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On Resolvable Group-divisible Designs with Block Size 3

Rolf Rees* and D.R. Stinson **

ABSTRACT

In this paper, we consider a generalization of nearly
Kirkman triple systems (NKTS). We can view a NKTS as
being a resolvable group divisible design (GDD) of block-size
three and group-size two. This suggests the study of resolv-
able GDDs of block-size three, having other group-sizes.

We are able to construct many new examples of these
designs. In doing so, we make essential use of a type of design
called a "frame”, which can be thought of as a Kirkman triple
system with "holes".

1. Introduction.
We need to begin with some definitions.

A pairwise balanced design (or, PBD) is a pair (X,A), such that A is
a set of subsets (called blocks) of X, each of cardinality at least two, such
that every unordered pair of points (i.e. elements of X) is contained in a
unique block in A. If v is a positive integer and K is a set of positive
integers, each of which is greater than or equal to 2, then we say that
(X,A)isa (v,K)-PBDif |X|= v, and |A| €K for every A € A.

If K = {k}, then a (v,K)-PBD is referred to as a (v,k,1)-BIBD (bal-
anced incomplete block design). A (v,3,1)-BIBD is called a Steiner triple
system; these designs exist for all v = 1 or 3 modulo 6.

A group-divisible design (or, GDD), is a triple (X,G,A), which satis-
fies the following properties:

a) G is a partition of X into subsets called groups

2) A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point

* research supported in part by an NSERC postgraduate scholarship
** research supported in part by NSERC grant U0217

ARS COMBINATORIA 23(1987), pp. 107-120.



3)  every pair of points from distinct groups occurs in a unique block.

The group-type, or type, of a GDD (X,G,A) is the multiset
{IG|: G €G}. We usually use an "exponential” notation to describe
group-types: a group-type 1°273% ... denotes i occurrences of 1,7
occurrences of 2, etc. We will say that a GDD is a K-GDD if |A | € K for
every A € A.

A parallel class in a PBD or GDD is a set of blocks that partitions
the set of points. If we can partition the blocks into parallel classes, we
say that the design is resolvable. Clearly, if a parallel class of blocks of
size k exists in a design, then & must divide v.

A resolvable (v,3,1)-BIBD is called a Kirkman triple system and
denoted KTS(v). It was conjectured over a century ago that a KTS(v)
exists if and only if v = 3 modulo 6, but this was proven only in 1971 by
Ray-Chaudhuri and Wilson (7] (see also [4]). A related class of GDDs was
defined by Kotzig and Rosa [6]: a 3-GDD of group-type 2" is referred to as
a nearly Kirkman triple system, and denoted NKTS(2u). The results of
[1] and [6] establish the existence of NKTS(v) for all v =0 modulo 6,
v > 18, v ¢ {84,102,172}. In [2], Brouwer constructed NKTS(102) and
NKTS(172). Finally, a purported NKTS(84) was presented in [5]; however
this design is not an INKTS, and it appears that the construction cannot
be salvaged. However, we shall construct an NK7T5(84) in Section 2, thus
completing the spectrum.

One obvious generalization of NKTS is to consider resolvable
3-GDDs with other group sizes. It is not difficult to prove that all groups
in a resolvable k-GDD must be the same size (see [11, Lemma 1.1| for a
proof), so we consider resolvable 3-GDDs of group type g*. We denote
such a design by RGDD(¢g"). First, we clearly must have u > 3. We have
noted that g-u = 0 modulo 3. Also, since every point occurs in a block
with every point not in the same group, we must have g(u—1) = 0 modulo
2. We show that these two necessary numerical conditions are sufficient
for existence, with a few exceptions and a few unsolved cases.

2. Kirkman frames and recursive constructions.

We use a particular type of design called a frame as an essential tool
in recursive constructions for RGDDs.

If (X,G,A) is a k-GDD and G € G, then we say that a set P C A of
blocks is a holey parallel class with hole G provided that P consists of
(IX |-G |)/k disjoint blocks that partition X\G. If we can partition the
set of blocks A into a set P of holey parallel classes, then we say that
(X,G,P) is a k-frame. We can think of a frame as being a resolvable
BIBD with holes, exactly as a GDD is a BIBD with holes.

We will be using 3-frames, which we refer to as Kirkman frames.
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These are studied in [8], in which they are used to prove new results on
the existence of subdesigns in Kirkman triple systems. In the case where
all the holes have the same size, their existence was completely determined,
as recorded in Theorem 2.1.

Theorem 2.1. There exists a Kirkman frame of type t* if and only 1f
t 16 even, u > 4, and t(u—1) = 0 modulo 3.

Kirkman frames are related to the problems of resolvable 3-GDDs
and resolvable coverings of pairs by triples by means of the following sim-
ple constructions.

Theorem 2.2. Suppose there is a Kirkman frame of type t;“t;"' eyl
and let t|t;, for 1 < i < j. Suppose also that there exist RGDD(tt‘/t+Jl),
Jor 1<i< . Then  there exists an RGDD(t*), where
u=1+ leigt;'u;/t.

In applying these two theorems, it will be useful to have constructed
some Kirkman frames. We do this now. We use a recursive construction
for frames, which is found in [8, Construction 3.1].

Theorem 2.3. Let (X,G,A) be a GDD, and let w: X — Z* U {0} (we
say that w is a weighting). For every A € A, suppose there is a frame of
type {w(x): ¢ € A}. Then there is a frame of type {Zzeaw("’)’ G € G}.

We now mention some useful corollaries of this construction.

Corollary 2.4. Suppose r and m are integers and 0 <r<4m. Then
there 186 a Kirkman frame of type 243'""'1(61')‘, and one of type
48%m+1(12r)t, '

Proof. We begin with a resolvable (12m +4,4,1)-BIBD, which exists by [4].
Adjoin "infinite" points to r of the 4m + 1 parallel classes, thus creating a
{4,5}-GDD of group-type 4*"*!r!. Apply Theorem 2.3, giving every point
weight 6, noting that Kirkman frames of types 6* and 6° exist (Theorem
2.1). The first frame results. If we instead use weight 12, the second
frame is obtained.

Corollary 2.5. Suppose m >4, m # 6 or 10, and 0 <r <m. Then

there is a Kirkman frame of type (6m)*6r)', and one of type
(12m)*(12r)".
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Proof. There is a TD(5,m), by [9] and [10]. Delete m — r points from
one group to yield a {4,5}-GDD of type m*r. Now, apply Theorem 2.3,
giving every point weight 6. We have the required input frames, of types
6* and 6%. The first frame is constructed. Again, to construct the second
frame, use weight 12.

As mentioned in the introduction, an NKTS(84) remains to be con-
structed. We accomplish this using frames.

First, a group-divisible design with group-type 6°9! and blocks of size
4 is presented in the Appendix. This gives rise to a Kirkman frame as fol-
lows.

Lemma 2.8. There exists a Kirkman frame of type 12°18!.

Proof. Apply Theorem 2.3 to the above GDD, giving every point weight
2.

The NKTS(84) is constructed from the frame of type 12%18! by
means of a slight generalization of Theorem 2.2. We use the 78 points in
the frame, together with 6 ideal points. For each hole of size 12, we fill in
an incomplete NKTS(18) "missing” an NKTS(6) (this is Brouwer’s
ingredient "C" in [2]). For the hole of size 18, fill in an NKTS(24). (Each
hole is filled in with the relevant design on the point set of that hole, plus
the 6 ideal points.)

The resulting design is an NKTS(84). We record this as

Theorem 2.7. There exists an NKTS(84).

We have observed that we can construct resolvable GDDs by filling
in the holes of Kirkman frames. We have a few other simple recursive
constructions.

Theorem 2.8. Suppose there is a RGDD(g*), RGDD(w®), and
RGDD(w?). Then there is a RGDD((3w)™/3).

Proof. From the RGDD(g"), we construct a {3,g}—~GDD of type 39/ by
taking as groups a parallel class of blocks if size 3. This new GDD is uni-

Jormly resolvable: the blocks can be partitioned into parallel classes, each .

of which consists of blocks of only one size. Now give every point weight
w, replacing every block by a RGDD(w®) or RGDD(w?).
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Theorem 2.9. Suppose there is a RGDD(g"), and a RGDD(h®). Then
there 16 a RGDD((gh)").

Proof. Start with a RGDD(g"), and take h copies of each point. Then
replace each block by the blocks of a RGDD(h®) in which the groups are
the copies of the three points in the block.

The other construction fills in the groups of an RGDD.

Theorem 2.10. Suppose there is a RGDD(g") and a RGDD(h"), where
hwv = g. Then there is a RGDD(h"").

Proof. Obvious.

3. Resolvable GDDs.

Before constructing the resolvable GDDs, we first note the necessary
numerical conditions for existence. We have the following.

Lemma 3.1. Suppose there is a RGDD(g"). Then the following cond:-
tions hold:

tf g =1 or 5 modulo 6, then u = 3 modulo 6;

if 9 = 3 modulo 6, then u = 1 modulo 2;

1f g =2 or 4 modulo 6, then u = 0 modulo 3; and

tf g = 0 modulo 6, then there are no congruential conditions on u.
Proof. We observed in the introduction that 3 l(g9'u) and g(u—1) is even.
The results follow.

We can now prove our existence results. We split the proof into
several cases.

Lemma 3.2. There is a RGDD(g% if and only if g # 2,6.

Proof. A RGDD(g% is equivalent to a pair of orthogonal Latin squares of
order g, which are well-known to exist if and only if g # 2,6.

Lemma 3.3. If g =1 or 5 modulo 6, then there is an RGDD(g*) if and
only if u = 3 modulo 6.

Proof. If g = 1, then an RGDD(1%) is just a Kirkman triple system of

order u, which exist for all ¥ = 3 modulo 6. If g>1,9g=1or 5 modulo
6, then we apply Theorem 2.9, obtaining RGDD(g*) from RGDD(1%).
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Lemma 3.4. For g =3 modulo 6, then there is an RGDD(g") if and
only if u = 1 modulo 2.

Proof. If g = 3, then we obtain an RGDD(3¥) from a Kirkman triple sys-
tem of order 3u, by taking one parallel class as groups of our RGDD. This
construction works for all odd u. If ¢ > 3, g = 3 modulo 6, then obtain
RGDD(g*) from RGDD(3%) by means of Theorem 2.9.

Lemma 3.6. There ts an RGDD(2") if and only if u =0 modulo 3,
u>9.

Proof. These are NKTS(2u).
Lemma 3.8. There is an RGDD(4") if and only if u = 0 modulo 3.

Proof. There is an RGDD(4°%) by Lemma 3.2, and we present RGDD(4%)
and RGDD(4'?) in the Appendix. We can construct RGDD(4'®) from

RGDD(24%) and RGDD(4°) by applying Theorem 2.10 (an RGDD(24°%)
exists by Lemma 3.2).

If v =3 modulo 6, u > 3, then we apply Theorem 2.2. We con-
struct an RGDD(4") from a Kirkman frame of type 8“2 filling in
RGDD(4%).

If v = 0 modulo 6, u > 18, then there is a 4-GDD having group-type
2("_6)/251, by Brouwer (3]. Apply Theorem 2.3, giving every point weight
4, obtaining a Kirkman frame of type 8~%/220!. Now, apply Theorem
2.2, filling in RGDD(4%) and RGDD(4%).

Lemma 3.7, If g =2 or 4 modulo 6, g > 8, then there is a RGDD(g")
1f and only if u = 0 modulo 3, except possibly when u = 6 and g = 2 or
10 modulo 12.

Proof. If u = 3, then Lemma 3.2 applies. If u =0 modulo 3, u > 9,
then we construct RGDD(g") using Theorem 2.9, from RGDD(2*). For
u =6, g =4 or 8 modulo 12 (g # 8), we can likewise construct RGDD(g°
from RGDD(4°), using Theorem 2.9. An RGDD(8°%) is presented in the
Appendix. This leaves only the cases indicated.

The designs we have yet to construct are RGDD(g*) where g =0
modulo 6. There is no restriction on u in these cases. First, we consider
g = 6.
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Lemma 8.8. If u >4, u # 11 or 14, then there exists an RGDD(8").
Also, there does not exist an RGDD(6%).

Proof. First, suppose u =0 modulo 3. If u = 3, the RGDD does not
exist (Lemma 3.2). We present an RGDD(6%) in the Appendix. If u >9,
obtain an RGDD(6"*) from an RGDD(2") by applying Theorem 2.9.

Next, we consider u =1 modulo 3. We present RGDD(6*),
RGDD(87) and RGDD(6') in the Appendix. If u > 13, then we apply
Theorem 2.2, using a Kirkman frame of type 18(""1)/3, filling in RGDD(6%).

We further subdivide the case u = 2 modulo 3 into subcases modulo
12.

If v =2 modulo 12, u > 26, then we apply Corollary 2.5 with
m = (u—8)/4 and r =5. This produces a Kirkman frame of type
(6(u—6)/4)'30'. Now we apply Theorem 2.2, filling in RGDD(6(+~2/4)
(which exists since (u—2)/4 = 0 modulo 3) and an RGDD(6°%). The case
u = 14 is unsolved.

An RGDD(6°) is presented in the Appendix. If u =5 modulo 12,

4 > 17, then we apply Theorem 2.2, using a Kirkman frame of type
24~ We fill in RGDD(6Y). |

Next, consider u = 8 modulo 12. First, an RGDD(68) is presented in
the Appendix. If u > 20, then we apply Corollary 2.4 with m = (u—8)12
and r = 3, producing a Kirkman frame of type 24(*~4/418!, Then apply
Theorem 2.2, filling in RGDD(6*) and RGDD(6°)

Finally, the case u = 11 modulo 12 is similar. The case u = 11 is a
possible exception. If u > 35, then we can apply Corollary 2.4 with
m = gu—-ll)/12 and r = 6, constructing a Kirkman frame of type
24474361 " We then fill in RGDD(6°) and RGDD(67) (Theorem 2.2). If
u = 23, we proceed as follows. Begin with an RGDD(12*) (appendix).
Adjoining a group at infinity of size 18, we obtain a 4-GDD of group type
12418!. Giving every point weight 2, and applying Theorem 2.3, we obtain
a Kirkman frame of type 24*36'. Now, fill in the holes with RGDD(6°) and
RGDD(67), thereby constructing RGDD(6%).

Since we have covered all cases, the proof is complete.

We next prove a similar result for groups of size 12. We shall use
the following corollary of Theorem 2.8.

Corollary 3.9. Suppose there is a RGDD(6%). Then there is a
RGDD(12%).
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Proof. Apply Theorem 2.8 with g =6, w = 4, noting that RGDD(4%)
and RGDD (4% exist.

Lemma 3.10. If u > 3, then there exists a RGDD(12%).

Proof. If u is odd, then construct RGDD(12") from RGDD(3"), using
Theorem 2.9 with h = 4,

If uis even, u # 4,6,22, or 28, apply Corollary 3.9. We present
RGDD(12*) in the Appendix. Next, we obtain a RGDD(12% from a
RGDD(4% by applying Theorem 2.9. To construct RGDD(12%%) and
RGDD(12%), we apply Theorem 2.2, using Kirkman frames of type 367
and 36°, filling in RGDD (12%).

Now we consider group-sizes that are multiples of 6 or 12.

Lemma 3.11.

1)  Suppose g = 6 or 30 modulo 36, g 230. Ifu >3 and u # 14, then
there exists a RGDD(g").

2) Suppose g =18. If u >3 and u % 11 or 14, then there exists a
RGDD(g").

3)  Suppose g = 0,12,18, or 24 modulo 36, g > 24. If u > 3, then there
exists a RGDD(g").

Proof. The cases where u = 3 were done in Lemma 3.6, so we can
assume u > 4.

Suppose that u >4, u # 11 or 14. These designs are constructed
from RGDD(6") and RGDD(12%) using Theorem 2.9.

Next, we consider u = 11. If g =0 mod 6, g > 18, we construct
RGDD(g"') from RGDD(3"), using Theorem 2.9.

Finally, suppose u = 14. Let g = 3w, where w = 0,4,6, or 8 modulo
12, w > 8. Then, we apply Theorem 2.8 using RGDD(67), RGDD(w?),
and RGDD(w®) (this last RGDD exists by Lemma 3.7)

This covers all the required cases.

Our main existence result is obtained by gathering together all the
results we have proved so far.

Theorem 3.12. The necessary congruential conditions for existence of
a RGDD(g") are sufficient, with the exceptions of RGDD(2%),
RGDD(2°), and RGDD(6%), and with the following possible exceptions
RGDD(g%):

(i) g =6 or 30 modulo 36 and u = 14;

114



(i)

(iii)

with the construction of RGDD(6'') and RGDD(6')

g==06o0rl18andu = 11; and
g = 2 or 10 modulo 12 and u = 6.

We observe that all the exceptions in (i) and (ii) could be eliminated

Addendum. It has come to our attention that the problem of construct-
ing resolvable GDDs with block-size three has been considered indepen-
dently by Eric Mendelsohn and Shen Hao. They have also proved some of
the results contained in this paper. They will report their results in a
forthcoming paper.
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Appendix
A GDD of type 6°9' and block-size 4.

Points: (Z5%{1,2,3,4,5,6,7}) U {oq: 1 < i < 4}.

Groups: {{#1x{1,2,3,4,5,6}: 1€Z;}
U {({0,1,2,34}x{T}) U {oq: 1 < ¥ < 4)}.

Blocks: develop the following blocks modulo 5:

{(0,7),(0,1),(2,1),(1,4)}  {(0,7),(0,2),(1,2),(3,3)}
{(0,7),(0,3),(2,3),(4,6)y  {(0,7),(2,4),(3,4),(0,5)}
{(0,7),(1,5),(4,5),(3,2)}  {(0,7),(1,6),(2,6),(3,1)}
{(0,7),(1,1),(4,8),(2,5)}  {(0,7),(2,2),(4,4),(0,6)}
{(0,7),(4,1),(1,3),(35)}  {(0,7),(4,2),(0,4),(3,6)}
{(0,1),(1,1),(2,2),(4,2)}  {(0,3),(1,3),(2,4),(4,4)}
{(0,5),(1,5),(2,6),(4,8)}

{(0,1),(4,3),(3,5) oo} {(0,2),(4,4),(1,6),00}
{(0,1),(1,3),(2,8),00} {(0,2),(3,4),(4,5),00}
{(0,1),(3,4),(2,8),00}  {(0,2),(4,3),(2,6),00}
{(0,2),(1,3),(2,5),00,} {(0,1),(2,4),(1,6),00,}

A resolvable GDD of type 4°.
Points: (Z,5 X {1,2}) U {oq: 1 <1 < 4},
Groups: {{0+1,5+¢} X {1,2}: 1 = 0,1,2,34} U {{oq: 1 < i < 4}}.
Resolution classes: develop the following modulo 10

{(L),(7,1),(8,2)}  {(3,1),(4,1),(6,1)}
{(1,2),(7,2),(8,1)}  {(3,2),(4,2),(6,2)}
{(0,1),(2,2),00}  {(2,1),(0,2),00}
{(5,1),(9,2) (9,1),(5,2),00,}

A resolvable GDD of type 4!2.
Points: (Zy X {1,2}) U {ogq:1 <1 < 4).
Groups: {{0+1,114+1} X {1,2: 0<i <10} U {{oq: 1 < < 4}}.
Resolution classes: develop the following modulo 22
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ODML22)  {(B1)6.1),62)
(©02)(12)(21))  {(3.2)(52)(81))

{(4,1),(91),(182))  {(7,1),(14,1),(20,2))
{(4,2),(9,2),(16,1)} {(7,2),(14,2),(20,1)}
{(6,1),(10,1),(18,1)}  {(12,1),(15,1),(21,1)}
{(6,2),(10,2),(18,2)}  {(12,2),(15,2), (21 2)}
{(1L,1),(19,2),00}  {(19,1),(11,2),00,
(507200 (1710185 00)

A resolvable GDD of type 6*.
Points: Zg X {1,2,3}.
Groups: {{0+1,4+1} X {1,2,3}: 1 = 0,1,2,3}

Resolution classes: First, we form five classes by developing each of
the following five blocks modulo 8.

{(0,1),(1,2),(7,3)}
{(0,1),(6,2),(1,3)}
{(0,1),(3,2),(5,3)}
{(0,1),(5,2),(2,3)}
{(0,1),(7,2),(6,3)}.
Next, we obtain four more parallel classes, by developing the follow-

ing parallel class modulo 8 (since adding 4 to every element leaves
this parallel class fixed, we get an orbit of length 4):

{(2,1),(4,1),(5,1)}  {(6,1),(0,1),(1,1)}
(4.2)(62),(7.2)  {(0,2)(2,2),(3,2))
{(5,3),(7,3),(0,3)}  {(1,3),(3,3),(4,3)}
{(7,0),(1,2),(23)}  {(3,1),(5,2),(6,3)}

A resolvable GDD of type 6°.
Points: (Z1, X {1,2}) U ({a} X Zy) U {ogq:1 < ¢ < 4).
Groups: {{0+7,2+1,4+1,6+1,841¢,10+i} X {;}: i =0,1; ;= 1,2} U
{{a} X Zy) Ufoq: 1 <7 < 4)).
Resolution classes: develop the following modulo 12 (note: the second

coordinate of elements in ({a} X Z,) is written as a subscript, and is
evaluated modulo 2)
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( ))(1 ) ) ( )")} {(8 1)7(9 1)7(4 2)}
{(3,2),(10,2), ( 1)} {(82),(11,2),(5,1)}
{(0,1),(0,2),009 {(1,1),(2,2),00,}
{(2,1),(1,2),004 {(3,1),(5,2),00,)

( ) (1 ) a()} {(6 2):(7)2) al}

A resolvable GDD of type 6°.
Points: (Zy; X {1,2}) U {oq: 1 < i < 6}.

Groups: {{0+4,5417,10+7} X {1,2}: ¢ = 0,1,2,34} U
{{og: 1 <7 < 6}).

Resolution classes: develop the following modulo 15:

{(0,1),(1,1),(3,1)}  {(0,2),(1,2 )g 2)}

((22,(8:2)(10.2))  {(2,1)(6,1),(3,2)
(41),(1L,1),(13,2)}  {(71),(13,1),(5,2))
(5:1,92)0)  {(81)(14.2).00)
{(9,),(12,2),00)  {(10,1),(6.2).00,)
(12111200} {(14.1)(7.2) 00}

A resolvable GDD of type 6°.
Points: (Z,5 X {1,2}) U {oq: 1 < ¢ < 6).

Groups: {{0+17,3+4¢,6+%,9+1,12+41¢ A5+1} X {5} 1 =0,1,2; 7=1,2}
U {{og: 1 <7 <6}

Resolution classes: develop the following modulo 18.

{(0,1),(1,1),(5,1)} {(0,2),(1,2),(5,2)}
{(2,1),(4,1),(2, ) {(3,1),(10,1),(4,2)}
{(6,1), (14 1),(3,2)}  {(7,2),(17,2), (12 1)}
{(8, 2) (15, 2)( 6 1)} {(14,‘2) (16, ’)( 1)}
{(11) ))(13 0) 003 {(13 1);(9 2) 004}
{(15,1),(6,2),09} {(17,1),(10,2),00
A resolvable GDD of type 68.
Points: (Zy; X {1,2}) U {oq: 1 < ¢ < 6}.
Groups: {{0+12,7+14,144+7} x {1,2}: + =0,1,2,3,4,5,6}
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U {{ogq: 1 <@ <6}}

Resolution classes: develop the following modulo 21.

{(0,1),(1,1), (3 1)} {(2,1),(6,1),(11,1

)}
{(0,2),(1,2),(3 ) {(2,2),(6,2),(11,2)}
{(4, )(101)( 2y (5, )(131)( 2)}
{(7,1),(17, 1),(13 2)}  {(8,2),(18, 2) (19 1)}
{(9,2),(19,2),(15,1)}  {(14,2),(20,2),(9, )
{(8,1),(17,2),00} {(12,1),(15,2),00,
{(14,1),(12,2),005} {(16,1),(18,2), 004}
{(18,1),(10,2),00:} {(20,1),(7,2),00}

A resolvable GDD of type 6'°,
Points: (Z%{1,2})U{oq: 1 <1 < 6}.
Groups: {{0+7,9+1,18+1}x{1,2}: 1 =0,1,234,56,78} U
{{oq: 1 < ¢ < 6}}
Resolution classes: develop the following modulo 27

{(071)’(1’1)?(3’1)} {(2!1)’(6’1)’(12’]‘)}
{(4,1),(9,1),(16,1)} {(0,2),(1, 1)( 2)}

{(2,2),(6,2),(12,2)} {(5,1),(13,1),(7,2)}
(7,1),(18,1),(4,2)} (8,1),(21,1),(9,2))
((5,2),(17,2),(10,1)) (15 2),(23,2),(11,1)}
{(11,2),(25,2),(15,1)}  {(19,2),(26,2),(20,1)}
{(10,2),(21,2),(23,1)}  {(8,2),(13,2),(24, 1)

{(14,1),(22,2),09} ((17,1),(20,2),00,
{(19,1),(24,2),00;} {(22,1),(14,2), 004}
{(25,1),(18,2),00} {(26,1),(16,2),09

A resolvable GDD of type 8°.
Points: (Z5X{1,2}) U {oq: 1 <7 < 8).

Groups: {{0+7,5+17,10+7,15+2} X {1,2}: 1 =0,1,234}
U {{oq: 1 <@ < 8}

Resolution classes: develop the following modulo 20
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{(0,1),(1,1),(3,1)y  {(2,1),(8,1),(13,1)}
02),(1,2),32)y  {(2,2),(6,2),(13,2)}
{(4,1),(10,1),(7,2)}  {(5,1),(17,1),(4,2)}
{(8,2),(14,2),(16,1)y  {(8,2),(17,2),(15,1)}

{(7,1),(15,2),00} {(8,1),(19,2),00,}

{(9:1)7(18)2))0%} . {(1 )1)’(12’2)1004}
{(12)1);(16;2)»0%} {(14»1);(10)2);0%}
{(18,1),(11,2),007} {(19,1),(5,2),00)

A resolvable GDD of type 124,

Points: (Zy5 X {1,2}) U ({a} X Zy) U({b} X Zg) U {oq: 1 < i < 7}.
Groups: {{0+i,3+i,6+i,9+i,12+i,15+i} x {1,2}: t =0,1,2}
U {({e} X Z)) U ({8} X Zg) U {oq: 1 < ¥ < 7).

Resolution classes: develop the following modulo 18 (note: the second

coordinate of elements in ({a} X Z;) U ({b} X Zj) is written as a
subscript, and is evaluated modulo 2 or 3, as the case may be).

{(0,1),(1,1),(5,1)}  {(0,2),(1,2),(5,2)}
{(2r1):(411)1(3’2)} {(2;2)» 4;2)1(911)} ’
{(7,1),(14,2),00}  {(8,1),(12,2),00,}
{(11,1),(16,2),00}  {(12,1),(10,2),00,}
{(15,1),(11,2),00}  {(16,1),(8,2),00}
{(17)1)7(7;2))007} {(6)1)1(14)1)760}
{(8)1)7(1212):b1} {(9)2)1(17’2);b2}
{(3)1):(10)1))00} {(672):(1312))01}
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