On the Existence of Skew Room Frames of Type 2"

D.R. Stinson

ABSTRACT

We prove that there exists a skew Room frame of type
2" for all n > 67.

1. Introduction.

We need to begin with some definitions. Let S be a set, and let
{S1,--.,5,} be a partition of S. An {§,,...,S,}-Room Jrame is an |S| by 1S |
array, F, indexed by S, which satisfies the following properties:

1)  every cell of F either is empty or contains an unordered pair of sym-

bols of S,

2)  the subarrays S; X S; are empty, for 1 <: <n (these subarrays are
referred to as holes),

3)  each symbol of S\S; occurs once in row (or column) s, for any

s ES{)

4)  the pairs occurring in F are precisely those {s,t}, where
(8,8) € (SXS\ 1c1<a (5:XS5).
We shall say that F is skew if, for any pair of cells (s,t) and (t,s),
where (s,t) E(SXS)\U(S,-XS,-), precisely one is empty. The type of F is
defined to be the multiset {15; 1<+ S n}. We usually use an "exponen-

tial" notation to describe types: a type 1°273% . . . denotes t occurrences of
1, J occurrences of 2, etc.

A Room frame of type 1" gives rise to a Room square of side n by
filling in each diagonal cell (s,8) with the pair {ogs}, where oo is a new

symbol. If the Room frame is skew, then the resulting Room square is also
skew.

Room frames have proven to be an important tool in the investiga-
tion of many problems related to Room squares (see, for example, (8,9, and
11]). Frames for other types of designs have also been useful. For exam-
ple, frames for Kirkman triple systems are investigated in [12]. In this
paper, we consider only Room frames; hence the term Jrame can be taken
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to mean "Room frame".

The spectrum for Room squares was determined in 1975 by Mullin
and Wallis, who proved the following in 5]

Theorem 1.1. There exists a Room square of side n i1f and only if n 1s
an odd positive integer, n % 3 or 5.

A similar result was shown to hold for skew Room squares a few
years later. A short proof of the following is presented in [9].
Theorem 1.2. There exists a skew Room square of side n if and only 1 f
n 18 an odd positive integer, n % 3 or 5.

More generally, one can ask the question "when does there exist a
(skew) frame of type t%?" (These frames are called uniform, since all the
holes have the same size.) The existence of (non-skew) uniform frames was

studied in (2], [3], and [10], and the following theorem summarizes the
results obtained there.

Theorem 1.3.

1)  There does not exist a frame of type t* if u = 2 or 3;if t(u—1) is
odd; or if t* = 2 or 15,

2)  There exists a frame of type t* if 4]t.

3)  There exists a frame of type t° 1f GCD(t,210) > 1.

4)  For u > 6, there exists a Jrame of type t* if and only i f t(u—1) ¢s
even.

Much less is known about the existence of uniform skew frames with

holes of size at least 2. The following "asymptotic" result was proven in [7,
Theorem 2.5.3].

Theorem 1.4. For any t > 1, there exists a constant u(t) such that, i f

u > u(t), then there exist a frames of type t* 1f and only if t(u—1) is
even.

The purpose of this paper is to begin the investigation of uniform
skew frames. The motivation for our research is that skew Room frames
have recently been used to construct nested designs (see, for example, 4]).

In this paper, we restrict our attention to skew frames of type 2". Our
main result is the following.
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Theorem 1.5. There exists a skew Room Jrame of type 2" for all
n > 67.

Of course, there is no skew frame of type 2" if n = 2,3, or 4. The
23 values of n (6 < n < 67) for which the existence of a skew Room frame
of type 2" is unknown are those n € X, where

X = {6,11,15,19,20,22,23,24,26,27,28,30,31,34,35,38,43 46,51 58,59,62,67}..

2. Direct Constructions.

The basic direct construction for frames is the "starter-adder" con-
struction and modifications thereof. Let G be an abelian group, written
additively, and let H be a subgroup of G. Denote g = |G |, h = |H| and

suppose that ¢ — h is even. A frame starter in G\H is a set of unordered
pairs

S ={{sit;}: 1 <0 < (9—h)/2)
satisfying
1) Urgi<g—n)£({8:} U {t;}) = G\H, and
2)  Uici<n)o({£(5:—1)}) = G\H.
An adder for S is an injection A: S — G\H, such that
UISiS(g—h)/Q({si+ai} U {t;+a;}) = G\H,

where a; = A(s;,t;),1 <1 < (9-h)/2. A is skew if, further,

Ui<icp-n)o{ai} U {—q;}) = G\A.

We have the following construction for skew frames.

Theorem 2.1. ([11,Lemma 3.1]). Suppose there exists a frame starter S
in G\H, and a skew adder A for S. Then there is a skew frame of type
h/%, where g = |G| and h = |H|.

If we are interested in constructing (skew) frames of type 2" by
means of the starter-adder construction, then the subgroup H must be of
order 2. As well, the group G must contain a unique element of order 2.
Since G is abelian, this restricts the possibilities to groups of the form
G =2,;X K, where K has odd order m and J 21 (whence
H = {(0,0),(2,0)}). It is shown in [7, Lemma 2.1.7] that there is no

frame starter in G\H when j =1 and m = 3 (mod 4); or when j = 2.
Hence, we have
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Theorem 2.2. There does not exist a frame starter in G\H whenever
|H|=2and |G |/|H|=2or 3 (mod 4).

We can construct (skew) frames of type 2*, n = 2 or 3 (mod 4) by
means of a modified starter-adder construction, which we now describe.
As before, let G be an abelian group and let H be a subgroup of (&, where
g = |G|, h = |H|, and suppose that g — h is even. An intransitive star-
ter in G\H is defined to be a triple (S,R,C), where

S = U icicy-n-g{{si,t:}: 1 <0 < (9-h—2)2)) U {{u}{v}},
C = {{p,q}}, and
R ={{p'q'}},

satisfying

1) U 15{5(‘,—};—2)/2({83'} U {tl}) U {U,U,p,q} = G\H) and

2)  Uisis-n—g,{xs:—1:)}) U {2(p—q)} U {x(p'—¢")} = G\H, and

3) both p — q and p' — ¢’ have even order in G.

An adder for (S,C,R) is an injection A: S — G\H, such that
U i<i<y—h-9({8i+a;} U {ti+a;}) U {u+A(u),v+A(v),p' "} = G\H,

where a; = A(siiti): 1 S v S (g'—h)/2
A is skew if, further,

1) Uisicy-n-g,00:} U {—a;}) U {A(u),A(v),~A(u),~A(v)} = G\H,

and

2) for some ¢ > 1, p — ¢ has order 2'm, and p' — ¢’ has order 2'm,,
where m, and m, are odd.
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Figure 1
A skew frame of type 27

0 1 2 3 4 3 6 7 8 9 10 11 z y
0 26 11y 48 13 Tz 910
1 8z 360 Oy 50 24 10 11
2 35 9z 47 ly 610 | 110
3711 46 | 102 58 2y 01
4 80 | 57 |11z 60 3y | 12
5| 4y 91 | 68 | 0z 710 23
6 5y 102 79 | 1=z 811 34
7 6y 1183 | 810 | 2« 90 45
8 | 101 Ty 04 |911 | 3¢ 56
'] 112 8y 16 100 | 4z 867
10 03 Oy 26 111 | &6z 78
11 14 10y 37 02 6z 890
z 310 50 72 04 116 18
y 29 411 61 83 1056 07

We have the following result.

Theorem 2.3. (11, Lemmata 3.3 and 3.4]). If there is an intransitive
Jrame starter and a skew adder in G\H, where g = |G| and h = |H|,
then there is a skew frame of type h/hol,

By constructing intransitive starters with skew adders in
Zyn \{O,n—1} when n — 1 =1 or 2 (mod 4), we can obtain skew frames
of type 2", when n = 2 or 3 (mod 4). As an example of this construction,
we present in Figure 1 the skew frame of type 27 constructed from the

intransitive starter and skew adder in Z,,\{0,6} which is presented in the
Appendix.

The starters and adders presented in the Appendix establish the fol-
lowing.
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Lemma 2.4. There is a skew frame of type 2" for n = 7,8,10,12,14,16,
and 18.

3. Recursive Constructions.

In this section, we describe recursive constructions for skew frames.

We need to define some design-theoretic terminology (see [1] for any unde-
fined terms).

A pairwise balanced design (or PBD) is a pair (X,A), such that A is
a set of subsets (called blocks) of X, each of cardinality at least two, such
that every unordered pair of points (i.e. elements of X) is contained in a
unique block in A. If v is a positive integer and K is a set of positive
integers, each of which is greater than or equal to 2, then we say that
(X,A)isa (v,K)-PBDif |X|= v, and |A| € K for every A €A.

A group-divisible design (or GDD) is a triple (X,G,A), which satis-
fies the following properties: 1) G is a partition of X into subsets called
groups; 2) A is a set of subsets of X (called blocks) such that a group and
a block contain at most one common point; and, 3) every pair of points
from distinct groups occurs in a unique block.

The group-type, or type, of a GDD (X,G,A) is a multiset
{|IG|: G € G}. We will say that a GDD is a K-GDD if |A| € K for every
A EA.

A transversal design TD(k,m) can be defined to be a {k}-GDD of
type m*. It is well-known that a TD(k,m) is equivalent to k — 2 mutually
orthogonal Latin squares of order m. For results on the existence of
transversal designs we refer to [1].

The following is our main recursive construction for frames, found in
[11, Construction 2.2].

Theorem 3.1. Let (X,G,A) be a GDD, and let w: X — Z* U {0} (we
say that w is a weighting). For every A € A, suppose there is a skew
frame of type {w(z): z € A}. Then there is a skew frame of type
{Ezeaw(x): G € G}.

Define SF, = {n: there exists a skew frame of type 2"}. Then we

have the following corollary to Theorem 3.1, which says that the set SF, is
PBD-closed.

Lemma 3.2. ([6, Theorem 3.2]). Suppose there is an (n,SF,)-PBD.
Then n € SF,.
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Proof. The hypothesized PBD can be thought of as a GDD in which
every group has size 1. Give every point weight 2 and apply Theorem 3.1.

As another useful corollary, to Theorem 3.1, we have the following
modification of [9, Lemma 3.1].

Lemma 3.3, Suppose m >4, m % 6 or 10, and suppose 0 < ¢ < 3m.
Suppose also that there exist skew frames of types 2?™ gnd ot Then
there exists a skew frame of type 28m+t

Proof. Since m ¢ {2,3,6,10}, there exists a TD(5,m) (see [13] and [14]).
In four groups of the TD, give every point weight 4, and in the fifth group,
assign weights 0,2,4 and 6 so that the weights sum to 2¢. Now, apply
Theorem 3.1, employing skew frames of types 4%, 412! 45 and 446! (these
frames are constructed in [11, Lemma 5.1]). A skew frame of type
(4m)*(2¢t)! results. then, fill in the holes with skew of type 2™ and 2°.

We can inflate the size of each hole in a skew frame by any constant

factor t other than 2 or 6, by using a pair of orthogonal Latin squares of
order t.

Theorem 3.4. Suppose there is a skew Room  frame of type

tylt,2 - - t;’, and suppose also that t % 2 or 6. then there exists a skew
Room frame of type (L) (et 2 - - - (t-t,)".

The following two constructions are both special cases of a construe-
tion called the singular direct product. They are accomplished by apply-
ing Theorem 3.4, and then filling in the holes of the resulting frame.

Lemma 3.5. Suppose s = u(v—1) + 1, and let t be a rational number
such that 2t and (v=1)/t are both integers. Suppose there exist skew

Jrames of type (2t)* and 2°, and suppose that (v—1)/t % 2 or 6. Then
there exists a skew Room Jrame of type 2°.

Lemma 3.8. Suppose s = u-v, and let t be g rational number such that
2t and v/t are both integers. Suppose there exist skew frames of type

(2t) and 2¥, and suppose that v/t # 2 or 6. Then there exists a skew
Room frame of type 2°.

4. Skew frames of type 2", for n < 339,

In this section, we construct skew frames of type 2" for all
5 < n < 339, except for the 23 exceptions mentioned in the introduction.
We begin by looking at skew frames of type 2", n =1 (mod 4). The fol-
lowing result was proved in [6].
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Theorem 4.1. If n =1 (mod 4), n # 33, 57, 93, or 133, then there
exists a skew frame of type 2".

First, we remove the four exceptions above. These are all applica-
tions of the singular direct product construction, Lemma 3.5. First, write
33 = 8(5—1) + 1, and apply Lemma 3.5 with t = 1, using skew {rames of
types 2% and 2° Next, write 57 = 7(9—1) + 1 and take t = 1/2, using
Skew frames of types 17 and 2°. Next, 93 = 23(5—1) + 1. Taking t = 1/2
and using skew frames of types 12 and 2% we get a skew frame of type
2%, Finally, we construct a skew frame of type 2" by writing
133 = 12(12—1) + 1, using skew frames of type 2'2. Hence, we have

Lemma 4.2. Ifn =1 (mod 4), then there exists a skew frame of type

on

We can construct most of the skew frames in the desired range by
the following corollary of Lemma 3.2.

Lemma 4.3. Suppose there exists a TD(10,m), and let 0 < t,u,v < m.
Suppose there exist skew frames of types 2™, 2!, 2% and 2°. Then there
exists a skew frame of type 2T iUty

Proof. From three groups of the given TD, delete m —t, m — u, and
m — v points, respectively. Considering the groups as blocks, we obtain a
(Tm+t+u+v,{7,8,9,10,m,t,u,v})-PBD. Since {7,8,9,10,m,t,u,v} is a subset
of SF,, we obtain 7Tm+t+u+v € SF,, from Lemma 3.2.

First, we present in Table 1 constructions for skew frames of type
2", n < 95, using various recursive constructions. Hence, we have

Lemma 4.4. If 5 <n <95, then there is a skew frame of type 2"
unless n € X.

Proof. This is an immediate consequence of Lemmata 2.4 and 4.2, and
Table 1.
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Table 1
Recursive Constructions for Skew Frames of type 2%,32 < n < 95

n construction

32=844+0 Lemma 3.3

35 =175 Lemma 3.6 (¢t = 1/2)
39 =84 4+ 7 Lemma 3.3
40=8540 Lemma 3.3

42 = 84 4+ 10 Lemma 3.3

44 = 84 + 12 Lemma 3.3

47 = 85 4+ 7 Lemma 3.3

48 = 85 4+ 8 Lemma 3.3

50 = 85 + 10 Lemma 3.3

52 = 85 + 12 Lemma 3.3

54 = 85 + 14 Lemma 3.3

55 = 115 Lemma 3.6 (¢ = 1,/2)
56 = 87 4+ 0 Lemma 3.3

60 = 5-12 Lemma 3.6 (¢ = 1)

63=7-9+0+0+0 Lemma 4.3

64 =794+14+0 + 0 Lemma 4.3
66 =794+ 14141 Lemma 4.3
68=79454+040 Lemma 4.3
70=7'9+7+0+0 Lemma 4.3
1=794+8+0+0 Lemma 4.3
72=7949 + 0+ 0 Lemma 4.3
74=794+94+ 141 Lemma 4.3
78 =7947 +54+0 Lemma 4.3
16=794+74+541 Lemma 4.3
8=79+94+ 5 + 1 Lemma 4.3
79=794+9 +74+0 Lemma 4.3
80=79+9 47 + 1 Lemma 4.3
82=704+9+5+5 Lemma 4.3
83=7-9+8+7+5 Lemma 4.3
84=794+94+74+5 Lemma 4.3
86=7'9+9+9+5 Lemma 4.3

87=794+94+847 Lemma 4.3
88=794+94+947 Lemma 4.3
NVW=79+94+94+9 Lemma 4.3
91=713+0+0 + 0 Lemma 4.3
92=713+1+0 + 0 Lemma 4.3
94=713+14+41 + 1 Lemma 4.3
95 =195 Lemma 3.6 (¢t = 1,2)

Now, we have to consider 96 < n < 339. [t is a bit tedious, but not,
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difficult, to check that all n in this interval can be handled by Lemma 4.3,
using m = 13, 17, 25, 29, and 37, with 5 possible exceptions: n = 171, 172,
173, 174, and 179. First, we have 171 = 10(18—1) + 1, and apply Lemma
3.5 with ¢t = 1. Next, 172 = 820 4 12 and 174 = 8:20 + 14, so Lemma
3.3 can be applied. 173 =1 mod 4, so the frame exists by Lemma 4.2.
Finally, we handle n = 179 by observing that the deletion of 4 collinear
points from a projective plane of order 13 produces a (179,{10,13,14})-
PBD; whence a skew frame of type 2'"® exists by Lemma 3.2.

Summarizing, we get

Lemma 4.5. If 96 < n < 339, then there is a skew frame of type 2".

5. The existence of skew frames of type 2", n > 68.

Given the existence of skew frames of type 2" for 68 < n < 339, it is

a simple matter to show that there is a skew frame of type 2" for all
n > 68.

Theorem 5.1. There 1s a skew frame of type 2" for all n > 68.

Proof. The proof is by induction on n. In view of Lemmata 4.4 and 4.5,
we can assume n > 340. We can write n = 8m + t, where 68 <t < 75,
uniquely. Then, m > 34, so t < 3m. There is a skew frame of type g

(by induction), and one of type 2!, Apply Lemma 3.4 to construct the
skew frame of type 2".
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Appendix

Starter-adder constructions for Skew frames of type 2"

n=8 5) 6 12 1 2
10 12 3 13 15
14 1 6 4 7
15 3 7 6 10

4 9 ) 9 14
7 13 14 5 11
11 2 1 12 3

n=12 10 11 3 13 14

17 19 1 18 20
2 ) 20 24 1
3 7 2 ) 9

18 23 8 2 7
9 15 6 15 21

21 4 7 4 11
8 16 11 19 3

13 22 19 8 17

20 6 10 6 16

14 1 9 23 10

n =16 8 9 1 9 10
15 17 2 17 19
25 28 3 28 31
30 2 4 2 6

7 12 11 18 23
31 ) 22 21 27
19 26 26 13 20
27 3 8 3 11
20 29 27 15 24
11 21 19 30 8
13 24 20 1 12
10 22 15 25 )

1 14 25 26 7

4 18 18 22 4
23 6 23 14 29
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