ON THE SPECTRUM OF NESTED 4-CYCLE SYSTEMS

D. R. Stinson

Department of Computer Science University of Manitoba Winnipeg, Manitoba R3T 2N2 CANADA

Abstract. We prove that if $n \equiv 1 \mod 8$ and $n \notin \{57, 65, 97, 113, 185, 265\}$, then there exists a nested 4-cycle system of order n.

1. Introduction.

We need to begin with some definitions. Let G be a graph, and let $k \geq 3$ be an integer. A k-cycle decomposition of G is an edge-decomposition of G into cycles of size k. We will write the k-cycle decomposition as a pair (G, C), where C is the set of cycles in the edge-decomposition. A k-cycle decomposition of K_n will be called a k-cycle system of order n. Of course, a 3-cycle system is a Steiner triple system; and these designs exist for all orders $n \equiv 1$ or 3 modulo 6.

We will say that a k-cycle decomposition, (G, C), can be *nested* if we can associate with each cycle $C \in C$ a vertex of G, which we denote f(C), such that $f(C) \notin C$, and such that the edges in $\{\{x, f(C)\}: x \in C, C \in C\}$ form an edge-decomposition of G. Alternatively, we can view a nested k-cycle decomposition as an edge-decomposition of the multigraph 2G into wheels with k spokes, where every edge occurs in one wheel as a spoke and in one wheel on the rim.

In this paper, we are interested in nested k-cycle systems. It is easy to see that a necessary condition for the existence of a nested k-cycle system of order n is that $n \equiv 1 \mod 2k$. The first examples of nested k-cycle systems to be studied in the literature were nested 3-cycle systems (that is, nested Steiner triple systems). It was proven in [3] that there exists a nested 3-cycle system of order n if and only if $n \equiv 1 \mod 6$. More recently, in [2], it was shown for each odd $k \geq 3$ that there exists a nested k-cycle system of order n if and only if $n \equiv 1 \mod 2k$, with at most 13 possible exceptions.

Almost nothing is known regarding the existence of nested k-cycle systems for even values of k. In this paper, we address the first case, k = 4. We show that the necessary condition $n \equiv 1 \mod 8$ is sufficient for existence, with at most 6 possible exceptions. We do this by adapting the technique used in [3] to construct nested Steiner triple systems.

2. The construction.

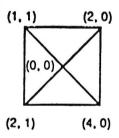
The construction we use is recursive, and depends on certain nested cycle decompositions of complete multipartite graphs. We will denote the complete multipartite graph having m parts of size 2 by $K_{(2^m)}$. We have the following construction for a nested 4-cycle decomposition of $K_{(2^m)}$ when $m \equiv 1 \mod 4$ is a prime power. As the vertex set for $K_{(2^m)}$ we take $GF(m) \times Z_2$, and we let the parts in the multipartition be $\{y\} \times Z_2$, $y \in GF(m)$. Let α be a primitive element in GF(m). Write m = 4t + 1, and define $\beta = \alpha^t$. For $0 \le i \le t - 1$, and for any element $\alpha \in GF(m) \times Z_2$, define a cycle

$$C(i, a) = (a + (\alpha^i, 1); a + (\alpha^i \beta, 0); a + (\alpha^i \beta^2, 0); a + (\alpha^i \beta, 1)).$$

For each cycle C(i, a), define the nested point to be f(C(i, a)) = a. Then, it is not difficult to verify that $C = \{C(a, i)\}$ is a 4-cycle decomposition of $K_{(2^m)}$ and f is a nesting of C. We record this result as

Lemma 1. For all prime powers $m \equiv 1 \mod 4$, there exists a nested 4-cycle decomposition of the multipartite graph $K_{(2^m)}$.

Example: A nested 4-cycle decomposition of $K_{(2^5)}$. Develop the following through $GF(5) \times Z_2$:



We also need nested 4-cycle systems of orders 9, 17, 25, and 33, which are presented in the Appendix. So, we have

Lemma 2. There exist nested 4-cycle systems of orders 9, 17, 25, and 33.

We now use the nested cycle decompositions of Lemmata 1 and 2 in a recursive PBD construction. A pairwise balanced design (or, PBD) is a pair (X, A), where A is a set of subsets of X (called blocks) such that every pair of points of X occurs in a unique block. Let v be a positive integer and let K be a set of positive integers. Then we say that (X, A) is a (v, K)-PBD if v = |X| and $|A| \in K$ for every $A \in A$.

Lemma 3. Let (X, A) be a $(v, \{5, 9, 13, 17\})$ -PBD. Then there is a nested 4-cycle system of order 2v - 1.

Proof: Let x_o be any point in X. For every block $A \in A$ where $x_o \in A$, take a nested 4-cycle system on vertex set $\{x_0\} \cup ((A \setminus \{x_0\}) \times \{1,2\})$. (This system

has 9, 17, 25, or 33 points, and hence exists by Lemma 2.) For every block $A \in \mathcal{A}$ where $x_0 \notin A$, take a nested 4-cycle decomposition of $K_{(2^{|A|})}$ on vertex set $A \times \{1,2\}$, having parts $\{y\} \times \{1,2\}$, $y \in A$. (This decomposition exists since |A| = 5, 9, 13 or 17.) If we take the union of these cycle decompositions, we obtain a nested 4-cycle system of order 2v - 1.

Hence, it is necessary only to construct $(v, \{5, 9, 13, 17\})$ -PBDs. This problem was studied in [2], where the following result was proved.

Lemma 4. If $v \equiv 1 \mod 4$ and $v \notin \{29, 33, 49, 57, 93, 133\}$, then there exists $a(v, \{5, 9, 13, 17\})$ -PBD.

Hence, we immediately deduce

Theorem 1. If $n \equiv 1 \mod 8$ and $n \notin \{57, 65, 97, 113, 185, 265\}$, then there is a nested 4-cycle system of order n.

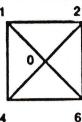
Remark: We conjecture that, if k is even, then necessary and sufficient conditions for the existence of a nested k-cycle system of order n are $n \equiv 1 \mod 2$.

References

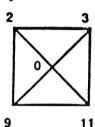
- 1. C.C. Lindner, C.A. Rodger, and D.R. Stinson, Nesting of cycle systems of odd length. (preprint).
- 2. R.C. Mullin, P.J. Schellenberg, S.A. Vanstone, and W.D. Wallis, On the existence of frames, Discrete Math. 37 (1981), 79-104.
- 3. D.R. Stinson, The spectrum of nested Steiner triple systems, Graphs and Combinatorics 1 (1985), 189-191.

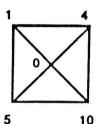
Appendix

A nested 4-cycle system of order 9. Develop the following modulo 9:

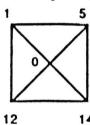


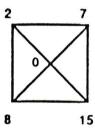
A nested 4-cycle system of order 17. Develop the following modulo 17:

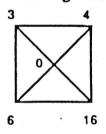




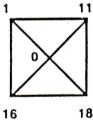
A nested 4-cycle system of order 25. Develop the following modulo 25:







A nested 4-cycle system of order 33. Develop the following modulo 33:



0 0 10 19

