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ABSTRACT

We enumerate the (non-isomorphic) one-factorizations
and sets of orthogonal one-factorizations of the graph
Ky — f, where f is a one-factor of K,;,, We find that there
are 3192 one-factorizations; 18220 pairs, 3 triples, and 1 qua-
druple of mutually orthogonal one-factorizations.

1. Introduction.

Let Gr be an r-regular graph on n vertices. A one- factorization of
Gr is a partition of the edge-set of Gr into r one-factors, each of which
contains n,/2 edges that partition the vertex set of Gr. Two one-
factorizations F' and G of Gr are orthogonal if any two edges of the graph

which belong to the same one-factor of G belong to different one-factors
of F' (and vice-versa).

A Howell Design H(s,t) is a square array of side s having the fol-
lowing properties: (1) each cell of the array is either empty or contains a
two-subset of a t-set, (2) each element of the t-set occurs in exactly one
cell of each row and each column, (3) any two-subset occurs in at most one
cell of the array. It is easy to see that two orthogonal one-factorizations of
Gr, an r-regular graph on n vertices, give rise to an H(r,n); and, con-
versely, the existence of an H(r,n) implies the existence of a pair of
orthogonal one-factorizations of some r-regular graph on n vertices, Gr,
which we call the underlying graph of the Howell Design.

In this paper, we enumerate the non-isomorphic one-factorizations,
and sets of mutually orthogonal one-factorizations, of the graph K, — f,
where f is a one-factor. In particular, we enumerate all non-isomorphic
H(8,10)’s, since the underlying graph of an H(8,10) is K, — f.

Denote N(Gr) = the number of non-isomorphic one-factorizations of
a graph Gr, and N;(Gr) = the number of non-isomorphic sets of i
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mutually orthogonal one-factorizations of Gr. In this paper, we prove that
N(K,—f) = 3192, Ny(K 10— 1) = 18220, NyKp—f) =3 and
N4(K10_f) =1 (and Ns(Klo“f) = 0

There results are interesting for several reasons. First, the non-
1isomorphic one-factorizations and Howell designs have been enumerated
for all graphs on at most 10 vertices except Ky — f (see [6]). Hence, the
results of this paper complete this census. Also, the graph K, — f 1s the

smallest graph (other than complete or complete bipartite graphs) for )
which there exists three (or more) orthogonal one-factorizations.

It has been conjectured that the maximum number of mutually
orthogonal one-factorizations of a (regular) graph on n vertices is at most,
(n—2)/2. There are in fact infinitely many graphs for which (at least)
(n—2)/2 mutually orthogonal one-factorizations are known to exist, but
there are (obviously) no graphs known for which this conjectured bound is
exceeded. The following results were previously known.

Theorem 1.1. The following graphs have at least (n—2)/2 orthogonal
one- factorizations:

1) K,,ifn—1isa prime power = 3 (mod 4), or n = 10.
2) Kn/g,n/g, 1f n/21s a prime power.
3) K, minusa one-factor, if n = 27 4 2 j > 2.

Proof. 1) is proved in [1] and [3]. The one-factorizations of the graphs in
2) are equivalent to mutually orthogonal Latin squares, so this result is

well-known. The result 3) is proved in 4]

.

Hence, the four orthogonal one-factorizations of Ko — J were previ-
ously known to exist. What we have done is to show that this set of four
is unique, and that there is no set of five mutually orthogonal one-
factorizations. Hence the graph K, — f provides another example of a
graph which meets, but does not exceed, the bound. Thus it provides a lit-
tle more empirical evidence in favour of this conjecture.

Also of interest are the algorithms used to establish the results of this
paper. Our basic method is an orderly algorithm: we construct only non-
1somorphic one-factorizations, by eliminating isomorphic structures as they
are being constructed. These algorithms are described in the remainder of
the paper. For those interested in orderly algorithms, we recommend [5].

2. An orderly algorithm for enumerating one-factorizations of a
complete graph.

In this section, we outline an orderly algorithm that can be used to
generate all the (non—isomorphic) one-factorizations of a complete graph
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Ky,. We first need to define orderings on edges, one-factors, etc, of K,,.
All orderings are defined lexicographically, as follows:

- Suppose the vertices are numbered 1,..,2n. An edge e will be writ-
ten as an ordered pair (p,p') with 1 < p < p! < 2n.

- For any two edges e, = (p1,p") and e, = (P2,p's), we say e, < e, if
either of the following is true: (1) py < py, (2) py = p, and P <pls.

- A one-factor f is a set of ordered edges, ie. f = (e1,€0,€3,...,8,),
where e; < ey <ez < - -- % Ba s

- For two one-factors Ji = (€i1,€i0.€i3,--,€;) and
fi = (ej1,€j0.653,...€5), We say Ji < f; if there exists a &k
(1 <k < n)such that e; = eq foralll <k, ande;,; < € k-

- A one-factorization F' of K,, is an ordered set of 2n — 1 one-
factors, i.e. F = (f1,/ 2, f 2n—1), Where Ji < f; whenever { < j.

We use F, G, H to denote one-factorizations, and f;, g¢;, h; the
corresponding one-factors.

- For two one-factorizations F and G, we say that FF < G if there
exists some i, 1 <17 < 2n—1, such that fi < g;, and f; = g; for all
) <i.

- For 1<i<2n—-1, F; = (f1:f2,f;) will denote a partial one-
factorization consisting of an ordered set of § one-factors. We say
that ¢ is the rank of the partial one-factorization. Note that
Foy—y = F, a (complete) one-factorizations. We can also extend our

ordering to partial one-factorizations of rank i , In an analogous
manner.

Given a partial one-factorization F; (of rank ¢), we can rename the
2n points using a permutation o and obtain another partial one-
factorization, denoted F*. We say F; is canonical if F* > F: for all per-
mutations «. It is easy to see that if two partial one-factorizations of rank
v, F; and Gy, are distinct and are both canonical, then F; and G; are non-
isomorphic. Also, if F; = (fl,f2,...,f,-) 1s canonical, and 1 < j <1, then
F; = (f1,f2-.,f;) is also canonical.

Let F; denote the set of canonical partial one-factorizations of rank
1. An orderly algorithm will generate each set F; of canonical partial
one-factorizations of rank ¢ in turn, starting with 1 = 1 and ending with
1 = 2n — 1. Once the whole process is through, F,, _, is the set of all the
non-isomorphic one-factorizations of K,, (in canonical form).

Define S; to be the set of all one-factors containing the edge (1,7 41).
It is easy to see that any F; € F; must contain one one-factor from each of

Sy, .. .,8;. The following pseudo-code describes how to generate F

i+1
from F; (step 1+41):
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Fiv=0O;
For each F; € F; do

For each one-factor f € S;4; that is disjoint from all one-
factors of F; do

For each permutation o do
(1) compute f*and F;
(2) if FFU{fY < F U {/} then F; U {f} is not
canonical, so discard it and go on to next f

{Here F*U {f/} > F; U {f} for all «. Hence F; U {f}

is canonical, so save it for the next step.}
Fip = FiaU {F; U {/}}.
We begin the algorithm by describing F,. F, has only one element,
namely f, = ((1 2)(3 4)(5 6)...(2n—1 2n)), the very first one-factor in S,

as all other one-factors in S, can be mapped into Ja (and hence are iso-
morphic).

3. One-factorizations of K,

As we have described it, we would try all (2n)! permutations of
{1,...,2n} as our a’s. This is a lot of work, even for small values of n (eg,
if n =35, then (2n)! = 10! = 3628800). However, we can do a lot better
than this.

We are interested only if those a’s that cause F¥ < F;. Tt is neces-
sary only to try those a’s that map a one-factor of F; U {f}f €8S;4) into
fa- The number of such mappings is (1+1)-2"n!. For n = 5, the max-
imum number would be (8+1)-3840 = 34560, which is only 1/105 of all the
(2n)! permutations.

A further improvement can be achieved by testing only those a’s
which map two one-factors of F; U {f} into a fixed set of two one-factors,
which is the approach we use. We observe that any two disjoint one-
factors of Ky form either two disjoint cycles of length 4 and 6 (type ’46°)
of a Hamiltonian circuit of length 10 (type ’10’). The smallest one-factor
in .S, that forms a type 46’ structure with Ja = ((1 2)(3 4)(5 6)(7 8)(9 10))
is fi = ((1 3)(2 4)(5 7)(6 9)(8 10)), and the smallest that forms a type 10’
is Je = ((1 3)(2 5)(4 7)(6 9)(8 10)). It follows then that
F2 = {(farbb))(faifc)}t where fa < fb < fc' .

To see how we map two one-factors of F; U {9}(= (f1:/ 2 fi1)) at
step ¢ + 1 into two one-factors, we consider the following two cases:

(1) fife= f.f, (type 46”):
We map any f,f;, 1< <k < i+1 of type ’46’ into f, f, (in such
a way that f; or f; is mapped to J2)- To map into any other two
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one-factors of type ’46’ would always make FY> F;. There are
2(2-2)-(2-3) = 48 ways to do this.

We may ignore those [/ of type ’10°, as mapping them into Jals
would always make F > F;. (In general, if f,f, is of type x, we
may ignore f;f; of type y so long as the canonical two one-factors
corresponding to type y are greater than those of type z.) The max-
imum number of mappings « required in this case is

(9-8)/2-48 = 1728, which is 20 times better than mapping one-factor
to another.

flfQ = fafc (t'ype ,107):

All fify, 1< 7<k <i+1 must be of type corresponding to a
canonical structure less than f,f,). Thus we discard those g €S;
which form a type ’46’ structure with any of f;, 1< j <1, before
the canonicity testing. There are 2:(2'5) = 20 ways to map type ’10’
structures.  The maximum number of such mappings is
(9:8),/2-20 = 720.

Table 1 gives the number of canonical structures and CPU time

taken for each of the steps. The number of (complete) one-factorizations
of Ky, agrees with the results in Gelling [2]. The table shows that the
number of canonical structures increases steadily during the earlier steps,
then decreases at a slower pace in the later steps. All the computer work

in this paper is implemented in Pascal/VS and run on the University of
Manitoba Amdahl 580 computer.

Table 1

Non-isomorphic Canonical Partial One-factorization of K

Step  # of canonical structures at step 141 CPU time

1+1  type 46’ type’10’ total (in seconds)
3 6 6 12 1
4 80 21 101 3
5 586 24 610 20
6 1608 14 1622 89
7 1722 9 1731 181
8 819 1 820 186
9 395 1 396 147
627
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4. One-factorizations of K- f.

Without loss of generality, we let f = Ja- The algorithm is very

similar to that of K. The following differences are noted:

(1)
(2)

(3)

The one-factorizations of Ko — f have 8 one-factors and do not
include the five edges in f,.

We pretend that fa is part of the one-factorization of Koy—f.
That is, we start out with F,={/.}, and go through the steps as in
the case of K ;. We can ignore f, after Fy is produced.

In testing whether F.i=F; U {g}, g €S;41 is canonical, we
observe that

(a) flc":fl(:fa)'

(b)  We will map two one-factors into two one-factors, except we
need only examine Sifj 7> 1.

(¢) In the case of Jifa= Jofy (type '46’), we ignore J1fj of type
'10°, as in K ;. There are precisely 24 ways (one half of 48)
that J1f; of type 46’ can be mapped into f, f, such that fi1s

fixed. The maximum number of mappings for an F; s
(141)-24.

(d) In the case of Jifoa= Sfof. (type ’10°), all S1fj 7> 1 must be
of type ’10°, while Jeli 3,k # 1 can be of either type. Again
the number of ways that J1f; can be mapped into f,f, is
reduced by half to 10. The number of mappings for a F;is
(7+1)-20.

The number of canonical structures and CPU time required for each

of the steps are listed in Table 2. The number of non-isomorphic one-
factorizations of Ko — f of types 46’ and '10” are 2944 and 248 respec-
tively. The algorithm required approximately 18 minutes of CPU time.
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Table 2
Non-isomorphic Canonical Partial One-factorizations of K, — S

Step  # of canonical structures at step 141 CPU time

t+1  type 46’ type '10° total (in seconds)

3 7 15 22 1

4 114 109 223 2

5 1039 412 1451 12

6 4600 1136 5736 67

7 7802 1437 9239 206

8 4917 610 5527 385

9 2944 248 3192 401
1074

5. Howell designs H(8,10).

In enumerating the non-isomorphic pairs of orthogonal one-

factorizations of K|y — f, we extend the canonicity concept as follows:

(2)

- A set of two orthogonal one-factorizations F' and G are written as
an ordered pair (F',G), with F < G'. As in the case of Kio— f, we
pretend that f, is part of the one-factorizations. Denote
F= (fl}f?:"'}fg)r G = (91)921"'r99)7 where fl =41 fa'

- We say (F,G) is canonical if, for all o’s that fix f,,
(F,G’)O’Z(F,G’).

We have the following two observations:

If (F,G) is canonical, F is necessarily canonical. Otherwise we can
find an « such that F* < F' and make (F,G)* < (F,G).

Two distinct, canonical (F.(3) are non-isomorphic.
) )

Hence, in generating pairs of orthogonal one-factorizations, we can

take, in turn, each (canonical) one-factorization F of K0 — f produced in

the previous section, and generate all G’s that are orthogonal to and
greater than F'.

However, it is easy to see that a given (F,Q), where F < G and F is

canonical, is not necessarily canonical. In testing whether (F',(0) is canoni-
cal, we need to check all a’s that make F** canonical and all a’s that make
G'“ canonical:

(1)

o’s for F: It suffices to examine those a’s such that F® = F, since F
is canonical. That is, we can restrict the a’s to the automorphism
group of F. If, for any such o, G* < @, then (F,G) is not canonical.

Note that if f,f,= f,f. (hence all J1Jf; are of type ’10’), then all
919; must necessarily be of type 10’



(2) a’sfor G. There are two cases:
(a) There exists a 919; of type ’46’: we map all g19; of type 46’
into f, f;, and ignore those 9195 of type ’10’.
(b) Al 919; are of type ’10’: we map them into i .

Using these permutations o (for G), there are three situations where
(F,GQ) is not canonical, as described by the following pseudo-code:

If G* < F then (F,G) is not canonical
Else
If G¥= F then
If * < G then (F,G) is not canonical
Else
II(F*=F)and (G* < G) then (F,G) is not canonical.

We now outline the algorithm that we use to generate all the non-
isomorphic Howell designs H(8,10):

For each F' in the set F of non-isomorphic one-factorizations of

Klo_ f dO:

1. Generate from S;, 1 =2,...8, the set T of one-factors that intersect
each of the one-factors of F in at most one edge.

2. Construct all possible one-factorizations G, which consist only of

one-factors from T, discarding those G’s < F. These G'’s are all
orthogonal to F. Note that 91 = [f,, where G = (91,92)-,94)-

If no G’s were constructed in step 2, then go on to next F.
Determine the automorphism group A = {a: F*= F} of F.
For each G do:

(a) map 919; into f.f, or fof. as described earlier. If
(F,G)* > (F,G) for all a’s, proceed to (b); otherwise (F,G) is
not canonical, so go on to next F.

(b) apply eacha €A to G. It for all @ € A, G* > @, then (F,G)
1s canonical; otherwise it is not.

In total, the number of non-isomorphic (F,G) of K — f generated
is 18220. It required 38 minutes of CPU time. Table 3 in the Appendix-
gives the frequency distribution of these designs, based on the number of
non-isomorphic (F,G) (where F < G) for a given F. It is interesting to
observe the wide variation in the numbers of orthogonal mates. 540 one-
factorizations F' had no orthogonal mates G > F , while, at the other
extreme, one of the one-factorizations had 63 orthogonal mates.
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6. Howell cubes and H,(8,10).

We write a set of three mutually orthogonal one-factorizations of
Ko — / as an ordered triplet (F,G,H) with F< G < H. We say that
(F,G,H) is canonical if (F,G,H)* > (F,G,H) for all a’s that fix fa-

For (F,G,H) to be canonical, F is necessarily canonical, and so is
(F,G). These observations suggest the following algorithm:

For each non-isomorphic F' of Ky — f do:

1. Construct from T all possible one-factorizations @ with F < G, as in
steps 1 and 2 in the previous algorithm.

2. Examine all pairs of one-factorizations G ,H where G and H are con-
structed in step 1. If G and H are orthogonal, then we have a set
(#,G,H) of three mutually orthogonal one-factorizations.

3. Determine which triples (F,G ,H) are canonical.

In total, we find 12 triples (F,G,H) in step 2. We immediately elim-
inate 7 of them, as their corresponding (F',G)’s are not canonical. The
first (smallest) set is necessarily canonical (set 1 in Table 4). Three of the
12 sets, which are all distinct from set 1, form a quadruple (F,G,H,I);
hence the corresponding (#,G,H) must be canonical (set 3 in Table 4).
This leaves us with 3 sets to which we apply canonicity testing (in this case
we simply try all a’s that map f. into f,); we find one of them is canoni-
cal (set 2 in Table 4). In summary, we have

1. Ng(Ky,—f)=3. The corresponding Howell cubes are shown in
Table 4.

2. Ny(Ko—f) = 1. Table 5 gives the corresponding H (8,10).

It is interesting to note that the set of four mutually orthogonal one-
factorizations can be constructed from a finjte projective plane of order 8

[4].

We present the automorphism groups A of the non-isomorphic
Howell cubes and H,(8,10) in Table 6.

7. Summary.

We describe an orderly algorithm that we use to determine the one-
factorizations and sets of orthogonal one-factorizations of the graph
Ky~ f, where f is a one-factor of Ko There are 3192 one-

factorizations; 18220 pairs, 3 triples, and 1 quadruple of mutually orthogo-
nal one-factorizations.
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Table 3
Frequency Distribution of Non-isomorphic sets of Two
Mutually Orthogonal one-factorizations of Ko—17f

J Fr(3)  7*Fr(y)
0 540 0
1 373 373
2 301 602
3 286 858
4 268 1072
5 220 1100
6 191 1146
7 153 1071
8 135 1080
9 109 981
10 88 880
11 81 891
12 75 900
13 48 624
14 52 798
15 34 510
16 38 608
17 27 459
18 20 360
19 18 342
20 17 340
21 10 210
229 10 220
23 10 230
24 18 432
25 11 275
26 5 130
27 8 216
28 9 252
29 4 116
30 8 240
31 4 124
32 1 32
35 3 105
36 1 36
37 1 87
38 3 114
39 3 117
40 1 40
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41 1 41
42 1 42
43 1 13
44 2 88
45 1 45
47 1 47
63 1 63

3192 18220

Fr(7): Number of one-factorizations F' for which the number of non-
isomorphic canonical pairs of one-factorizations of the form (F,G)is j.
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Table 4
Howell Cubes H,(8,10)

Set 1

(F.G):

10

10

10

v

6

10

*

(F.H):

10

10

10

10

10

10

]

10

2

(G ,H):

10

v

10

=]

10

2

N

10

3

10

10

(]
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8 9 2 6 1 5

2 5 7 10 1 6

6 10 4 9 1
S 9 3 10

1 7 5 8 3
3 8 6 7 2

(F.H):

1 3 6 9 8
1 4 5 10
8 9 1 5 2

7 10 1 6 3
3 5 2 8 9 1

4 6 3 10 2 7

5 8 2 10 4 7

2 9 6 7 3 8 4

(G,H):

1 3 9 4 7

7 10 1 4 3 8 2

7 1 5 4 9 8

5 8 10 1 6

2 9 5 10 1
2 10 6 9
3 5 2 7

4 6 2 8 3
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Set 3

(F.G):

10

10

10

3

10

10

10

(FH):

[}

10

3

10

10

™

¥

10

10

10

10

(G,H):

10

10

10

10

™

10

10

10
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Table 5

H (8,10)
(F.G): see Table 4, Set 3
(F,H): see Table 4, Set 3
(G,H): see Table 4, Set 3
(F.I):
1 3 9 8 10 2 4
5 10 1 4 7 9 2 3 6 8
1 5 3 8 6 10 2 7
7 1 6 5 9 3 10
2 9 5 8 4 10 1 7
6 7 2 10 3 9 1 8 4 5
4 8 2 6 3 5 7 10 1 9
3 7 2 5 8 9 4 6
(G.1):
1 3 2 5 7 10 &6 8
1 2 6 8 9 3 10
4 8 2 10 1 5 9
2 9 3 8 10 1 6 4 5
5 10 3 9 1 7 4 6
6 9 4 10 3 5 1 8 2 7
5 8 4 7 6 10 2 3 1 9
6 7 3 8 2 4 5 9
(H,I)
1 3 7 9 6 10 4 5

=]
-
—
S
—
v 35
-
—
o
(v <}
(7=
N oo
w o
[
~

5 8 9 1 6 2 4 7 10
4 8 6 9 5 1 7 3 10
5 10 3 7 2 6 1 8

2 10 3 8 6 1 9

[ &
(=]
'
~
[
(3]
(=~}
@
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Table 6
Automorphism Groups of H4(8,10) and H ,(8,10)

Hy4(8,10) = (F,G ,H)
Set 1 A = <[>,

Set 2 A = <g>= Zg, where g = (358104679).
A interchanges G and H.

Set 3 A = <g>= Z, where g = (56)(38104709).
A maps F into G, G into H, and H into F.

H(8,10) = (F,G ,H,])

A = <gl,g2>, |A| = 24,
and g1 = (3 4)(51086 9 7).
92=(56)(3810479).
g1 maps H into G, G into I, and I into H.
92 maps F into G, G into H, and H into F.

161



