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ABSTRACT:

We enumerate the (non-isomorphic) one-factorizations
and sets of orthogonal one-factorizations of the graph
Krr- /, where / is a one-factor of .I(1s. We find that there
are 3192 one-factoriz:rtions; f8220 pairs, 3 triples, and I qua_
druple of mutually orthogonal one-factorizations.

1. Introduction.
LeL Gr be an r-regular graph on n vertices. A one-factorization of

Gr is a partition of the edge-set of Gr into r one-factora, each of which
contains "/2 edges that parcition the vertex set, of Gr. Two one_
I'actorizations Fr and G of Gr are orthogonal rf any two edges of the graph
which belong to the same one-factor of G belong to different one_factors
of .E (and vice-versa).

A l{outell Design l1(s,t) is a square array of side s having the fol_
lowing properties: (f) each cell of the array is either empty or contains a
two-subset of a f-set, (2) each element of the t-set occurs in exactly one
cell of each row and each column, (B) any twosubset occurs in at most one
cell of the array. It is easy to see that two orthogonal one-factorizations of
Gr, an r-regular graph on n vertices, give rise to an H(r,n); and, con-
versely, the existence of an H(r,n) implies the exister". ol a pair of
orthogonal one-factorizations of some r-regular graph on n vertices, Gr,
which we call the underlytng graph of the Howell Design.

In this paper, we enumerate the non-isomorphic one-factorizations,
and sets of mutually orthogonal one-factorizations, of the graph Krc- l,
where / is a one-factor. In particular, we enumerate all non-isomorphic
1J(8,t0)'s, since the underlying graph of an I/(g,10) is y'(,s - /.

Denote N(Cr) : the number of non-isomorphic one-factorizations of
a graph Gr, and N,(Gr) : the number of non-isomorphic sets of I
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mutually orthogonal one-factorizations of Gr. In this paper, we prove thatN(Kro-f) : 3192, \r(rcro-l) : rgz2o,' 
-" 

,r(ra,o_.f): B andNo(Krc-t): t (and N6(/i,r-fl" o).
There results are interesting for several reasons. First, the non-isomorphic one-factorizations and Howell desifns-have been enumeratedfor all graphs on at most l0 vertices except Kro _ / (see [6]). Hence, theresults of this paper complete this 

-census. efs", the graph K ro _ / is thesmallest graph (other than complete or ."*pf"i" bipartite graphs) forwhich there exists three (or more) orthogonal one_factorizations.
It has been conjectured that the maximum number of mutuallyorthogonal one-factorizations of a (regul"r) gr;;h on 

", vertices is at most("-z)/2. There are in fact infini!.fr *r.,1,- ;*on. for which (ar least)(n-Z)/z mutually orthogonal one-factorizatiois *"" krro*n to exist, butthere are'(obviously) no graphs known for whieh this conjectured bound isexceeded. The following results were previously known.

Theorem I".1. The foilouttng graphs haue at least (n_Z)/Z orthogonalane- tactori zations :
l) Ko, iI n - L is a prirne power : J (mod 4), arn : 10.
2) Kor2,ntz i! n/2 is a prime power.
3) K, minua a one-factor, i! n * Zi + Z, i > 2.

Proof. 1) is proved in [l] and [B]. The one_factorizations of the graphs in2) are equivalent to mutually orthogonal Latin-rqrrrr"r, so this result iswell-known. The result B) is proved i; t4].
Hence, the four orthogonal one-factorizations of l(1s _ / were previ-ously known to exist. What we have done is to show that this set of fouris unique, and that there is no set of five mutually orthogonal one_factorizations. Hence the graph Kro- 1 p.orriaus another example of agraph which meets, but does not exceed, ihu bound. Thus it provides a lit_tle more empirical evidence in favour of this conjecture.
AIso of interest are the algorithms used to establish the results of thispaper. Our basic method is an orderly algoritt *, *u construct, only non_isomorphic one-factorizations, by elimiiatiig ir.*"rpfric structur.. * th"yare being constructed. These algorithms arf descrif'"a i, the remainder ofthe paper. For those interested in orderly dg;ri;;, we recommend [b].

2. An orderly algorithm for enumerating one-factorisations of acomplete graph. '-Ee'v*e ' -

In this section, we outline an orderly algorithm that can be used togenerate all the (non-isomorphic) one_factorizations of a complete graph
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I{r,r. We first need to define orderings on edges, one-factors, etc, of I{2n.All orderings are define<l lexicographically, * flilo*",
- Suppose the vertices are numbered 1,...,2n An edge e will be writ_ten as an ordered pair (p,p,) with I ( p .--p,{Zn.
- For any two.ldges er: (pr,p.,1) and ez: (pz,p,z), we say € 1{e2lfeither of the following is rrue: (r) p, 1ir, (Z) p, : p2 and pr { p,z.
- A one-factor / is a set of ordered edges, i.". f : (e1,e2,es,...,ao),
where e11e2(e3( (eo.
- For two one-factors .f; : (eit,ei2,eig,...,€in) and

/: 
= 

!"rr:"iz,eis,...,ein), we say li 1' I i 
'if there exists a k

(1 < /r S ") such that eit: ei for all I <'k, and e;* { eir.
- A one-factorization F of K2n is an ordered set of Zn _ 1 one_factors, i.e. tr' : (I r,12,...,f zn_.r), where I; { Ii whenever i < j.We use F, G, II to denote one_factorizations, Lnd !;, g;, h; the
corresponding one-factors.

- For two one-factorizations F, and G, .we say that F < G if there
exists some i, 1< i t}n-l, such that /; {'g;, and /;: gi for allj<i.
- For l < i (-Zn-L, F;: (f r,12,...,/;) will denote a partial one-factorization consisting of an ordered set of r one-factors. We saythat f is the rank of the partial one_factorization. Note thatFzn-r: F, a (complete) one-factorizations. We can also extend ourordering to partial one-factorizations of rank f, in an analogous
manner.

Given a partial one-factorization 4. (of rank i), we can rename the2n points using a permutation a and obtain another partial one_factorization, denoted {.o. We say F; is canonical if F,io > F'; for all per-
mutations a. It is ea-sy to see that if two partial one-factoriruiiorm of rank
f , "(. and G;, are distinct and are both canonical, then.F,. and G; are non-isomorphic. AIso,.if l7d : (1r,12,...,/i) i, .arrorrical, 

"rrd t < i S i, thenFi : (l ,,f 2,...,1i) is also canonical. 
-' - i J -': ''

Let F; denote the set of canonical partial one-factorizations of ranki. An orderly algorithm will generate each set F; of canonical partial
one-factorizations of rank f in turn, starting with f : 1 and ending withi : 2n - l. Once the whole process is through, F2o_r is the set of all the
non-isomorphic one-factorizations of K2o (in canoni.ut io.rn1.

Define S; to be the set of all one_factors containing the edge (f,f +f).It is easy to see that any l7; e tr, must contain one one_factor from each ofSr, . . . , S;. The following pseudocode describes how to generate F;*1from F; (step i+l):
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F;+r : Z;
For each 4 g F; do

For each 
_one-factor ./ e Sr*, that is disjoint from all one_factors of .Fi do

For each permutation a do
(t) compuLe Io and /|o;
(2) if 4s u {I\ < tt; u {I} rhen .F'; u {I} is nor
cilnonical, so discard it an<l go on to next /

{Here ri u {/"} > tr; U {l} for alt a. }Ience 4 U t/}is canonical, so save it for the next step.) '

F;+r:F;+rU{4u{/}}.
We begin the.algorithm by describ.ing F1. F, has only one elcrnent,namely I" : ((t 2X3 4Xs 6)...(2n *t Zn)), itr.'r"ry firsr onc_f;rcror in S,,as :rll othcr one-factors in 51 can be m;rppetl into /o (rnd henc" ,r.,: i"o_morphic).

3. One-factorizations of .I{1s,

As we have. described it, we would try all (Zn)! permutations of
{L,...,Zn} as our a,s. This is a iot of work, 

"vln for small values of n (eg,i{ , :- 5, then (2n)! : t0! : 862gg00). Ito*"rr".,-we can do a lot ber,rerthan this.

We are interested only if those a,s that cause Ff { F;. It is neces_sary only ro try those a,s thar map a one-factor of 4 U {l)b e Sr*fj i.,toIo. The numb"r g{ such mappings is (;+f).2,.nt. For n: b, the max-imum number would be (aar;.eg40: 84s60,'which is only L/Losof all the(2n )! permutations.

A further improvement can be achieved by testing only those o,swhich map two one-factors of .F,. U {/} into a fixed set of two one_factors,which is the approach we use. We observe that any two disjoint one_factors of y'(16 form either two disjoint cycles of length 4 and 6 (type ,46,)
of a Hamiltonian circuit of length f0 (type ,10,), iih" ._ullest one_facrorin ^92 rhar forms a rype ,46,srructu.".*ith Io: ((t 2XB 4Xb 6Xt;l1s royy
i" /, :- ((1 3X2 n)(5 

1)(6_?)(8 t0)), and rhe ,mailert thar forms a rype ,10,

: !".: ((1 e;12 b.)(4 7X6 eX8'10)). rt iouo*, rhen tharFz: {(1,,b),(Io,I,)}, where i; < It { l,
To see how we map two one-factor: of 4.U {gX: (Ir,Iz,...,li*r)) utstep f * I into two one-factors, we consider the foU,cwing two cases:

(l) I rf z : /. /6 (type ,46,):

We map anY-f i|t,l < i < # 5 i+t.of rype ,46,into /o/6 (in sucha way thar f i or lr is mapped to L). To map into a'iyLtht t*o
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one-factors of type ,46, would always make Fi > F;. There are
2-(2.2).(2.3) : 4g ways ro do this.
We may ignore those^/1/6_of type ,10,, as mapping them into f o!,would always make Ff > Fi. (In general, it j;!2 is of typ" ", *.may ignore til* of type y so long as the .rrrorri.u.l two one-factors
corresponding to type y are greater than those of type o.) The max-imum number of mappings u required in this case is
(9.8)/2.48 : LTZB, which is 20 times better than mapping one_factor
[o another.

(2) f rf z: /o /. (type ,10,):

All fqf r, 1< i < lc ( f+l must be of type corresponding to a"
canonical structure less than lrlz). Thus we discard iho"e ie Sr*,
which form a type ,46,structure with any ol Ii, I < i <;l U"fo."
the canonicity testing. There are 2.(2.S) : 20 ways to map type ,10,
structures. The maximum number of such ^*ppft, is
(s'8)/2.2o : 720.

Table I gives the number of canonical structures and CpU time
taken for each of the steps. The number of (complete) one_factorizations
of .I(16 agrees with the results in Gelling [2]. The table shows that the
number of canonical structures increases steadily during the earlier steps,
then decreases at a slower pace in the later steps. All the computer workin this paper is implemented in pascal/VS anJ run on the University of
Manitoba Amdahl bgO computer.

Table I
Non-isomorphic Canonical Partial One-factorization of .I(1s

Step
i+1

f of canonical structures at step f +l
ty'pe '46' type'lO' total

CPU time
(in seconds)

3

4

5

6

I
8

I

6

80
586
1608
L722
819
395

12

101

610
1622
1731
820
396

I
3

20
89

181
r86
t47

6

2L
24
L4

I
1

I
627
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(2)

4. One.factorications of .I(1e _ f .
Without loss 

_of geaerality, *. 
J."j I : I o. The algorithm is verysimilar to that of l(1s. tn. foUo*ing differences are noted:(l) The one-factorizations of y'(16 _ / have g one_factors and do notinclude the five edges in Io.

We pretend that lo is part of the one-factorization of K1s_ f .That is, we start,ouiwith F, : {Ir}:and go through the steps as inthe case of .I(16. We can ignore /, after Fp is produced.

:tJTJ'il-rrwhether 
Fi+t : Fi U {s}, e € s,+r is canonical, we

(u) I? : !, (: !,).
We will map two one-factors into two one_factors, except weneed only exarnine IrIi,.r > l.
In the case of Ir{:: l,lo $yp ,16,l,we ignore f rli of type'10', as in .I(,6. 'Ihere 

"." p.*i, ety .i+ *.; 1.r. f,rff of ag)tlrat /, Ii of type.,,16,can be. mapped rnto i,l, *"f, that /, isfixed. The nraxirnurn nurrrb". 'of 
_oppini" "fo.- rn I,,i+t is(i +r)'2,r.

In the ca^se of ItIz: !,f , $roe ,10,), all /1 li, j > I must beof type '10', while f r,f i-, i,i;' t can be of either rype. Againthe number of *ry: ine/ 1ry, can be n app"d into IoI" is

L:};;1ty 
half to 10. Tr," ,u'^uer of -^pping, for a r,i.*, i,

The number of canonical structures and CpU time required for eachof the steps are listed in Table 2. The number of non_isomorphic one_factorizations of I{,0 - / of type, ,46, and ,10, ur" Zg++ and 24g respec_tively. The algorithm required-approximately lg minutes of CpU time.

(3)

(b)

(.)

(d)
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Table 2
Non-isomorphic Canonical partial One-factorizations of Krc _ |

Step
z+r

f of canonical structures at step f +1
type '46' type ,10, total

CPU time
(in seconds)

3

4

5

6
nI

8

I

F,

I

114
1039
4600
7802
49L7
2944

15

109
4r2

I 136
L437
610
248

22
oc) ?

1451

5736
9239
trtrfrnoozl
3192

1

,
L2

67
206
385

401

LO74

5. Ilowell designs 1/(8,10).

In enumerating ttre non-isomorphic pairs of orthogonal one_
factorizations of 1(,0 - f , we extend the canonicity concept as follows:

- A set of two orthogonal one-factorizations F, and G are written as
an ordercd prir (1,',(]), with /7 < G. As irr the ca^se of .I(1s _ ./, we
preLerrd that I o is part of tlre one_fac[orizations. Denote
,tr : ( I t,12,...,!n), G : (gr,gz,...,ge), where .fr : gt : Io.
- We say- (f,G) is canonical if, for all a,s that fix I o,(F ,G )" > (r,,G ).

We have tlie following two observations:
(t) If (f,G) is canonical, F is necessarily canonical. Otherwise we can

I'incl an a such that /ro (,lr and make (lt,G), < (/r,G).
(2) 'I'wo clistinct, canoniczil (F,G) are non-isomorphic.

Ilence, in generating pairs of orttrogonal one_factorizations, we can
take, in turn, each (canonical) one-factorization Ir of Kro _ / produced inthe previous section, and generate all G,s that are orthogon.l to and
greater than .8.

I{orvever, it is easy to see t}rat a given (F,G), where F < G and /r is
crrnonica.l, is not neccss;rlily canonical. Irr tcsting whether (lr,C) is c:rnoni_
cal, we need to ctreck all a,s that make /lo canonical and all a,s that rnake
Go canonical:

(t) a's for .F: It suffices to examine those a,s such that l7a: .F, since .E
is canonical. 'Ihat is, we can restrict the a,s to the automorphism
group of 1r. If, for any such a, Go { G, then (/,G) is not canonical.
Note thar ,f I tlz: Iul" (hence all /1 Ii ^r"'of type ,10,), then all
grgi ntust necess:rrily bc of type '10,.
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(2) o's for G. There are two ca^ses:

(u) There exists a 0$i of type ,46,: we map all gfl; of type ,46,
into /r/5, and ignore those grgi of type',f0,.

(b) Atl ggi are of type ,10,: we map them into f of ,.
Using these permutations o (fgr G), there are three situations where(r,c) is nor canonical, as describu) uy ,(; f;lr;;;| pr.ud*code:
If G'( F, then (.F,,G) is not canonical
Else

If Go: .F' then

If F* ( G then (F,G) is not canonical
Else

If (F- - f) and (Go < G) then (F,G) is not canonical.
We now outline the algorithm that we use to generate all the non_igomorphic Howell designs AiS,f O):

For each F' in the set F of non_isomorphic one_factorizations ofI{n - I do:

I Generate from S;, i :2,...,g, the set T of one_factors that intersecteach of the one-factors of ,F, in at most one edge.
Construct all possible one_factorizations G, which consist only ofone-factors from T, discarding those G,s ( ;r7. These G,s are allorthogonal to lr. Note that g, 

*: 
l,,where G : b1,gr,...,gil.If no G's were constructed in step 2, then go on to next F,.

Determine the automorphism group n : {a: F* : tr } of F.
For each G do:

(u) Y\,: tgi. --ilr." I, f o or f o I " as described earlier. If(F,G)" > (.tr,G) for ali o,s, p.oceed to (b); otherwise (F,,G) isnot canonical, so go on to next F,.
(b) apply each a eA Lo G. If for all a 6 A, G, ) G,then (F,G)is canonical; otherwise it is not.

,

3

4

5

In total, the number of non_isomorphic (F,,G) of l(10 _ / generatedis 18220. It required 3g minutes of Cp0 timl. 'f,uUtu 
3 in the Appendix.gives the frequency distribution of these designs, based on the number ofnon-isomorphic (F,G) (where F <G) f.. 

" ii"." f. It is interesting toobserve the wide variation in the numbers of .orthogonal 
mates. b40 one_factorizations F' had no orthogonal mates G > F,, while, at the otherextreme, one of the one-factorizations had 68 orthogonal mates.
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0. Howell cubes and l/o(g,10).
We write a set of three mutually orthogonal one-factorizations ofKro- / as an 

"..d:...d._rriplet (F,G,H\ with .F lC <U. We say rhar(It,G ,H) is canonical if (I,,C ,H)a > 1f ,C ,tt1 fo. ,ti o,, that fix /..
(F,G ,H) to be canonical, Ir is necessarily canonical, and so is(F,G). These observations suggest the followi"s 

"ig;rit}r*,For each non-isomorphic F, of l(1s _ / do:
1. Construct from T all possible one-factorizations G with F, ( G, as in

steps 1 and 2 in the previous algorithm.
2. Examine all pairs of one-factorizations G,H where G and .I{ are con_

structed in step l. If G and H arc orthogonal, then we have a set,
(F,G ,H) of three mutually orthogonal one-Iactorizations.

3. Determine which triples (F,G,H) are canonical.
In total, we find.12 triples (F,G,H) in step 2. We immediately elim-

inate .7 of them, as their corresponainj (f,C;,, u.. not canonical. Thefirst (smallest) set is necessarily canonical (set, i i., fuUt" +1. Three of the12 sets, which are all distinct from set l, form a quadruple (F,G ,H,I);lrence the corresponding (F,G,H) must be car,or,ic.i (set, B i.r. f.uUil +;.This leaves us with B sets to which we apply canonicity iesting (in this case
we simply try all a,s that map ./o into /r)j we find one of them is canoni-
cal (set 2 in Table 4). In summary, we have
1. l/3(1(ro-/) : S. The corresponding Howell cubes are shown in

Table 4.

2. N4(Krc-l ) : t. Table b gives the corresponding ,r/4(g,10).
It is interesting to note that the set of four mutually orthogonal one-factorizations can be constructed from a finite projective plane lf order g

[4]

We present-the automorphism groups A of the non_isomorphic
Flowell cubes and /Jn(8,10) in Table 6.

7. Surnrnary.
We describe an orderly algorithm

factorizations and sets of orthogonal
Krc-L where f is a one-factor

that we use to determine the one-
one-factorizations of the graph
of l(,0. There are 3lg2 one-factorizations; 18220 pairs, 3 triples , and I quadruple of mutually orthogo.

nal one-factoriz ations.
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Table 3
Frequency Distribution of Non-isomorphic sets of Two

Mutually Orthogonal one-factorizations of l(rs - /
i Fr(i\ i*Fr(i)

540
373
301
286
268
220
191
153
135
109
88
81

75
48
tro
\,L

34
38
.r,l

20
18

L7

10
10

10
18

11

5

8

I
4

8

4
I
3

1

I
3

3

I

0
1

,
3

4

5

6

7

8

I
10
11
1('

13

L4

15

16

L7

18

19

20
2t
22
o.)

24
25

26
27
28
29
30
31

32

35
36
37

38
39
40

0
373
602
858
to72
1100
I 146
1071
1080
981
880
891
900
624
728
510
608
459
360
342
340
210
220
230
432
275
130
216
252
116
240
t24
QO

105
36
37
114
t17
40
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43

4t
42

44
45
47
63

4t
42
43
88
45
47
63

I
I
I
,
I
I
I

3192 r8220

Fr(i), Number of one-factorizations F, for which the number of non_isomorphic canonical pairs of one_factorizations of the form (F,,G) i. i.
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Table .l
Howell Cubes }ldg,l0)

6r0

5r0

7810

Set I

4
8
6
l0

I

a,

5

3

7

I

I

7

6

l0
5
s
7

a,

4

2
5

I

8

4

I
3

7

8

6
I

6

.)

4

I
3

l0
3

I
4

5

5

4

I

.,

3

8
,

(P,G):

l3
7s 10

5

8
I

6924
l.l 7923

l589
7rO16

68

4

3

6

2

I

I

7

l0
6

s

8

4

I
5

l0

7

6

I
2

3

I
8
3
.t

6.l

2

8

I
l0
5

3

2

6

3

6

7

?

I
8
7

5

l0

{539
3746
l0
261t0

6

7

8

l0

4

6
3
rt

I

5
I
10

7

0

I

35
t7
29
48

8
5

l0
I
7

l0
8

ti

):

3

l0
8

(F,H

(c,tr):
l3
67
28
.l l0
50

4

8

I

5
.)

5

3

4

2

t

6
g

10
8

4

l0

7s

67253
5938

a,

J

I
3

4

10
s
7

6

3

r
J

l0
4

8

5

8
4

I
.)

l4 l0
39
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Set 2

7

0

8
6

l0

5

3,
4

I

8
l0

810s724
5r07923S8

2641037
16392548
4gt?610
27 l859

3619

,

3

6

I

3

8

s

7

6

3

24
795

lo
3

5

I

7

I

5

6

t

q

3

4

5

l0

8
.)

8
.,

I

4

I
o

7

5

3 6

4
0

t0

0

8

(r,G):

l3

(F,H):

l3

7r0

6
4

35
qa

l9

l0

I
2
4

8
I

6
I

4

I

3
r,

6
10

5

0

3

I
4

.)

8

I
4

3

0

l0
8

I

3

5

0

5

r0

7

8
a,

6

4

38{5

8

l0
5

25610

I
8

3

a,

6

8

t0
7

4

I

5

894
l4
671

3

t0
7 ll0

59

4

I

8

10

6
8
I

4
5
()

58
29

,H),,

3

l0
I
7

2

4

l0
57

8
s
6

10

3

4

I

.,

I
6
8
l0

l0
5

69,
3

64
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Set 3

(I"G):

4

8
0

2

3
5

6

3

l0
7

8

8

10
0

6

3

4
,

3

I

q

I
4

8

6

7

I
2

3

q

6

4

5

ls

I
6

4

t

,

(F,tI)

81069
510

qa
a,

I
5

I

I

3
.)

4

7

4

6

s

5

I

3

3

8

I

8

I
2
5

3

l0

lB28
629r7410
l0{53018
835

3740

l0

2

8

IO
E

l0
7

8

5

2469l0
4

s
6

a

I
l0
8

I
7

6

2

4

68l0
s

5

4

3

5

.,

I

4

6

8

7

I

5

10

7r025,r968
r{893102657
3015482r0
810 163729

39t75r046
27.ll0ogrfl 35

2358 lg47
59672438110

3

I

4
,

6

8

0

l0

I
5

3

1

l0

0

5

(G,r{):

l3

l0

s
5

8

7

4

2

6
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49
28
36

4
5

3

s
7

6

3

I

8

l0
6

l0

.>

5

Table 5
f/{(8,r0)

5

2

6

I

0
8

6

l0

7

3

I
4

(F',G)iace Tablc {, Ser 3

(F,IIII- see Table {, Ser I

(C fil eee Table {, Set 3

(F,II:

1369810
5lol4

4

l0
I

l5
47

75
8
7

10

4

l0
6
q

3

4

I

174628
410351827

6t02319
382459 ll0

796104528
8r05s2736
154108923
39r6247r0

2sL73l0
8

I

l0

8

IO

g

5

I
39 l
26357

25894

8

l0

5

B

3

4

26 18.{
3846195

4735681

8
l0

7

5

2

3

0
7

8

a)

6

4

l0I

7
.,

,/),

3

8

0
r0

7

(c
I

4
.,

5

6

8g6
5
10
I

7

,
I
8

3

4

I
2

3

6

5

J

6

3

2

7s
ls

I
8

4

(rl,r):

l3

67

I
7

l0

4

5

2

r60



Auromorpr,ir* c.o#lfir1.1*,,o) an<r /J4(8,I0)

ff3(8,10) : (F',C,fI)

Set 1 A: {I)

Set 2 A: {g)zZr,where g: (g 5 g l0 462 g).

A interchanges G and H.

Set 3 A: {g)EZu, where g: (S 6XB g 10 4 7 g)
A maps .Ir into G, G into ,F1, and 1/ into F,.

H4(8,10) : (F,G,Ii,I)

A : {gt,gL), lAl: 24,
and sl : (s 4)(5 to 8 6 9 7).

s2: (S 6Xs 8 t0 4 7 e).

91 maps H into G, G into .I, and 1 into I/.
92 maps .F into C, G into l/, and .FI into .F.
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