}\right\}$			

A \{4\}-GDD of type $6^{5} 12^{1} 15^{1}$
points: $\left(\mathbf{Z}_{15} \times\{1,2,3\}\right) \cup\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right\} \cup\left\{\infty_{i}: 1 \leq i \leq 6\right\}$
groups: $\left\{\mathbf{Z}_{15} \times\{3\}\right\} \cup\left\{\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right\} \cup\left\{\infty_{i}: 1 \leq i \leq 6\right\}\right\} \cup$ $\{\{0+i, 5+i, 10+i\} \times\{1,2\}: i=0,1,2,3,4\}$
blocks: develop the following modulo 15 (second coordinates are written as subscripts; develop subscripts on a and b modulo 3):

$$
\begin{array}{llll}
\left\{0_{1}, 3_{1}, 1_{2}, 7_{2}\right\} & \left\{0_{3}, 0_{1}, 2_{1}, 6_{1}\right\} & \left\{0_{3}, 1_{2}, 2_{2}, 14_{2}\right\} & \left\{0_{3}, a_{0}, 8_{1}, 9_{1}\right\} \\
\left\{0_{3}, a_{1}, 3_{2}, 7_{2}\right\} & \left\{0_{3}, a_{2}, 3_{1}, 6_{2}\right\} & \left\{0_{3}, b_{0}, 4_{1}, 11_{1}\right\} & \left\{0_{3}, b_{1}, 0_{2}, 8_{2}\right\} \\
\left\{0_{3}, b_{2}, 14_{1}, 11_{2}\right\} & \left\{0_{3}, \infty_{1}, 1_{1}, 10_{2}\right\} & \left\{0_{3}, \infty_{2}, 5_{1}, 4_{2}\right\} & \left\{0_{3}, \infty_{3}, 7_{1}, 13_{2}\right\} \\
\left\{0_{3}, \infty_{4}, 10_{1}, 12_{2}\right\} & \left\{0_{3}, \infty_{5}, 12_{1}, 5_{2}\right\} & \left\{0_{3}, \infty_{6}, 13_{1}, 9_{2}\right\} &
\end{array}
$$

