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On Resolvable Group-divisible Designs with Block Size B

Roll Rees* and D.R. Stinson**

ABSTRACT

In this paper, we consider a generalization of nearly
Kirkman triple systems (NKTS). We can view a NKTS as
being a resolvable group divisible design (GDD) of block-size
three and group-size two. This suggests the stucly of resolv-
able GDDs of block-size three, having other group-sizes.

We are able to construct many new examples of these
designs. In.doing so, we make essential use of a type of design'called a "frame", which can be thought of as a Kirkman triple
system with "holes".

1. Introduction.
We need to begin with some definitions.
A pairwise balanced design (or, PBD) is a pair ()(,A), such that A is

a set of subsets (called blocks) of X, each of cardinality at least two, such
that every unordered pair of pointe (i.e. elements of X) is contained in a
unique block in A. If u is a positive integer and y'( is a set of positive
integers, each of which is greater than or equal to Z, then we say that
(X,A) is a (u,l()-PBD if l-Yl: ,, ancl lA le f< for every A €A.

lf K : {/c}, then a (u,/()-PBD is referred ro as a (u,k,l)-BIBD (bol-
anced tncomplete bloclc design). A (u,B,I)-BIBD is called a Steiner trtple
syetem;these designs exist for all u : 1 or B modulo 6.

A group-diuisible deaign (or, GDD), is a triple (X,G,A), which saris-
fies the following properties:

a) G is a partition of X into subsets called graups

2) A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point
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3) eyery pair of points from distinct groups occurs in a unique block.
The group-type, or type, of a GDD (X,G,A) is the multiset

{lCl, G €G}. We usually use. ?n "exponential" notation to clescribe
group-types: a group-type 1i2i3t . . . denotes i occurrences of l,j
occumences of 2, etc. We will say that a GDD is a I(-GDD if h I € K fo.
every A € A.

A parallel claaa in a PBD or GDD is a set of blocks that partitions
the set of points. If we can partition the blocks into parallel classes, we
say that the design is resolaable. Clearly, if a parallel class of blocks of
size lc exists in a design, then /c must divide u.

A resolvable (u,3,l)-BfBD is called a Kirkman triytle syatem and
denoted KTS(u). It was conjectured over a century ago that a KTS(u)
exists if and only if u = 3 modulo 6, but this was proven only in f971 by
Ray-Chaudhuri and Wilson [7] (see also [a]). A related class of GDDs was
defined by Kotzig and Rosa [6]: a 3-GDD of group-type 2" is referued to as
a nearly Kirlcman triple system, and denoted NKTS(2u). The results of
[1] and [6] establish the existence of N/(I9(u) for all u : 0 modulo 6,
u ) 18, u f {S+,t02,L72). In [2], Brouwer consrrucred Nl(7i9(102) and
NI<fS{flz). Finally, a purported N/(?S(A+) was presented in [5]; however
this design is not an N/(TS, and it appears that the construction cannot
be salvaged. However, we shall construct an N1(7lS(8+) in Section 2, thus
completing the spectrum.

One obvious generalization of NI(TS is to consider resolvable
3-GDDs with other group sizes. It is not difficult to prove that all Broups
in a resolvable }-GDD must be the same size (see [11, Lemma f .f] for a
proof), so we consider resolvable 3-GDDs of group type g". We denote
such a design by RGDD(g"). First, we clearly must have u ) 3. We have
noted that g'u : 0 modulo 3. Also, since every point occurs in a block
with every point not in the same group, we must have g.(u-l) = 0 modulo
2. We show that these two neeessary numerical conditions are sufficient
for existence, with a few exceptions and a few unsolved cases.

2. Kirkman frames and recursive constructions.
We use a particular type of design called a frame a^s an essential tool

in recursive constructions for RGDDs.

If ()(,G,A) is a /c-GDD and G ( G, then we say that a set P C A of
blocks is a holey parallel class with hole G provided that P consists of
( X l- lC D/k disjoint blocks that partition AG. If we can partition the
set of blocks A into a set P of holey parallel classes, then we say that
()(,G,P) is a lc-frame. We can think of a frame as being a resolvable
BIBD with holes, exactly as a GDD is a BIBD with holes.

We will be using 3-frames, which we refer to as l{irlcman frames.

F
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These are studied in [8], in which they are used to prove new results on
the existence of subdesigns in Kirkman triple systems. In the case where
all the holes have the same size, their existence was completely determined,
as recorded in Theorem 2.1.

Theorem 2.1. There exiate a Kirkman lrame ol type t" i! and only il
t ie cuen, u 7 4, and t(u-l) = 0 modulo l.

Kirkman frames are related to the problems of resolvable B-GDDs
and resolvable eoverings of pairs by triples by means of the following sim-
ple constructions.

Theorem 2.2. Suppoee there ia a Kirlcman frame of type tirt;, ....t,1i,
and let tlt;, lor 1< d < i. Suppoae alao that there exiat RGDDUtrfin),
Ior 1 S r S f. Then there exieta on RGDD(I"), uthere
u:1+ Xlsisr''i'u;/t'

In applying these two theorems, it will be useful to have constructed
some Kirkman frames. We do this now. We use a recursive construction
for frames, which is found in [S, Construction B.l].

Theorem 2.3. Let (X,G,,\) be a GDD, and let w: X *Z+ U {O} (we
eay that w ie a weighting). For euery A eA, Euppose there is a frame o!
typc {ut(x): c €A}. Ihen there ie a frame of type {Xrec.(r): G € G}.

We now mention some useful corollaries of this construction.

Corollary 2.4. Suppoae r and tn are integera and O I r (. 4m. Then
there ra a Kirlcman lrame o! type 24h+t(6r)r, ""a in" of type
483-+r(t2r)r.

Proof. We begin with a resolvable (LZr+4,4,1)-BIBD, which exists UV [+].Adjoin "infinite" points to r of the 4m * I parallel classes, thus creating a
{4,5}-GDD of group-type 43-+lrl. Apply Theorem 2.8, giving every point
weight 0, noting that Kirkman frames of types 6{ and 66 exist (Theorem
2.1). The first frame results. If we instead use weight LZ, the second
frame is obtained.

Corollary 2.5. Suppose m ) 4, ln * G or lO, and O { r {m.
there ia a Kirkman lrame of type (6m)4(6r)t, o;e oi, o!
(tzm).(rzr)t.

then
tape
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Proof. There is a TD(b,m), by [O] and [fO]. Delere m _ r points from
one group to yield a {4,S}GDD of type m4rr. Now, apply Theorem 2.8,
Siving ev_ery point weight 6. We have the required inpuf fiames, of types
6a and 66. The first frame is constructed. Ajain, to construct, the second
frame, use weight 12.

As mentioned in the introduction, an N/(?S(g4) remains to be con_
structed. We accomplish this using frames.

First, a group-divisible design with group-type 66gl and blocks of size
4 is presented in the Appendix. 'Ihis gives rise to a I(irkman frame as fol_
lows.

Lemma 2.0. There exists a Kirlcman frame of type 1261gr.

Proof. Apply Theorem 2.3 to the above GDD, giving every point weight
o

The N/<7S(84) is constructed from the frame of type t261gr by
means of a slight generalization of Theorem 2.2. We use th; Zg points in
the frame, together with 6 ideal points. For each hole of size ll, we fill inan incomplete N-I(?^g(18) "missing,, an N/fllg(6) (this is Brouwer,s
ingredient "C" in [2]). ]'or the hole of size tg, fill in an NI{TS(Za). (trach
hole is filled in with the relevant design on the point set of that hole, plus
the 6 ideal points.)

The resulting design is an N/fllS(ga). We record this as

Theorem 2.7. There erists an NKTS(ga).
We have observed that we can construct resolvable GDDs by filling

in the holes of Kirkman frames. We have a few other simple recursiv*
constructions.

Theorem 2.8. Suppose there is a RGDD(g"), RGDD(us), ancl
RGDD(ur). then there is a RGDD((luy"rt1.

Proof. From fhe RGDD(9"), we eonstruct a {U,g}-GDD of type Br"/ by
taking as groups a parallei class of blocks if sizl g.- fhi, new GDD is unf-
tormlg reaoluable: the blocks can be partitioned into parallel elasses, each
of which consists of blocks of only one size. Now give every poinC weight
u.r, replacing every block by a RGDD(*rt) or RGDD(il).
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Theorem 2.9. Suppose there is a RGDD(g"), and a RGDD(hs). Then
there ia a RGDD((sh)").

Proof. Start with a RGDD(g"), and take h copies of each point. Then
replace each block by the blocks of a RGDD(hr) in which the groups are
the copies of the three points in the block.

The other construction fills in the Broups of an RGDD.

Theorem 2.1O. Suppose there is a RGDD(g") and a RGDD(hr), uthere
h.u : g. Then there is a RGDD(h"'r).

Proof. Obvious.

3. Resolvable GDDy.
Before constructing the resolvable GDDs, we first note the necessary

numerical conditions for existence. We have the following.

Lemma 3.1. Suppose there ia a RGDD(g"). Then the following condi-
tiona hold:

il g = I or 5 modulo 6, thenu : g modulo E;

il g = 3 modulo 6, thenu = 1 modulo Z;
iI g = 2 or 4 modulo 8, thenu = 0 modulo l; and
il g =O moduloS,then there are no congruential conditions on u.

Proof. We observed in the introduction that 31b.") and g(u_l) is even.
The results follow.

We can now prove our existence results. We split the proof into
several ca^ses.

Lemma 3.2. There is a RGDD(gr) i! and onty il g * 2,6.

Proof. A RGDD(gt) ir equivalent to a pair of orthogonal Latin squares of
order g, which are well-known to exisb if and only if g # 2,6.

Lemma 3.3. II g = I or 5 modulo 6, then t.here ts an RGDD(g") il and
onlyil u:3 modulo6.

Proof. If g :1, then an RGDD(1,) is just a Kirkman triple system of
order u,which existfor all u =3 modulo6. If g) I,g= l orb modulo
6, then we apply Theorem 2.g, obtaining RGDD(9,) froni RGDD(1,).
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Lemma 8.4. For g :3 rhodulo 6, then there ie on RGDD(g"\ il and
onlyit u =l modulo2.

Proof. If g : 3, then we obtain an RGDD(S") from a Kirkman triple sys-
tem of order 3u, by taking one parallel class as groups of our RGDD. This
construction works for all odd u. W g)3, g =B modulo 6, then obtain
RGDD(9") from RGDD(3') by means of Theorem 2.9.

Lemma, 8.6.
u )9.

There ia an RGDD(Z") it and only il u = 0 modulo S,

Proof. These are NKTS(2u).

Lemmo S.0. T'here ia an RGDD(4") il and only it u = 0 modulo l.

Proof. There is an RGDD(43) by Lemma 8.2, and we present RGDD(4o)
and RGDD(412) in the Appendix. We can construct RGDD(418) from
RGDD(243) and RGDD(46) by apptyins Theorem z.to (rn niCfjnlz+1
exists by Lemma 3.2).

If u : 3 modulo 6, u ) 3, then we apply Theorem 2.2. We con-
struct an RGDD(+') from a I(irkman frame of type g@-r\/2, filling in
RGDD(43).

If u : 0 modulo 6, u ) 18, then there is a 4-GDD having group-type
2(u<lr25r, by Brouwer [3]. Apply Theorem 2.8, giving every point weight
4, obtaining a Kirkman frame of type g(u-0)126t. Now, apply Theorem
2.2, filling in RGDD(43) and RGDD(40).

Lemma 3.7. Il g =2 or 4 modulo 6, g ) B, then there is a RGDD(g")
il and only il u =0 moduloS,ercept po*ibly when u:6 and g:-Z or
LO modulo 12.

Proof. If u : 3, then Lemma 3.2 applies. If u :0 modulo B, u ) g,

then we construct RGDD(g") using Theorem 2.0, from RGDD(2"\. For
u :6i g =4 or 8 modulo 12 (g * 8),we can likewise construct RGDD(g6)
from RGDD(46), using Theorem 2.9. tv RGDD(ad) is presented in the
Appendix. This leaves only the cases indicated.

The designs we have yet to construct are RGDD(g") where g = 0
modulo 6. There is no restriction on u in these cases. First, we consider
g-8.
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Lemma 8.8. It u ) 4, u # ll or 14, then thcre cxiete an RGDD(6").
Alao, there doee not etiat an RGDD(gs).

Proof. First, Euppose u = 0 modulo B. If u : i, the RGDD does not
exist (Lemma 3.2). .We presenr an RGDD(0o) in rhe Appendix. If u ) O,
obtain an RGDD(6") from en RGDD(2") bV applying Theorem 2.g.

Next, we consider u = I modulo 3. We present RGDD(6{),
RGDD$1) and nGDD(6t0) in the Appendix. .If .r. ) 18, then we epply
Theorem 2.2, usin6 a I(irkman frame of type 1g("-t)/t miling in nCnO(0i1.

We further subdivide the ease u : 2 modulo 3 into subcases modulo
\2.

If u = 2 modulo L2, u ) 26, then we spply Corollary 2.b with
?.: (\:S)/a. and r - 5. This produces a t<irt **, frame of type
\6(y-6)/4)tsO'. Now we eppty Theorem 2.2, fi[ing in RGDD $t"-ifr\(which exists since (u-Z)/+ = 0 modulo 3) and 

"r, 
nCOOlOo;. ihu .**

u - 14 is unsolved.

An RGDD(66) is presented in the Appendix. U u = b modulo 12,

!.7_lll, thcn-we apply Th,eorem 2.2, using a Kirkman frame of type
z4tu-tt/+. We fill in RGDD(66).

Next, consider u = 8 modulo 12. First, an RGDD(68) i" presented in
the Appendix. If u ) 20, then we apply Corollary 2ra ryith m : (u-g)Az
and r : 3, producing a Kirkman frame of type 24fu-t)/t1gr. Then 

"pptyTheorem 2.2, filling in RGDD(6{) and RGDD(66).
Finally, the case u = ll modulo 12 is similar. The case u : 11 is a

possible exception. If u ) 3b, then we ean apply Corollary 2.4 with
y.,:Jy, !,1)/!? and r : 6, consrrucring a Kirkman frame of rype
t{t*rt/+36r. We then fill in RGDD(66) orrd RGDD(6?) (Theorem Z.Z). 

-If
u : 23, we proceed as follows. Begin with an RGDD(t2a) (appendix).
Adjoining a group at infinity of size 18, we obtain a +-GDD "f i"""p typu
12418r. Giving every point weight 2, and applying Theorem 2.8, we tbtuin
a Kirkman frame of type 24{80r. Now, fillin the holes with RGDD(06) and
RGDD(67), thereby construcring RGDD(023).

Since we have covered all cases, the proof is complete.
We next prove a similar result for groups of size 12. We shall use

the following corollary of Theorem 2.8.

Corollary 3.9.
RGDD(Lz2\.

Suppose there rs a RGDD(G"). Ihen there ie a

113

7



Proof. eppf Theorem 2.8 with g : 6, t! : 4, noting rhaL RGDD(4r)
and l?GDD(4') exist.

Lemma 8.1O. Il u ) 3, then there exiots a RGDD(L2").

Proof. If u is odd, then construct RGDD(LZ,) from RGDD(3"), using
Theorem 2.9 with h : 4.

If u is even, u # 4,6,22, or 28, apply Corollary B.g. We present
RGDD(L?4) in the Appendix. Nexr, we obrain " itCOOltzul i.o* a
RGDD(46\*by applying Theorem Z.g. To construcr nCiOltZnl and
RGDD^(lzo), *" apply Theorem 2.2, using l(irkman frames oi type 867
and 36u, filling in RGDD(rZn).

Now we consider group-sizes that are multiples of 6 or 12.

Lemma 8.11.

1) Suppoaeg=6 or30 modulo 3G,g>80. Ilu)3andu*14,then
there exieta a RGDD(g").

2) Suppoee g:18. I! u73 and u*LL or 14, then there exiats a
RGDD(s"\.

3) Suppose g : O,L2,L8, or 24 modulo 16, 9 > 24. I! u ) l, then there
exista a RGDD(g").

Proof. The eases where u : 3 were done in Lemma 8.6, so we can
a^ssume u ) 4.

Suppose that u ) 4, u # lL or 14. These designs are constructed
from r?GDD(6") and RGDD(tZ") using Theorem 2.9.

N.{!,we consider u:11. If g:0 mod 6, g}1g, we construct
RGDD(grr) from RGDD$\), using Theorem 2.9.

Finally, suppose u:14. Let g - lw, where w =0,4,6, or g modulo
12, ur ) 8. Then, we apply Theorem 2.g using RGDD(67), RGDD(uf),
and /?GDD(.') (this last, RGDD exisrs by Lemma B.Z).

This covers all the required cases.

Our main existence result is obtained by gathering together all the
results we have proved so far.

Theorem 9.L2. TIte necessary congruential conditions lor eristence o!
a_ -ryGDg(g") are euf ft-cient, with the exeeptions o! RGDD(Z\,
RGDD@a), and RGDD$3), and raith th,e lollouting possible exceptions
RGDD(s"):
(i) g = 6 or 30 modulo 3S and u : L4;
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(ii) 9- 6or18 andu:Ll;and
(iii) g = 2 or L0 modulo L2 and u - 6.

We observe that all the exceptions in (i) and (ii) could be eliminated
with the construction of RGDD(6tr) and RGDD(}r\.

Addendum. It has come to our attention that the problem of construct
ing resolvable GDDs with block-size three has been considered indepen-
dently by Eric Mendelsohn and Shen Hao. They have also proved some of
the results contained in this paper. They will report their results in a
forthcoming paper.
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Appendix
A GDD of type 669l and block-size 4.

Points: (Z1X{L,2,1,4,8,6,2}) U {oq: I (, < 4}.
Groups: {{f}x{r,2,3,4,5,6}: i6,hs}
U {({0,1,2,3,4}x{7}) U {oq: 1 ( r < 4}}.
Blocks: develop the following blocks modulo S:

{(0,7),(0,2){(0,2),(o,t),(2,1),(r,4)}
{(0,7),(0,3),(2,3),(4,6)}
{(o,z),(t,b),(4,b),(J,2)}
{(o,z),(t,r),(4,3),(2,s)}
{(o,z),(4,r),(t,B),(a,s)}
{(0,1 ),(r,1 ),(2,2),(4,2))
{(o,E),( t,s),(2,6),(4,6)}
{(o,r ),(4,3),(B,b),oq}
{(0,1),( 1,3),(z,g),oq}
{(0, 1 ),(3,4),(Z,S ),oor}
{(0,2),( r,3),(2,5),m.}

{(
r(

t(0 2,4)
1,6)
,.,\
4,2)
1,3)

,7)
,7)
,7)
,7)
,3)

0
0

{(0
t(0

,(

,(
,(

,(

,(

,(

,(

,(
,(
,(

,(

1,2),(3,3))
3,4),(0,5))
2,6),(3,1))
4,4),(0,6))
0,4),(3,6))
2,4),(4,4))

A resolvable GDD of type 40.

Points: (ZrcX {1,2}) U {oq: I ( t < 4}.
Groups: {{0+r,b+r} X {1,2}: r : 0,1,2,8,4} U {{oq, I < i < 4}}.
Resolution classes: develop the following modulo l0

{(1 ,1),(7,1),(8,2))
,2),(7,2),(8,r))
,1),(2,2),oq)
,r),(9,2),oq)

{(0,2),(4,4),( t,O),oq }
{(0,2),(3,4),(4,5),oq}
{(0,2),(4,8),(2,6),oq}
{(0, I ),(2,4),( 1,6),oo*}

{(s,1),(4,1),(6,1)}
{(8,2),(4,2),(6,2)}
{(2,r),(0,2),og}
{(o,r),(s,z),mn}

{(1
{(0
{(5

A resolvable GDD of type 412.

Points: (ZnX {1,2}) U {oq: I (, S 4}.
Groups: {{0+r,1t1r} X {1,2}: 0 < i < r0} U {{oq: 1 ( d < 4}}.
Resolution classes: develop the following modulo 22
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{(3,1),(5,1),(8,2)}
{(B,z),(b,2),(8,1)}
{(7,r),(r4,1),(20,2)}
{(7,2),(r4,2),(20,r )}
{(r2,1),(rb,1),(2r,r)}
{( I 2,2),( I 5,2),(2t,2))
{(19,1),( t t,2),oq}
{(17,1),(13,2),*n}

A resolvable GDD of type 64.

Points: ZsX {L,2,3).
Groups: {{0+r,4+r} X {t,2,9}: r : 0,1,2,8}
Resolution classes: First, we form five classes by developing each of
the following five blocks modulo 8.

{(o,l),(1,1) ,(2,2\}
{(o,z),(1,2),(z,r)}
{(4,r),(s,t),(r6,2)}
{(4,2),(s,2),(ro,l)}
{(6,1),( to,r),(tB,r)}
{(6,2),( to,2),(18,2)}
{(r r,r),(r0,2),oq}
{(r8,1),(12,2),oq}

{(0,1),(1,2),(7,8

{(o,r),(6,2),(1,3

{(o,r),(8,2),(s,3
{(0,1),(5,2),(2,3

{(o,r),(7,2),(6,9

))
))
))
))
)).

Next, we obtain four more parallel elasses, by developing the follow-
ing parallel class modulo 8 (since adding 4 to every element leaves
this parallel class fixed, we get an orbit of length 4):

{(2, r ),(4,1),(5,1
{(4,2),(6,2),(z,z
{(5,3),(7,3),(O,s
{(7,r),(1,2),(z,s

{(6,1),(0,1),(1,r)}
{(a,2),(2,2),(3,2)}
{(1,3),(3,3),(4,3)}
{(3,r),(5,2),(6,3)}

))
r))

))
))

A resolvable GDD of type 66.

Points: (ZpX {1,2}) U ({o} x Zz)U {oq: I ( i < 4}.
Groups: {{0+i,Z1i,4ai,6+t,8+r,10+i} X {r}: z : 0,1;, : 1,2} U
t({o} x Zz) u{oq: I (, S 4}}.
Resolution classes: develop the following modulo 12 (note: the second
coordinate of elements in ({a } X Zr7 is written as a subscript, and is
evaluated modulo 2)

117



7

{(4,1)
{(3,2)
{(0,r)
{(2,1)
{(7,1)

{(o,t),(t,r),(s,t)}
{(2,2),(s,2),(10,2)}
{(+,r),(r 1,1),(13,2)}
{(s,r),(e,2),oq}
{(o,r),(re,2),oq}
{(12,1),(11,2),os}

{(8,1),(e,1),(4,2)}
{(8,2),(1r,2),(5,r)}
{(r,t),(2,2),oq}
{(3,r),(5,2),*o}
{(a,z),(7 ,z),a r}

{(0,2),(1,2),(4,2)}
{(2,r ),(6,1),(3,2)}
{(7,r ),(rB, t),(s,2)}
{(8,1),(r4,2),oq}
{(10,1),(6,2),*n}
{(t+,t),(z ,z),oq}

,(r 1,r),(9,2))
,(r0,2),(6,1))
,(0,2),oq)
,(t,z),oq)
,(to,t),ao)

A resolvable GDD of type 66.

Points: (Zwx{1,2}) U {mr: t < i < 6}.
Groups: t{0+f ,5+f ,10+i} X {r,2}: i : a,l,z,B,a} U{{oq:1Si<6}}.
Resolution classes: develop the following modulo lb:

A resolvable GDD of type 67.

Points: (ZnX {1,2}) U {oq: 1 ( i < 6}.
Groups: {{0+i,B+i,6+f ,9+r,12+i,tS+r} X {f}: i : O,t,Z; j : t,Z}u{{oq:1(t<6}}.
Resolution classes: develop the following modulo lg.

{(0,1
2,1
6,1
8,2

{(
{(
{(

),(r,r),(s,r))
),(4,r),(2,2))
),(14,1),(8,2))
),(rs,2),(16,r))

{(o,z),(r,2),(b,2)}
{(3,1),(10,1),(4,2)}
{(7,2),(t7,2),( I 2, I )}
{(r4,2),(r6,2),(8,1 )}
{(e,l),(12,2),oq}
{(r3,1),(e,2),*n}
{(17,1),(10,2),oq}

{(z,t),(11,2),oq}
{(11,1),(13,2),oq}
{(15,1),(6,2),oq}

A resolvable GDD of type 68.

Points: (ZnX {1,2}) U {oq: t ( r < 6}.
Groups: {{0+f ,Z+f Jq+t} X {1,2}: i : 0,1,2,3,4,5,6)
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u{{oq:l(i<6}}.
Resolution classes: develop the following modulo 2L.

{(0,1),(r,1),(3,1)}
{(0,2),(1,2),(8,2)}
{(4,1),(r0,1),(b,2)}
{(t,t),(tt,r ),( I 3,r)}
{(e,2),(1s,2),( rs,t )}
{(8,r ),(r7,2),oq}
{(14,1),(12,2),oq}
{(18,1),(10,2),*r}

{(2,1),(6,1),(11,1)}
{(2,2),(6,2),(1r,2)}
{(5,1),(13,1),(4,2)}
{(8,2),(r6,2),( r9,1)}
{(r4,2),(20,2),(e,r )}
{(12,1),(15,2),oq}
{(16,1),(18,2),ma}
{(20,r),(7,2),oq}

A resolvable GDD of type 610.

Points: (Zrx{1,2\)U{oq: 1 ( i S 6}.

Groups: {{0+i,9+f ,18+r}X{1,2}: i : A,L,2,3,4,5,6,7,8} U
{{oq,1<i<6}}.
Resolution classes: develop the following modulo 27

{(0,1),(1,1),(3,1)}
{(+,r ),(0, r.),(ro,r )}
{(2,2),(6,2),(r2,2)}
{(2,1),(18,r),(4,2)}
{(5,2),(17,2),(10,1)}

{(1 1,2),(25,2),(15,1)}

{(10,2),(2 1,2),(23,1 )}
{(14,1),(22,2),oq}
{(1e,1),(24,2),oq}
{(2s,1),(18,2),or}

{(2,r),(6,r),(12,r )}
t(0,2),(1,2),(3,2))
{(s,r),(rB,t),(2,2)}
{(8,1),(2r,1),(e,2)}

{(rs,z),(2s,2),(1 1,1)}

{(1e,2),(26,2),(20,1 )}
{(8,2),( r3,2),(24, I )}
{(rz,r),(r0,2),oq}
{(22,1),(14,2),*u}
{(26,1),(16,2),oq,}

A resolvable GDD of type 80.

Points: (ZroX{L,2}) U {ot: 1 ( i < 8}.

Groups: {{0+i,5+f ,10+f ,tS+i} X {1,2}:
u{{oq:l(i<tr}}.
Resolution classes: clevelop the following modulo 20

l : 0,1,2,3,4)
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A resolvable GDD of type l2a.

{(o,r ),(1,1),(B,l)}
{(0,2),(r,2),(3,2)}
{(+,r),(ro,r),(7,2))

{(8,2),(14,2),(l o,r)}
{(7,r),(15,2),oq}
{(s,r),(r8,2),oq}
{(12,1),(16,2),oq}
{(r8,1),(tl ,2),ooi

{(2,1),(o,r ),(13,r)}
{(2,2),(6,2),(rs,z)}
{(b,r),(u,r),(a,z)}
{(e,2),(17,2),(15,1)}

{(8,r),(rs,2),oq}
t(11,r),( 12,2),oon)

{(14,1),(10,2),oq}
{(19,r),(5,2),oq}

{(0,2),(1,2),(s,2)}
l(2,2\,(4,2),(9,1))
{(8,r),(r2,2),oq}
{(rz,r),(r0,2),oq}
{(ro,r),(a,2),oq}
{(o,r),(r+,r),}o}
{(e,2),(r7,2),bz)
{(6,2),(13,2\,o rI

Points: (Z$x {1,1}) U ({o} x ZrlU(t6} x Zs)U {oq: I ( i < 7}.
Groups: {{0tr,3+r',0+d,g+d,12+d,tb+d}X{t,Z}: r:0,1,2}
u {({o} x zrlu ({D) x zrlu {oq: 1 ( d < 7}}. 

-'
Resolution classes: develop the following modulo lg (note: the second
coordinate of elements in ({o} X Z) U ({D} X Zr) b wrirten as a
subscript, and is evaluated modulo 2 or S, as the calie may be).

{(0,1),(r,t),(b,r)}
{(2,1),(4,1),(8,2)}
{(z,r),(r+,2),oq}
{(11,1),(r0,2),oq}
{(rb,1),(1r,2),oq}
{(r7,r),(7,2),oq}
{(8,1),(12,2),b }
{(3,r),(10,1),ro}
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