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ABSTRACT

The main result of this note is to show that two classes
of designs are equivalent to each other: a certain class of
frames and a certain class of incomplete transversal designs.
The existence of an incomplete transversal design
TD(k+1,kw) — TD(k+1,w) implies the existence of a frame of
block-size k and type ((k=1)w)¥*, and conversely, the
existence of a frame of block-size k and type t**! implies the

existence of an incomplete transversal design
TD(k+1,tk/(k—1)) — TD(k+1,t k—1)). Several examples
are given.

1. Introduction.

The main result of this note is to show that two classes of designs are
equivalent to each other: a certain class of frames and a certain class of

incomplete transversal designs. We need to define some terminology
before stating our result.

A group-divisible design (or GDD) is a triple (X,G,A), which satis-
fies the following properties:

(1) G is a partition of X into subsets called groups

(2) A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point

(3) every pair of points from distinct groups occurs in a unique block.

The group-type, or type, of a GDD(X,G,A) is the multiset
{IG|: G €G}. We usually use an "exponential” notation to describe
group-types: a group-type 1'273% ... denotes 3 occurrences of 1,7
occurrences of 2, etc. We will say that a GDD has block-size k if A=k
for every A € A.

If (X,G,A) is a GDD of block-size k and G € G, then we say that a
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set P CA of blocks is a holey parallel class with hole G provided that P
consists of (|X'|— |G |)/k disjoint blocks that partition X\G. We write
h(P) = G to denote that G is the hole of P. If we can partition the set, of

blocks A into a set P of holey parallel classes, then we say that (X,G,P) is
a frame with block-size k.

We can think of a frame as being a resolvable BIBD with holes,
exactly as a GDD is a BIBD with holes. (All the frames in this paper are
“one-dimensional" objects. In other papers, the term "frame" has usually
referred to square arrays (ie. "two-dimensional" objects) in which the
rows, and the columns, constitute a resolution, or partition of the block

set, into holey parallel classes. Further, these two resolutions are required
to be "orthogonal”.)

The following result was proved in the case k = 3 in [7], and the
general proof is essentially the same.

Theorem 1.1. Let (X,G,P) be a frame with block-size k. For every
group G € G, there are ezactly |G |[(k—1) holey parallel classes P € P
with h(P) = G.

Frames with block-size 3 are studied in [7] and are used to prove new
results on the existence of subdesigns in Kirkman triple systems.

A transversal design TD(k,n) is a GDD with kn points, k groups of
size n, and n? blocks of size k. It follows that every group and every
block of a transversal design intersect in a point. It is well-known that a

TID(k,n) is equivalent to k — 2 mutually orthogonal Latin squares (MOLS)
of order n.

We also need to define the idea of incomplete transversal designs.
Informally, a TD(k,n) — TD(k,m) (an incomplete transversal design) is a
transversal design from which a sub-transversal design is missing. (This
concept was introduced by J. Horton in [5]. He used the notation
IA(n,m k).) We give a formal definition. A TD(k,n) — TD(k,m) is a qua-
druple (X,G,H,A) which satisfies the following properties:

(1) X is a set of cardinality kn

(2) G={G;:1<i< n}is a partition of X into k groups of size n

B) H={H:1<:< n}, where each H,C G;, and [H;|=m,
1<:1<n

(4)  Ais aset of n? — m? blocks of size k, each of which intersects each
group in a point

(5)  every pair of points {z,y} from distinct groups, such that at least one
of z,y is in | J, ., (G;—H;), occurs in a unique block of A.

Transversal designs are of fundamental Importance in constructions
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for designs, and incomplete transversal designs have proved to be a very
useful generalization. For some constructions and applications of these
designs, we refer the reader to [4], [5), [6], and [8)

Our main result which will be proved in Section 2 is the following.

Theorem 1.2, The existence of an incomplete
TID(k+1,kw) — TD(k+1,w) implies the existence of a frame of block-size
k and type ((k—1)w)**!, and conversely, the existence of a frame of
block-size k and type t*t! tmplies the existence of a
TD(k+1,tk [k-1)) — TD(k+1,t (k—1)).

It is easy to see that, if an incomplete TD(k+1,v) — TD(k+1,w)
exists, then v > kw, and analogously, if there exists a frame of block-size k

and type t“, then u > k + 1. Thus, the designs referred to in Theorem
1.2 are "extremal" in some sense.

As well, we can construct certain "separable” designs as a conse-
quence of these designs. A symmetric 1-design S(1,k,v) is a pair (X,A),
where X is a set of v points, and A is a set of v k-subsets of X (blocks)

such that every point occurs in precisely k blocks. We have the following
result which will be proved in Section 2.

Theorem 1.3. The existence of a Jrame of block-size k and type t*¥*!
or the equivalent incomplete TD) 1implies the existence of a
GDD(X,G,A) of type t**' in which the set of blocks A can be parti-
tioned into t /(k—1) sets of blocks A,, . . . A fk—1), such that each (X ,A;)
i1s a symmetric S(1,k,tk), 1 <1 < t/(k-1).

We do not know under what conditions the converse of Theorem 1.3
Is true; this is discussed further in Section 4.

We prove Theorems 1.2 and 1.3 in Section 2. Then in Section 3, we
give several examples, some old and some new.

2. Proofs of the Theorems.

We now give proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let (X,GH,A) be a
TD(k+1,kw) — TD(k+1,w), where G = {Gi:1 <1 <k+1} and
H={H;:1<7<k+1}, where each H; CG;, 1<i<k+1l. Denote
H; ={oq;: 1< j<w}, 1 <i<k+1, and let Ji = G\H;, 1 <1 < k+1.
Let Y = Ui<i<k1di and I = {J;:1 <7 < k+1}. We shall construct a
frame, (Y,J,P—).—

By simple counting, it follows that |A N (Uicicer ) =1, for
every A E€A. For every oq;, we define a holey parallel class
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])ij = {A\{OQJ} Q5 €A EA} Then; P = {}3;'_7': 1 S .7. S w,
1<t <k+1). It is straightforward to check that (Y, J,P) is a frame of
block-size k and type (k=1)w)*+1,

Conversely, suppose we start with a frame of block-size k& and type
t"*,  (X,G,P), where G — {Gi:1<i<k+1}) and P=
{Piji1<i<k+l, < 7 < t/Ak—-1)}. We associate with each P;; a new
point oq;. Now, define H; ={oq;:1 <5< tAk-1)}, 1<i< k+1,
H={H,-:1§igk+1}, J={J;=H; u Gi:1 <1 < k+1}, and
Y= Uis g

We construct a ID(k+1,tk /(k—1)) — ID(k+1,t [k—1)), (Y,JHA),
where the blocks are A = {A U i AEFR;, 1<57<w,1 <1t < k+1}.
Again it is easy to verify that we have the desired incomplete 7D .

We now give a proof of Theorem 1.3.

Proof of Theorem 1.3. We start with a frame of block-size k and type
L (X,G,P), where G={G;:1<i< k+1} and P=
{Fjr1<i<k+l, i <y <tAk-1)}). For 1<y < t/Ak-1), we define
A; = U1_<_i$k+lp-'1" Then it is easy to see that each A; is a symmetric
1-design, as desired. For, the number of blocks In  each A; is

(k+1)-(tk /k) = t(k+1), and each point occurs k blocks of each A .
We also have the following consequence of Theorem 1.3.

Corollary 2.4. If there exists a frame of block-size k and type tF+! g
TD(m,t), and a TD(m k), then there exists a ID(m t(k+1)).

Proof. Construct the separable design in Theorem 1.3, and apply
Theorem 4 of Bose, Shrikhande, and Parker 1]

3. Examples.

In this section we give several interesting examples.

Example 3.1. There is a TD(4,6) — TD(4,2), which is equivalent to a
frame of block-size 3 and type 4*. This incomplete TD was first found by
Euler and has been rediscovered several times since (see, for example, [5])
It is particularly interesting in view of the non-existence of a TD(4,6)

Example 3.2. There is a TD(5,8) — TD(5,2) or, equivalently, a frame of
block-size 4 and type 6°.
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Proof. We construct the frame. In [3], a GDD of block-size 4 and type
6° is constructed, and this GDD gives rise to the following frame:

X =12,5x{0,1} and G = {{ioyi1:(5+i)0)(5+i)1:(10+i)0»(10+i)1}3 0<1 < 4}

We start with two holey parallel classes:

9% 12, 13, 1, 13, 49 6, 12,
14, 2, 3, 6 30 9 11, 2
4 T, 8, 11, 8 149 1, 7,
9, 12, 8, 11, 13, 4, 11, 2
14, 2, 13, 1, 3 9 1, 1,
4, 7, 3, 6 8, 14, 6, 12,

The remaining 8 classes are obtained by adding 1,2,3, and 4, reduc-
ing modulo 15.

Example 3.3. There is a TD(5,12) — TD(5,3) or, equivalently, a frame of
block-size 4 and type 9°.

Proof. We construct a TD(4,12) — TD(5,3). Denote
Ye= Zg U {001,002,00‘3}, X =YX {1,2,3,4,5}, G = {G, =Y X {Z}
1<: <5}, and H= {H; = {oa, 00,00 X {(i}: 1 <1 < 5}. We give a set
of 15 base blocks, which are developed through Z,. For convenience, we
omit the second coordinate of each ordered pair; each element in column ;
of the following array has second coordinate 1,1 <7 <5,

cocococoococococcocoof 88
SR woowug ~8 o8 o~o
moowwwad NE ~8 o~oo

w8 wB ol o—~owNuwwe o
§w§ mE o~ oA O



Example 3.4. There is a TD(6,10) — TD(6,2) or, equivalently, a frame of
block-size 5 and type 8.

Proof. This incomplete 7D was found by Brouwer [2]. He also observed

that it gave rise to a separable design, and hence there is a TD(6,48)
(Corollary 2.4).

4. Remarks.

As an open problem, we ask under what conditions the converse of
Theorem 1.3 is true. We make a couple of observations.

Suppose we begin with a G’DD(X,G,A) of block-size k and type tFt!
in which the set of blocks A can be partitioned into t/(k—1) sets of blocks
A, .. .,A,/(k_l), such that each (X,A;) is a symmetric S(1,k,tk),
1 <o <t fk-1). Suppose G = {Gr1<j< k+1}. Each A; consists of
a set of t(k+1) blocks that contain every point k times. Given any
G € G, there are ¢k blocks of each A; that meet G, and t that don’t,
Hence, we can partition each A; into k + 1 sets F;;, such that each P
consists of t blocks disjoint from G 1L 5 k+l, We would like each
F;; to be a holey parallel class; then we would have the desired frame.
However, this need not happen, as indicated by the following example.

Example 4.1. We give a GDD of block-size 2 and type 33 with the
blocks partitioned into three 1-designs. The groups are {1,2,3}, {4,5,6},

{7,8,9}, and the blocks are as follows (for brevity, we write a block {a,b} as
ab):

A, 1519 59 34 38 48 96 o7 g7
A, 1618 68 24 29 35 57 39 47
A, 14 17 25 28 58 36 69 49 37

If we partition A, as described above, we obtain Py = {68,57,47),
Ppy = {18,29,39}, and Py = {16,24,35}. Unfortunately, these are not holey
parallel classes. In this example, it is possible to partition the blocks into
holey parallel classes in a different way, to produce a frame of block-size 2
and type 3%,

It would be Interesting to find examples of separable GDDs in which
there is no way to partition the blocks into holey parallel classes.
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