BOSS BLOCK DESIGNS

J.H. Dinitz and D.R. Stinson

Abstract

A well-known inequality of Bose states that in a BIBD containing
a parallel class of blocks b 2v + r = 1. We consider BIBDs which
contain m parallel classes, each containing a fixed block but
otherwise disjoint. We obtain brv4r-l+r (m—izék—l).

BIBDs in which equality holds, which we refer to as boss block designs,
are investigated in the remainder of the paper.

1. Introduction.

A balanced incomplete block design, or BIBD, with parameters
(v,b,r,k,A) 1is a pair (X,B), where X is a set of size v, B is a family
of b k-subsets of X such that each element of X occurs in r members
of B, and each pair of elements of X occurs in A members of 8.
Henceforth, we refer to elements of X as varieties and members of B as
blocks. It is immediate that vr = bk and A(v-1) = r(k-1).

A set P of blocks of B8 1is a parallel class if each variety of X
occurs in exactly one block of P. A BIBD is said to be resolvable if B
can be partitioned into parallel classeg. In [1], Bose proves that the
parameters of a resolvable BIBD satisfy the inequality b 2 v +r - 1.

However, as indicated by Stanton and Sprott [6], this inequality is
true for any BIBD containing a parallel class. In this paper we generalize
the above inequality by supposing a BIBD contains m parallel classes each
of which contains a fixed block, B, but otherwise disjoint.

In the next section, we derive an inequality for BIBDs with such a
block B. In the case m = 1, our inequality reduces to Bose's inequality
stated above.

In the following sections, we also consider designs in which our

inequality is satisfied as an equality and give some examples.
2. An inequality.
The following is our main result.

THEOREM 2.1. Suppose a BIBD (X,B8) contains a block B which occurs in

‘m parallel classes. Also, suppose no two of these parallel classes intersect
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r (m-1) (k-1)

in any block other than B, Then b 2v+r -1+ o

Further,

if b=v+r-1+ r(m;%(k’l—l then B intersects any other block in
2
. L. __kT{x-1)
0 or‘ W varieties, where p = P g

Proof. There are b—m(% - 1) - 1 blocks other than the blocks in the m
parallel classes. Denote these blocks Bl’ BZ’ i3 BZ’ where
L = b—m(%:—— 1) - 1. Let bi = |Bn Bi| for 1 < i < &. Then we have
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Clearly 0< I (bi - uw . Using A(v - 1) = r(k - 1) and vr = bk, and
i=1

simplifying, we obtain

(v - K)[br - r2 - r(v-k)-m(zk - 2r - v+ 1 + b)].

o
A

Thus
r(m-1) (k-1)
r-m :

b2v+r-1+

r(m-1) (k-1)
r-m

Also, b=v+r -1+

if and only if bi u  for every

l<i=<g. [
If m= 1, then we obtain Bose's result b >v + r - 1. A resolvable

BIBD has b =v + r -1 if and only if any two blocks from different



parallel classes intersect in u varieties., Such BIBDs are called affine
resolvable and have been extensively studied. See for example, [4,5].

A comment regarding Theorem 2.1 is in order. That is the assumption
that the;e exist mCE-— 1) blocks, other than B, in m parallel classes
may be weakened. It is necessary only to assume that these blocks be dis-
joint from B, and contain each variety not in B m times. However, our
main interest is in designs containing the m parallel classes as described

above.

3. Boss Block Designs.
We now consider BIBDs which satisfy the above inequality as an equality.

Thus, suppose a BIBD contains m parallel classes, each containing a fixed
block B but otherwise disjoint. Further, suppose b = v+r-1 Cm—lirfk;l)'

We refer to such a BIBD as an (m, u) boss block design, henceforth

BBIBD, and B as a boss block. B intersécts each block not in the m
% _K@ -1

9 bk-mv+mk-k °

an affine resolvable BIBD is a (1, k" /v) BBIBD (see Bose [1]).

We remark that if a BIBD is an (m, p) BBIBD with boss block B, and

parallel classes in p varieties, where Thus, for example,

%

, u') BBIBD with boss block B', then m=m' and u=1yu'.
1+ (m-1)r (k~1)
r-m

also an (m

This is true since b =v + r - determines m uniquely,

@ - 1)
bk-mv+mk-k
possibility of ambiguity when we speak of an (m, p) BBIBD.

L
and then p = determines 1y uniquely. Thus there is no

We now derive a few lemmata relating the various parameters of a BBIBD.
The follpwing equality is an immediate consequence of the definition

of BBIBD.

r(m—l)(k—l).

LEMMA 3.1. In an (m, p) BBIBD, b poa—

v+r -1+

m + kA .

LEMMA 3.2. In gn (m, u) BBIBD, r

Proof. Let v be a variety not in the boss block. Counting ordered

pairs (C,w), with w in the boss block and

- - {v,w} < C, we obtain
p(r-m) = ki.

LEMMA 3.3. In an (m,u) BBIBD, A =1 + W;}(l)(%-ﬁl)

Proot. ; .
00 Let v be a variety not in the boss block. Counting ordered pairs

FC’ w), with w in the boss block and {v,w} c ¢, C # B, we obtain
(A-1) (k-1) = (u-1)(x-1). 3
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LEMMA 3.4. T =
nan (m, u) BBIBD, v Geile 1) 2

rk-1) + A
B

The result follows from Lemma 3.3.

Proof. 1In any BIBD, v =

LEMMA 3.5. In an (m, u) BBIBD, m = (r]‘lla_(ls )'

Proof. The result follows from Lemma 3.2 and Lemma 3.3.
We now derive inequalities relating u to k.
LEMMA 3.6. In an (m, u) BBIBD, wu < k/2.

Proof. Suppose first that u = k/2 + 1.

v = LE&=D2 + u-1)]r + (k=)
w-Dr + (k-u)

Then, from Lemma 3.4,

L P-r k2 | 2(k-D)x + 1
t,’)_v k - r
CE)r

< 2(k-1) + 1 = 2k-1.

However, if a BIBD contains a parallel class klv, so Vv 2 2k. Thus we have

a contradiction.

[y €S 1r 2 5L
K+l _ 2 2
If w=—F—, then v = -
2 &Ly 4 &L
2 2 4
_ (k-Lr + 1
- r+1 2K

again yielding a contradiction.

LEMMA 3.7. An (m, p) BBIBD with u = and pn >1 has v

parameters of an affine resolvable BIBD (Z.e., m = 1).

2k and. the

]

o=

Proof. From Lemma 3.4,

2 Kk K .
V=[(k‘1) *G DIy @l - wor+rk+k

k k
(2 - Dr + 35 k - 2)r+k
(Zk2 - 4K)r , rk + k 2r
2%t v Xt ltaiees
2% 2r
32k+1+m—2k+1+2r+4<2k+2

Thus v < 2k + 1. Since k|v therefore v = 2k. Now, since u = %, it is
clear that m = 1. (Note that k = 4 by the assumptions.)

Finally, we determine the parameters of an (m,1)-BBIBD.
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LEMMA 3.8. 4n (m, u) BBIBD with u = 1 has parameters (t(k2 - k) + k,
(tk + 1)k - 1) £t + 1), tk + 1, k, 1) for g positive integer t. Also,

m=r - k.

Proof.‘ By Lemma 3.3, A =1. Thus v = r(k - 1) + 1. Since klv, thus
r - 1=tk for some t. Since b = %E , the parameters have the desired

form. By Lemma 3.5, m = r - k.
4. BBIBDs with k < 7.

In this section, we determine the parameters of possible BBIBDs with
k <7,

THEOREM 4.1. A BBIBD with k =2 isa (2t + 2, (°F ; 2y 241, 2, 1)

BIBD. Such a BIBD 78 a (2t - 1, 1) BBIBD, and exists for any positive

integer t.

Proof. By Lemma 3.6, n =1, if k = 2., By Lemma 3.8, the parameters are
as stated above. We show the desired designs exist. Given a (2t + 2) -
set V, take B as all 2-subsets of V. Choose any block B as the boss

block.

THEOREM 4.2, A BBIBD with k=3 <is a (6t + 3, (2t + 1)(3t +1), 3t + 1,

3, 1) design, with m= 3t -2, u-=1.
Proof. This is a direct result of Lemma 3.6 and Lemma 3.8.

EXAMPLE 4.1. There exists a (15,35,7,3,1) BIBD which is a (4,1) BBIBD.
0 510 is the boss block.

0 5 10

1 6 11 2 3 6 3 4 7 1 3 9
2 7 12 4 11 13 12 13 1 4 6 12
3 8 13 7 14 1 6 8 14 7 8 11
4 9 14 8 9 12 9 11 2 13 14 2
1 2 2 4 10 10 11 14 10 12 3
4 5 3 5 11 11 12 O 12 14 5
5 6 9 5 7 13 14 0 3 13 6
6 7 10 7 9 0 4 0 8
9 10 13 8 10
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THEOREM 4.3. A BBIBD with k=4 Zsa (12t + 4, Bt + 1)t + 1),
4t + 1, 4, 1) BIBD with m=4t -3, n=1, or an (8, 14, 7, 4, 3)
BIBD with m = 1.

Proof. If u =1, the result follows by Lemma 3.8. By Lemma 3.6 the only
other possibility is p = 2. By Lemma 3.7, we have an (8, 14, 7, 4, 3)
BIBD.

EXAMPLE 4.2. There exists an (8, 14, 7, 4, 3) BIBD which is a (1, 2)
BBIBD. This BIBD is affine resolvable.

1234 1256 1357 1458 2367 2468 3478
5678 3478 2468 2367 1458 1357 1256

5 isa (20t +5, (4t + 1)(5t + 1), 5t + 1,
1, or a (15, 63, 21, 5, 6) BIBD with

THEOREM 4.4. A BBIBD with k =
5, 1) BIBD with m = 5t - 4, 1

m=6, u= 2.

Proof. By Lemma 3.6, the only possibilities are u = 1or u = 2. If

pu = 1, the parameters are given by Lemma 3.8.

Thus suppose u = 2. By Lemma 3.3, i = s Z 3 . By Lemma 3.5,
m = §£_§~li . By Lemma 3.4, v = —lzf—f—% . Thus we must have r = 5 mod 8.

Also, (r+ 3)|@7r + 3), so (r+ 3)|48. Thus r =5, 13, 21, or 4&5.
But, since 5|v,-the only possibility is r = 21. Thus the only possibility
is a (15, 63, 21, 5, 6) BIBD, with m =6, 1 = 2. Such a BBIBD is given
in Example 4.3 below.

EXAMPLE 4.3. There exists a (15, 63, 21, 5, 6) BIBD which is a (6, 2)

BBIBD. The boss block is a b c d e.

a c

2 3 2 3 0 2 3

171 1 1 M 1 %1 Y2 S P2 ol B

0 1, 25 3 4 Oy L Y% 1 %
c d O1 2l 32 (mod 5) d e 0l 1l O2 (mod 5)
c e Ol 2l 41 (mod 5) a e 0l 02 l2 (mod 5)
a c Ol 12 22 (mod 5) b e Ol 22 32 (mod 5)
a d Ol 32 42 (mod 5) b ¢ Ol 12 32 (mod 5)
a b Ol ll 32 (mod 5) b d Ol 22 42 (mod 5)



Similar methods can be used to prove the following.

THEOREM 4.5. The only possible BBIBDs with k=6 or k=17, and u 22

are the following.

(1) 4 (1,3) BBIBD with parameters (12, 22, 11, 6, 5)
(2) A (16,2) BBIBD with parameters (24, 184, 46, 6, 10).

An example of (1) 4is given in Section 6. The authors know of no example
of (2).

We give the following theorem.

THEOREM 4.6. For any positive integer k there exists only finitely many
integers v such that a BIBD (v,b,r,k,)) is an (m,u) BBIBD, with
u > 1.

2
k LD 4+ DI + (ke
Proof. By Lemma 3.6, u < 5 - By Lemma 3.4, v T e
2 ”
Thits v i< [(k-1)" + (u=1)1r+ (k—-p)
(u-Dr
D? |, &)
=Y Dz Tt

Therefore with k and u fixed, v is bounded, since u # 1. Thus there

are only a finite number of possible values for v.
8. BBIBDs with m < 3.

It has been shown that a BBIBD with m = 1 has parameters
(n(@r - A+ 1), n(@x + 1), nx + 1, oA - + 1, A) (see, for example [6])
In this section we consider BBIBDs with m = 2 or 3.

THEOREM 5.1. There exists no BBIBD with m = 2.

Proof. Suppose there exists a BBIBD with m = 2. By Lemma 3.1, (r—Z)[ r(k-1),
since b 1is an integer. Thus if ¢ 1is odd (r—Z)lk—l, and if r is

even, E%gl(k—l).

If r is odd, r < k+l. By Lemma 3.3, » 2 u since in any BIBD
r > k. Then Lemma 3.2 implies r 2 2+k. This is a contradiction.

If r is even, then Eégl(k—l), r = 24k implies r - 2 = 2(k-1),
or r = 2k.

s o LeD? ¢ o112k + Gew)
(u-1)2k + (k-n)

*"Since k|v, thus k]u. However, pu < k, so we have a contradiction.

Then, by Lemma 3.4,
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Similar, but more complicated calculations can be used to obtain

parameters of BBIBDs with m = 3. The following is obtained.

THEOREM 5.2. The only BBIBD with m =3 4is a (6, 15, 5, 2, 1) BIBD.
REMARK. The above design is a (3,1) BBIBD by Theorem 4.1.

Proof. From Lemma 3.1, we have (r—3)|2r(k—1).

First, suppose r = 2 or 4 (mod 6). Then (r—3)|(k—l), so r < k-2,
But Lemma 3.2 implies r = k+3, a contradiction.

Next, suppose r =1 or 5 (mod 6). Then (r—3)](2k—2), and as above
r 2 k+3. Thus r-3 = 2k-2 so r = 2k+1. Substituting into Lemma 3.1 and

k (4k+1)
S+ Thus  (ktl) | (4k+1), so k = 2.

This gives rise to the (6, 15, 5, 2, 1) BIBD.
If r = 0 mod 6, then (% - 1)|(k-1). Since r = k+3, we have

using bk = rv, we obtain v =

r =3k or r = (3k+3)/2. Proceeding as above, we obtain in the first case

that v = (5k-1)/2k, so k = 1 In the second case, v = k(7k+5)/(k+5), so

s = 1, 5 or 13. These do not give rise to possible parameters for BIBDs.
Finally, we consider r = 3 mod 6. This case is handled similarly,

and no BIBDs result.

6. Further Remarks.

2
As indicated in Section 2, an affine resolvable BIBD #s a (1, % )

BBIBD. However, the converse is not true, as the following example indicates.

EXAMPLE 6.1. There exists a (12, 22, 11, 6, 5) BIBD which is a (1,3)
BBIBD but not affine resolvable. The block 1 2 3 4 5 6 can be taken as a
boss block, and intersects all blocks except 7 8 9 10 11 12 in exactly
three varieties. Yet this BIBD is not resolvable, since, for example,

1237 89 occurs in no parallel class.

123 4 5 6 235 7 10 12
789 10 11 12 235 8 9 11
123 7 8 9 245 8 10 11
123 10 11 12 245 7 9 12
134 7- 9 10 246 8 10 12
134 8 11 12 246 7 9 11
145 7 10 11 346 9 10 12
145 8 9 12 346 7 8 11
156 7 11 12 356 9 11 12
156 8 9 10 356 7 8 12
126 7 8 12

126 9 10 11



It is clear that a (1,u)BBIBD is an affine resolyable BIBD if and only if
every block is a boss block. However, as the above example indicates, not
every block of a BBIBD need be a boss block. In fact, it may be checked that
123456 and 7 8 9 10 11 12 are the only boss blocks in the above BBIBD.
In some cases, a BBIBD has a unique boss block. Sufficient conditions

for this to happen are given in the following theorem.

THEOREM 6.1. A BBIBDwith m > 1 and u not dividing k has a unique boss
block.

Proof. Let B be a bess block. Any other block in the design intersects
-B in 0 or u varieties. Since u does not divide k, any parallel
class must contain B. Since m > 1 no block other than B can be a
boss block.

In Example 4.2, m = 6, p = 2, and k = 5. Thus Theorem 6.1 applies,
and the block a b c d e is the dnly boss block in the design.

We close by describing an infinite class of boss block designs. This
construction is due to Yul Inn [3].

THEOREM 6.2. Let 0 < t <n be integers. Then there exists a BIBD, with

= 2ot p Lo gl o= L, whichdem (52,1 BRIED.

Proof. Denniston [2] has shown that if 0 < t < n are integers, then there

. t+ £ : s y : n
is a set of v = 2 "42°-2 points in the projective plane of order 2

such that any line meets this set in either k = 2t or 0 points. Such
a set of points is called a {Zt;Zn}—aPc. Delete the points not in the arc,
thus obtaining the desired BIBD.

Choose any block B as the boss block. Each of the points of the
projective plane which were expunged from the line containing B induce a
parallel class containing B. There are m = 2n+1_2k such points, and no
two of the parallel classes formed contain a common block other than B.

The remaining blocks all meet B in p = 1 point. Thus we have a boss

block design.
7. Conclusion.

Thus we have generalized Bose's inequality to obtain

r(m-1) (k-1)
r-m

bzv+r-1+

for a BIBD containing a block B which occurs in m parallel classes no
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two of which contain a common block other than B. Designs which satisfy
the above inequality as an equality are termed boss block designs and are

studied for small values of k and m.
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