An Assortment of New Howell Designs

E. Seah and D.R. Stinson

Abstract

We enumerate the (non-isomorphic) one-factorizations and sets of orthogonal one-factorizations (i.e. Howell designs) for several graphs on 10, 12 and 14 vertices. Among our results are the following. From the twelve 6 -regular graphs on 12 vertices having transitive automorphism groups, we found that there are precisely 24 non-isomorphic $\boldsymbol{H}(6,12)$, and precisely one $H_{3}(6,12)$. From the ten 7regular graphs on 12 vertices having transitive automorphism groups, we found that there are precisely 1393 non-isomorphic $H(7,12)$, and precisely five $H_{3}(7,12)$. We also determined that there are exactly three $H^{*}(7,12)$ designs, and exactly three skew $H(8,10)$ designs. Finally, we found an example of an $H^{+\Delta}(13,14)$, which was the smallest case of an $H^{* *}(2 n-1,2 n)$ which was not previously known to exist.

1. Introduction

Let $G r$ be an r-regular graph on n vertices. A one-factorization of $G r$ is a partition of the edge-set of $G r$ into r one-factors, each of which contains $n / 2$ edges that partition the vertex set of $G r$. Two one-factorizations F and G of $G r$ are orthogonal if any two edges of the graph which belong to the same one-factor of G belong to different one-factors of F (and vice-versa).

A Howell Design $H(s, t)$ is a square array of side s having the following properties:
(1) each cell of the array is either empty or contains a two-subset of a t-set,
(2) each element of the t-set occurs in exactly one cell of each row and each column, and
(3) any two-subset occurs in at most one cell of the array.

It is easy to see that two orthogonal one-factorizations of $G r$, an r-regular graph on n vertices, give rise to an $H(r, n)$; and, conversely, the existence of an $H(r, n)$ implies the existence of a pair of orthogonal one-factorizations of some \boldsymbol{r}-regular graph on \boldsymbol{n} vertices, $G r$, which we call the underlying graph of the Howell Design.

This idea generalizes to higher dimensions, as well. We can define an idimensional Howell design $H_{i}(r, n)$ to be an i-dimensional array which satisfies property (1), such that each two-dimensional projection is an $H(r, n)$. We refer to an $H_{3}(r, n)$ as a Howell cube. An $H_{i}(r, n)$ is equivalent to i mutually orthogonal one-factorizations of the underlying graph.

Howell designs were introduced in [9] and have been extensively studied since then. The existence of Howell designs has been completely determined in [1] and [17]. Note that a trivial necessary condition for the existence of an $H(r, n)$ is that $r+1 \leq n \leq 2 r$.

Theorem 1.1. Let r and n be positive integers, where n is even, and $r+1 \leq$ $n \leq 2 r$. Then there exists an $H(r, n)$ if and only if $(r, n) \neq(2,4),(3,4),(5,6)$, or $(5,8)$.

On the other hand, if we ask which graphs are the underlying graphs of Howell designs, then not very much is known. We summarize a few of the known results. Denote NOF $(G r)=$ the number of non-isomorphic one-factorizations of a graph $G r$, and $N H_{i}(G r)=$ the number of non-isomorphic $H_{i}(r, n)$ with underlying graph $G r$. Also, let $n(G r)$ denote the largest number of mutually orthogonal one-factorizations of $G r$ (i.e. $n(G r)=\max \left\{i: N H_{i}(G r)>0\right\}$).

First, we observe that the cases where $G r$ is a complete bipartite graph $K_{m, m}$ have been extensively studied in the guise of orthogonal Latin squares. Hence, we have $n\left(K_{m, m}\right) \geq 2$ if and only if $m \neq 2$ or 6 (see [5]). The cases where $G r$ is a complete graph (K_{m}, with m even) correspond to Room designs, or equivalently, orthogonal symmetric Latin squares. Hence, for example, $n\left(K_{m}\right) \geq 3$ if and only if $m \geq 7$ is odd (see [6]). Other bounds are given in [7]. Also, we note that the underlying graph of an $H(m, m+2)$ (m even) is $K_{m+2}-f$, where f is a one-factor. Thus, we have $n\left(K_{m+2}-f\right) \geq 2$ for all even $m \geq 4$. Very few other general results are known.

Even less is known concerning upper bounds for $n(G r)$. It is not difficult to see that, for any r-regular graph on n vertices, $n(G r) \leq r-1$. This bound can be attained with equality in the case of graphs $K_{m, m}$ when m is a prime power. However, it seems unlikely that this bound can be met with equality for r-regular graphs where $r>n / 2$. There is a conjectured bound, namely $n(G r) \leq(n-2) / 2$. Note that this conjectured bound is stronger if $r>n / 2$, (if $r<n / 2$, then $n(G r) \leq 1$, anyway). The two bounds agree if $r=n / 2$. This conjectured bound has been verified for $n \leq 10$ (see [13], [2], and [16]). Also, we note that there are infinitely many such graphs where $n(G r)=(n-2) / 2$ (see [16]).

The non-isomorphic one-factorizations and (i-dimensional) Howell designs have been enumerated (for all i) for all graphs on at most 10 vertices (see [13], [2], and [16]). It is not feasible to continue this enumeration to all graphs $G r$ on 12 vertices, for two reasons. If $G r$ is r-regular with r close to 12 , the numbers $\boldsymbol{N}_{i}(G r)$ will be astronomical, and present techniques would not yield any results in a reasonable amount of time. If $G r$ is 6 - or 7 -regular, we can determine the numbers $N_{i}(G r)$; the problem here is that there are too many graphs to test them all. In the remaining sections, we discuss the enumeration of one-factorizations and Howell designs for several interesting graphs on 12 and 14 vertices.

2. 6-regular graphs on 12 vertices

The case of 6 -regular graphs on 12 vertices is particularly interesting, due to the non-existence of a pair of orthogonal Latin squares of order 6 (i.e. $n\left(K_{6,6}\right)=1$). In [9], Hung and Mendelsohn presented the first example of an $H(6,12)$. More recently, Brickell found a Howell cube $H_{3}(6,12)$ for which the underlying graph is the icosahedron with antipodal points joined (see [4]). It is also worth mentioning that the automorphism group of this cube is the same as the automorphism group of the icosahedron (this group is isomorphic to $Z_{2} \times A_{5}$).

In the hope of finding further examples, we investigated the 6 -regular graphs on 12 vertices having a transitive automorphism group. There are precisely 12 such graphs (see [3]); we present a listing of the edges of the complements of these graphs in Table 1. From these 12 graphs, we found that there are precisely 24 non-isomorphic $H(6,12)$, and precisely one $H_{3}(6,12)$ (the Brickell cube). There are no examples of an $H_{4}(6,12)$ in this class of graphs. A summary of our results is given in Table 2.

3. 7-regular graphs on 12 vertices

As in Section 2, we looked at the graphs having transitive automorphism groups. For 7 -regular graphs on 12 vertices, there are 10 such graphs ([3]). We list the edges in the complements of these graphs in Table 3. From these 10 graphs, we found many more Howell designs: 1393 non-isomorphic $H(7,12)$, and five non-isomorphic $H_{3}(7,12)$. The enumeration is summarized in Table 4. An example of an $H_{3}(7,12)$ was not previously known; we present one of the five in Table 5 (the underlying graph is graph \#1 in Table 3).

We also investigated two other 7 -regular graphs on 12 vertices, namely, the graphs which correspond to the so-called *-designs. An $H^{*}(r, n)$ can be defined as an $H(r, n)$ whose underlying graph has an independent set of $n-r$ vertices (which is the maximum possible size). For $r=7, n=12$, such a graph has the form $K_{5}^{c}+Q$, where Q is either a 7-cycle or the disjoint union of a 3-cycle and a 4 -cycle (${ }^{\text {c }}$ denotes complement and + denotes join). In the first case, there are no $H^{*}(7,12)$; in the second case, there are three non-isomorphic $H^{*}(7,12)$, which are presented in Table 6. These are thus the smallest examples of $H^{*}(n, 2 n-2)$ for n odd, since there are no Howell designs $H(3,4)$ or $H(5,8)$ (previously, the smallest example in this class was an $H^{*}(13,24)$, constructed in [15]).

4. $H^{* *}(13,14)$

Another special class of Howell designs are called ${ }^{* *}$-designs. An $H^{* *}(r, n)$ is defined to be an $H(r, n)$ which satisfies the following two properties:
(1) there exists an $(r-n / 2) \times(r-n / 2)$ subarray of the Howell design which consists of empty cells,
(2) there exists a one-factor of the underlying graph which forms a transversal of the $n / 2$ rows and columns which do not meet the empty subarray of (1).
These may seem somewhat unusual properties to ask for, but it turns out that there is a powerful recursive construction for **-designs, which was instrumental in the proof of Theorem 1.1 (see [17]).

There has recently been some interest in $H^{* *}(2 m-1,2 m)$ (i.e. Room squares which are ${ }^{* *}$-designs). Note that we can define an $H^{* *}(2 m-1,2 m)$ by requiring only that property (1) holds; property (2) then follows as a consequence. Such a design has several equivalent formulations, which are described in [18]: one of these is a partitioned balanced tournament design $\operatorname{PBTD}(n)$, and another is a pair of almost disjoint $H(m, 2 m)$. We elaborate on the second formulation. Two $H(m, 2 m)$, say D_{1} and D_{2} (on the same symbol set), having underlying graphs G_{1} and G_{2}, respectively, are said to be almost disjoint if the following properties hold:
(1) $G_{1} \cap G_{2}=f$, where f is a one-factor,
(2) $G_{1} \cup G_{2}-f=K_{2 m}$, the complete graph on $2 m$ vertices,
(3) the edges of f occur in a row (or column) of D_{1}, and in a row (or column) of D_{2}.
$H^{* *}(2 m-1,2 m)$ do not exist for $m=2,3$, or 4 (see [18]). For $m \geq 5$, such a design is known to exist for all but a few values of m ([11], and private communication from S . Vanstone and E . Lamken). The smallest unknown case was $m=7$. We were able to construct two non-isomorphic examples of $H^{* *}(13,14)$, which we present in Table 7 as sets of almost disjoint $H(7,14)$.

These were found as follows. The $H(7,14)$ labelled D_{1} was constructed by E. Lamken (private communication). Call the underlying graph G_{1}, and let f denote the one-factor occurring in the last column of D_{1}. First, we enumerated all one-factorizations of the graph $G_{2}=\left(K_{14}-G_{1}\right) \cup f$ which contained f as a one-factor. There were precisely 5272 non-isomorphic one-factorizations F of this type. For each such F, we determined all possible one-factorizations G of G_{2} orthogonal to F, such that G also contained f as a one-factor. For only two of these 5272 one-factorizations F could we find such a G orthogonal to F. These are exhibited in Table 7.

5. Skew $H(8,10)$ designs

The last types of Howell designs we investigated are complementary and skew $H(r, r+2)$. These special types of Howell designs are introduced in [10]. Several constructions are given, and it is shown that a pair of complementary $H(r, r+2)$ exist for all even $r \geq 4$. Much less is known regarding skew $H(r, r+2)$. In [10], a skew $H(4,6)$, is constructed, and it is reported that there does not exist a skew $H(6,8)$. The first unsettled case was that of a skew
$H(8,10)$. We have done an enumeration of skew $H(8,10)$, and we found that there are exactly three non-isomorphic examples.

We define a skew $H(r, r+2)$ (of course, r must be even). An $H(r, r+2$), say H, is said to be skew if there exist two symbols a, b where $\{a, b\}$ is not an edge of the underlying graph, such that the following properties are satisfied:
(1) Denote the n cells of H which contain a by T_{a}, and denote the n cells of H which contain b by T_{b}. Then $T_{\Delta} \cup T_{b}$ consists of the r cells on the diagonal of H (say D), and r other cells which form a transversal of cells (say D^{\prime}) of H, such that D^{\prime} is symmetric with respect to D (i.e. a cell $(i, j) \in D^{\prime}$ if and only if cell $\left.(j, i) \in D^{\prime}\right)$.
(2) Given any cell $(i, j) \notin D \cup D^{\prime}$, precisely one of cell (i, j) and cell (j, i) is empty.
In [16], the authors enumerated all non-isomorphic $H(8,10)$; there are 18220 such Howell designs. It was therefore a straightforward test to see which of these designs could be written down in such a way that it forms a skew $H(8,10)$. This was done as follows. For any given $H(8,10)$, there are five possibilities for the pair $\{a, b\}$. For each possibility, the cells in $T_{a} \cup T_{b}$ form four 4 -cycles (no matter how the Howell design is written down). For each 4-cycle, there are essentially two inequivalent ways of permuting the rows/ columns containing the 4 -cycle. There are thus only $2^{5}=32$ row $/$ column permutations that must be considered (for each possible $\{a, b\}$).

As a result of these tests, we found precisely three non-isomorphic skew $H(8,10)$, which we record in Table 8.

Table 1. 5-regular graphs on 12 vertices having transitive automorphism groups

Graph No. Edges

$1 \quad 1-2,3,4,5,6 ; 2-3,4,5,6 ; 3-4,7,8 ; 4-7,8 ; 5-6,9,10 ; 6-9,10 ;$ $7-8,11,12 ; 8-11,12 ; 9-10,11,12 ; 10-11,12 ; 11-12$. $1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-4,9,10 ; 4-11,12 ; 5-6,7,9,11 ; 6-8,10,12$; $7-8,9,11 ; 8-10,12 ; 9-10,11 ; 10-12 ; 11-12$. $1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-4,9,10 ; 4-11,12 ; 5-7,8,9,11$; 6-7, 8, 10, 12; 7-9, 11; 8-10, 12; 9-11, 12; 10-11, 12. $1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-4,9,10 ; 4-11,12 ; 5-7,8,9,11$; $6-7,9,10,12 ; 7-10,12 ; 8-9,11,12 ; 9-11 ; 10-11,12$.
$51-2,3,4,5,6 ; 2-3,4,7,8 ; 3-5,7,9 ; 4-5,7,10 ; 5-7,11 ; 6-8,9,10,11$; 7-12; 8-9, 10, 12; 9-11, 12; 10-11, 12; 11-12. 7-12; 8-9,11, 12; 9-10, 11; 10-11, 12; 11-12.
$7 \quad 1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-5,7,9 ; 4-6,8,10 ; 5-6,9,11 ; 6-10,11$; $7-8,9,12 ; 8-10,12 ; 9-11,12 ; 10-11,12 ; 11-12$.
8 $1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-5,9,10 ; 4-7,9,10 ; 5-9,11,12$; $6-8,9,11,12 ; 7-10,11,12 ; 8-10,11,12 ; 9-11 ; 10-12$.
$9 \quad 1-2,3,4,5,6 ; 2-3,4,7,8 ; 3-5,9,10 ; 4-7,11,12 ; 5-9,11,12$; $6-8,10,11,12 ; 7-9,10,11 ; 8-9,10,12 ; 9-12 ; 10-11$.

10 $1-2,3,4,5,6 ; 2-3,7,8,9 ; 3-10,11,12 ; 4-5,7,8,10 ; 5-9,11,12$; 6-7, 8, 11, 12; 7-9, 11; 8-10, 12; 9-10, 12; 10-11.
$11 \quad 1-2,3,4,5,6 ; 2-3,7,8,9 ; 3-10,11,12 ; 4-7,8,9,10 ; 5-7,8,10,11$; 6-7, 10, 11, 12; 7-12; 8-11, 12; 9-10, 11, 12.
12 $1-2,3,4,5,6 ; 2-7,8,9,10 ; 3-7,8,9,11 ; 4-7,8,10,11 ; 5-7,9,10,11 ;$
$6-8,9,10,11 ; 7-12 ; 8-12 ; 9-12 ; 10-12 ; 11-12$.

Table 2. Howell designs from 6-regular graphs on 12 vertices having transitive automorphism groups.

Graph No.	$\|\mathrm{Aut}(\mathrm{Gr})\|$	$\mathrm{DPM}(\mathrm{Gr})$	$\mathrm{NOF}(\mathrm{Gr})$	$\mathrm{NH}(\mathrm{Gr})$	$\mathrm{NH}_{3}(\mathrm{Gr})$
1	768	368	190	0	0
2	144	348	469	3	0
3	48	344	1248	8	0
4	24	342	2018	0	0
5	96	392	1451	0	0
6	12	386	6932	1	0
7	120	368	733	4	1
8	12	354	4976	0	0
9	24	344	2216	5	0
10	48	344	1021	0	0
11	24	336	1983	3	0
12	1440	376	132	0	0

Notation: $\operatorname{DPM}(\mathrm{Gr})$ denotes the number of distinct one-factors of Gr.

Table 3. 4-regular graphs on 12 vertices having transitive automorphism groups

Graph No. Edges

1 $1-2,3,4,5 ; 2-3,4,6 ; 3-4,7 ; 4-8 ; 5-6,9,10 ; 6-9,10 ; 7-8,11,12 ; 8-11$, 12; 9-10, 11; 10-12; 11-12.

2 $1-2,3,4,5 ; 2-3,4,6 ; 3-5,7 ; 4-6,8 ; 5-7,9 ; 6-8,10 ; 7-9,11 ; 8-10,12$; 9-11, 12; 10-11, 12; 11-12.
$3 \quad 1-2,3,4,5 ; 2-3,6,7 ; 3-8,9 ; 4-5,6,10 ; 5-8,11 ; 6-7,10 ; 7-9,12$; 8-9, 11; 9-12; 10-11, 12; 11-12.
4 $1-2,3,4,5 ; 2-3,6,7 ; 3-8,9 ; 4-6,8,10 ; 5-7,9,10 ; 6-8,11 ; 7-9,11$; 8-12; 9-12; 10-11, 12; 11-12.
$51-2,3,4,5 ; 2-3,6,7 ; 3-8,9 ; 4-6,8,10 ; 5-7,9,11 ; 6-8,11 ; 7-9,12$; 8-12;9-10;10-11, 12; 11-12.
$6 \quad 1-2,3,4,5 ; 2-3,6,7 ; 3-8,9 ; 4-6,10,11 ; 5-8,10,12 ; 6-11,12$; 7-9, 10, 12; 8-11, 12; 9-10, 11.
$7 \quad 1-2,3,4,5 ; 2-6,7,8 ; 3-6,7,8 ; 4-6,9,10 ; 5-6,9,10 ; 7-11,12 ; 8-11,12$; 9-11, 12; 10-11, 12.
8 $1-2,3,4,5 ; 2-6,7,8 ; 3-6,7,9 ; 4-6,7,10 ; 5-8,9,10 ; 6-11 ; 7-12$; 8-11, 12; 9-11, 12; 10-11, 12.

9 $8-11,12 ; 9-11,12 ; 10-11,12$.
10 $1-2,3,4,5 ; 2-6,7,8 ; 3-6,9,10 ; 4-7,9,11 ; 5-8,10,12 ; 6-11,12$; 7-10, 12; 8-9, 11; 9-12; 10-11.

Table 4. Howell designs from 7-regular graphs on 12 vertices having transitive automorphism groups.

Graph No.	$\|\operatorname{Aut}(\mathrm{Gr})\|$	$\mathrm{DPM}(\mathrm{Gr})$	$\mathrm{NOF}(\mathrm{Gr})$	$\mathrm{NH}(\mathrm{Gr})$	$\mathrm{NH}_{3}(\mathrm{Gr})$
1	48	825	127222	84	1
2	24	837	270875	235	3
3	48	827	130176	103	0
4	48	824	130141	166	0
5	24	821	245138	189	0
6	24	808	218138	130	0
7	768	827	9145	47	0
8	144	820	43060	72	1
9	24	818	237042	264	0
10	48	804	110656	103	0

Table 5. A Howell cube $\mathrm{H}_{3}(7,12)$.

1	2	6	11	5	10	7	12	3	4	8	9		
5	11	1	3	6	7	2	9	8	12			4	10
6	8	2	5	1	4			7	11	3	10	9	12
10	12	7	9	2	8	1	5			4	6	3	11
		8	10	3	9	4	11	1	6	5	12	2	7
4	9			11	12	3	8	2	10	1	7	5	6
3	7	4	12			6	10	5	9	2	11	1	8
1	2			6	11	3	4	8	9	5	10	7	12
8	12	1	3			6	7	4	10	2	9	5	11
3	10	7	11	1	4	9	12	2	5	6	8		
7	9	2	8	10	12	1	5			3	11	4	6
4	11	5	12	2	7	8	10	1	6			3	9
5	6	4	9	3	8			11	12	1	7	2	10
		6	10	5	9	2	11	3	7	4	12	1	8

1	2	4	9	10	12			3	7	6	8	5	11
7	9	1	3	6	11	8	10	2	5	4	12		
		2	8	1	4	6	7	11	12	5	10	3	9
4	11	6	10	3	8	1	5			2	9	7	12
8	12	7	11	5	9	3	4	1	6			2	10
3	10	5	12			2	11	8	9	1	7	4	6
5	6			2	7	9	12	4	10	3	11	1	8

Table 6. Three Howell designs $\mathrm{H}^{*}(7,12)$.

1	2	7	11			6	10	3	4	8	12	5	9
7	12	1	3	8	10	4	9	2	5	6	11		
8	9			1	4	11	12	7	10	3	5	2	6
4	11	2	8	6	12	1	5			9	10	3	7
		5	12	7	9	3	8	1	6	2	4	10	11
5	10	6	9	2	3			8	11	1	7	4	12
3	6	4	10	5	11	2	7	9	12			1	8

1	2			6	10	3	4	5	9	8	12	7	11
		1	3	8	11	7	12	4	10	6	9	2	5
5	12	7	9	1	4	10	11	2	8			3	6
3	8	6	12	2	7	1	5			4	11	9	10
7	10	5	11			8	9	1	6	2	3	4	12
4	9	8	10	3	5	2	6	11	12	1	7		
6	11	2	4	9	12			3	7	5	10	1	8

1	2			8	12	3	4	5	9	6	10	7	11
		1	3	7	9	6	12	4	10	8	11	2	5
6	9	8	10	1	4	2	7	11	12	3	5		
3	8	7	12	6	11	1	5			2	4	9	10
7	10	5	11	2	3	8	9	1	6			4	12
5	12	4	9			10	11	2	8	1	7	3	6
4	11	2	6	5	10			3	7	9	12	1	8

Table 7. Two sets of almost disjoint Howell designs H(7, 14)

Set 1: $\left\{D_{1}, D_{2}\right\}$.
D_{1}

a	3	\mathbf{a}	3	2	4	2	4	1	5	1	5	6	6
\mathbf{a}	2	a	2	1	3	1	3	4	6	4	6	5	5
1	2	1	2	a	5	\mathbf{a}	5	3	6	3	6	4	1
3	4	3	4	a	6	a	6	2	5	2	5	1	1
4	5	4	5	2	6	2	6	a	1	a	1	3	3
1	6	1	6	3	5	3	5	a	4	a	4	2	2
5	6	5	6	1	4	1	4	2	3	2	3	a	a

D_{2}

\mathbf{a}	4	3	1	5	3	1	5	a	2	4	2	6	6
1	2	2	4	4	6	a	3	6	1	a	3	5	5
3	6	6	5	a	1	2	3	5	2	a	1	4	4
6	3	a	4	3	2	5	4	a	5	2	6	1	1
a	5	a	2	2	5	4	1	1	6	-6	4	3	3
4	5	1	3	a	6	a	6	3	4	5	1	2	2
2	1	5	6	1	4	6	2	4	3	5	3	a	a

Set 2: $\left\{D_{1}, D_{3}\right\}$.
D_{3}

a	4	a	4	2	3	1	5	5	2	3	1	6	6
6	3	3	2	a	6	4	1	2	4	a	1	5	5
1	2	2	5	5	1	3	6	a	6	a	3	4	4
3	4	a	5	6	5	a	2	4	3	2	6	1	1
a	5	6	1	4	2	a	2	1	6	5	4	3	3
5	6	1	3	a	3	6	4	a	1	4	5	2	2
2	1	4	6	1	4	5	3	3	5	6	2	a	a

Table 8. Three skew $\mathrm{H}(8,10)$ designs.

$$
a=5, b=6
$$

6	10			1	9	4	5	2	8			3	7		
8	9	2	5			7	10	3	6	1	4				
		1	7	4	6					2	10	5	9	3	8
1	5			2	7	6	8			3	9	4	10		
		6	9	8	10	1	3	5	7					2	4
2	3							4	9	6	7	1	8	5	10
		4	8	3	5			1	10			2	6	7	9
4	7	3	10			2	9			5	8			1	6

$$
a=5, b=6
$$

2	6						3	10	4	7	5	9	1	8	
3	8	6	10	2	7	4	5	9							
4	9			3	5			2	8	1	10			6	7

$$
\begin{array}{llllllllll}
7 & 10 & 2 & 5 & 8 & 9 & 3 & 6 & 1 & 4
\end{array}
$$

$$
\begin{array}{rrrrrrrrrr}
1 & 7 & 4 & 6 & 5 & 8 & 2 & 10 & 3 & 9 \\
8 & 10 & 5 & 7 & 6 & 9 & & & 2 & 4
\end{array}
$$

$$
\left.\begin{array}{rrrrrrrrrrrr}
1 & 5 & 7 & 9 & 4 & 10 & & & 2 & 3 & 6 & 8 \\
& 4 & 8 & 1 & 6 & 2 & 9 & & & 3 & 7 & 5
\end{array}\right)
$$

$$
a=7, b=8
$$

| 8 | 10 | | | 6 | 9 | | | 5 | 7 | 2 | 4 | 1 | 3 | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 9 | 2 | 7 | | | 1 | 6 | | | 5 | 10 | | | 3 | 8 |
| | | 1 | 9 | 2 | 8 | 3 | 10 | | | 6 | 7 | 4 | 5 | | |
| 2 | 5 | | | | | 4 | 7 | 1 | 10 | 3 | 9 | 6 | 8 | | |
| 1 | 7 | 3 | 5 | 4 | 10 | | | 8 | 9 | | | | | 2 | 6 |
| | | | | 3 | 7 | | | 4 | 6 | 1 | 8 | 2 | 10 | 5 | 9 |
| | | 6 | 10 | | | 5 | 8 | 2 | 3 | | | 7 | 9 | 1 | 4 |
| 3 | 6 | 4 | 8 | 1 | 5 | 2 | 9 | | | | | | | 7 | 10 |

References

1. B.A. Anderson, PJ. Schellenberg and D.R. Stinson, The existence of Howell designs of even side, Journal of Comb. Theory A 36 (1984), 23-55.
2. D.S. Archdeacon, J.H. Dinitz and W.D. Wallis, Sets of orthogonal 1-factorizations of K_{10}, Congressus Numerantium 43 (1984), 45-79.
3. A.M. Baravev and I.A. Faradzev, Postroenie i issledovanie na EVM odnorodnykh i odonorodnykh dvudol'nykh grafoov, Algoritmiceskie issledovania v kombinatorike (1978), Moscow, Nauka, 25-60.
4. E.F. Brickell, A few results in message authentication, Congressus Numerantium 43 (1984), 141-154.
5. R.C. Bose, S.S. Shrikhande, and E.T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1960), 189-203.
6. J.H. Dinitz and D.R. Stinson, The spectrum of Room cubes, European Journal of Comb. 2 (1981), 221-230.
7. J.H. Dinitz, Pairwise orthogonal symmetric Latin squares, Congressus Numerantium 32 (1981), 261-265.
8. J.H. Dinitz and W.D. Wallis, Four orthogonal one-factorizations on ten points, in Algorithms in Combinatorial Design Theory, Annals of Discrete Math. 26 (1985), 143-150.
9. S.H.Y. Hung and N.S. Mendelsohn, On Howell designs, J. Combin. Theory A 16 (1974), 174-198.
10. E.R. Lamken and S.A. Vanstone, Complementary Howell designs of side $2 n$ and order $2 n+2$, Congressus Numerantium 41 (1984), 85-113.
11. E.R. Lamken and S.A. Vanstone, Partitioned balanced tournament designs of side $4 n+1$, Ars Combinatoria 20 (1985), 29-44.
12. A. Rosa, Room squares generalized, Ann. Discrete Math. 8 (1980), 43-57.
13. A. Rosa and D.R. Stinson, One-factorizations of regular graphs and Howell designs of small order, Utilitas Mathematica 29 (1986), 99-124.
14. P.J. Schellenberg and S.A. Vanstone, The existence of Howell designs of side $2 n$ and order $2 n+2$, Congressus Numerantium 29 (1980), 879-887.
15. P.J. Schellenberg, D.R. Stinson, S.A. Vanstone and J.W. Yates, The existence of Howell designs of side $n+1$ and order $2 n$, Combinatorica 1 (1981), 289-301.
16. E. Seah and D.R. Stinson, An enumeration of non-isomorphic one-factorizations and Howell designs for the graph K_{10} minus a one-factor, Ars Combinatoria 21 (1986), 145-161.
17. D.R. Stinson, The existence of Howell designs of odd side, Journal of Comb. Theory A 32 (1982), 53-65.
18. D.R. Stinson, Room squares with maximum empty subarrays, Ars Combinatoria 20 (1985), 159-166.

Department of Computer Science
University of Manitoba

