ARS

COMBINATORIA

VOLUME NINETEEN

JUNE, 1985

WATERLOO, CANADA







V-Squares

D.S. Archdeacon, J.H. Dinitz and D.R. Stinson

ABSTRACT

We define a generalization of a Howell design called a
V-square. The admissible parameter sets for V-squares are
computed and we prove that for a special class of V-squares
(crowded V-squares), the necessary conditions for existence are
sufficient. Also mentioned is the connection between V-
squares and graph colourings.

1. Introduction.
We begin with the definitions.

Definition 1.1. A V-square V(k,r;v) is a kXk array with cells either
empty or containing unordered pairs from a set S, | S| = v, satisfying:

i) each symbol s € S occurs in at most one cell in any row or column;
ii)  each symbol occurs exactly r times in the array;
iii)  Any pair of elements from S occurs in at most one cell of the array.

Notice that if » = k, then each symbol must occur exactly once in
every row and column and thus we have a Howell Design. (See [5] or [7] for
information on Howell designs.) Thus a Howell design H(s,2n) is a
V(s,s;2n). Also, note that a Room square of side n is a Vin,n;n+1). If
each cell is filled, then in the notation of Kramer et al., [6], 2 V(k,r;v) is a
crowded RR(k,k;1—([v,2k,2k],2,[r,1,1])). In Figure 1, we give an example
of a V-square which is not 2 Howell design.
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V-Squares

117 2 6 7 18 4 8 9 15 | 12 16
2 8 1 18 6 17 3 5 10 16 | 9 13
3 18 4 5.4 1 8 7 17 | 11 13 | 10 14
4 7 3 17 2 5 6 18 | 12 14 | 11 15
9 13 | 10 14 | 11 15 | 12 16 1 4 5 7
12 14 9 15 | 10 16 | 11 13 2 3 6 8

Figure 1
V(6,4;18)

In a V(k,r;v), the pairs in the cells can be thought of as edges in a
graph G, called the underlying graph of the V(k,r;v). The array V induces
two proper edge k-colourings of G determined by the rows and columns of
V. That is, if {z,y} is in cell (¢,7), then edge {z,y} receives colour ¢ in the
row-induced edge k-colouring, and colour 7 in the column-induced edge k-
colouring of G. Note that if two edges receive the same colour in the
row-induced edge colouring of G then they receive different colours in the
column-induced colouring and vice versa. This motivates the following.

Definition 1.2. Two edge colourings C; and C; of 2 graph G are said to
be orthogonal if any two edges that receive the same colour in one colour-
ing receive different colours in the other colouring.

For example, if G = K, ,, the complete bipartite graph with biparti-
tions of size n, then a pair of orthogonal Latin Squares of side n induce
two orthogonal edge colourings of G.

The following proposition follows from Definition 1.2 and the discus-
sion preceeding it.

Proposition 1.3. The existence of an r-regular graph G on v vertices
having two orthogonal edge k-colourings is equivalent to the existence of a
V(k,r;v) with underlying graph G.

In Figure 2 we give two orthogonal 4-colourings of the Peterson
graph and the V(4,3;10) equivalent to it.
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1112 38|69]|45
2179168102 3
315101 49| 27|68
4134|710 15
Figure 2
V(4,3;10)

More results concerning orthogonal edge colourings are given in [1].
Here we will restrict our attention to the construction of V-squares without
necessarily considering the underlying graph. We consider a special class of
V-squares, which we define. A V(k,r;v) is crowded if there are no empty
cells, i.e. if vr = 2k2.

Since v = 2k%r is a function of k and r, we denote a crowded
V(k,r;v) by V(k,r). For the remainder of this paper we will be concerned
only with crowded V-squares, and we will determine the spectrum of
Vik,r).

In Section 2 we determine the admissible parameters for V(k,r). Sec-
tion 3 supplies various constructions for V(k,r) to be used in Section 4,
where we determine the spectrum.

2. Admissible Parameters.

For the remainder of this paper we assume all numbers to be nonne-
gative integers. In this section we derive necessary conditions for the
parameters & and r. We will say that (k,r) € V if there exists a Vik,r).
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Proposition 2.1. (k,r) ¢ V implies r | 2k2.

Proof. Count the number of occurrences of all the symbols in two ways to
get vr = 2k%. O
Let r =27 Hp:‘ be the prime factorization of r. Define
eg—1 '

p=2 2 Hp,[e'ﬂ], where [ ] denotes the ceiling function. Since

necessarily k = r, we can write k=r+z;z=0.
Proposition 2.2. The existence of a V(r+z,r) implies r | 222 and plz.
Proof. By Proposition 2.1, rl 2(r+x)2. Thus r|2z% Since r| 222, then

eo— 1

2°°| 222 and p:il 252 for p, # 2. So 2 2 | z and p,[eilzll z for p; #* 2

eo— 1
and thus p = 2! ° Hp,[e'ﬂ]l z. O

Notice that p|r, so V(k,r) exists only if k = np (modulo r). Also,
since p| z, we can write V(k,r) = V(r +£L;21,r) for some n. Thus by Propo-

2
L& , then tr = on?%p%. But r| 20%

sition 2.2, r|2(np)?. If we let t = r
thus n%|t. Now t/n?® = (2n?p%r) - (1/n?) = 2p%r so by the definition of p
we see that t/n? = 2p%r is square-free. There are two cases to consider:
¢t/n? is even or odd.

If ¢/n? is even, then ¢/9n2 is an odd square-free integer and
(t/2n?)| p°. Let s = t/9n2. Since s is square-free, s|p. Let sm = p;
then sm? =r. Thus Vir+npr) = V((t/2n?- (m%+mn),
(t/2n2)m?) = V(s(m?+mn),sm?) for some odd, square-free 3.

If t/n? is odd, then similar reasoning gives
V(r+npr) = V(({t/n%- (2m®+mn), t/n¥(2m?) = V(s(2m®+mn),s(2m?))
for some odd, square-free s.

The above analysis gives us our characterization of the admissible
parameters of a V(k,r).

Proposition 2.3. The necessary conditions for the existence of a V(k,r)
fall into two cases:

Case 1.

If r=sm? where & is odd and square-free, then
V(k,r) = V(s(m?>+mn),sm? for some n = 0.
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Case 2.

If r=s(2m®% where s is odd and square-free, then
V(k,r) = V(s(2m®+mn),s(2m?)) for some n = 0.

3. Useful Constructions.

In order to construct may V(k,r) it is necessary to generalize the idea
of V-square to that of a V-rectangle.

Definition 3.1. A V(k;Xk,r;v)is a kyXk, array which satisfies all of the
conditions of Definition 1.1. A crowded V(k;Xkyr;v) is termed a
V(k1Xkor). We also say that a V-rectangle or V-square is bipartite if the
underlying graph is bipartite.

Lemma 3.2. There exists a bipartite V(a Xb,b) and V(bXa,b) for every
a=b, ezcept « = b =2 and a = b = 6. Also, there is a nonbipartite
V(6,6).

Proof. Let L, and L, be two orthogonal Latin squares of side a(a # 2 or
6) on different symbol sets. If L, and L, are superimposed then we obtain
a bipartite V(a,a). Now delete a — b rows or columns to obtain a bipar-
tite V(bXa,b) or V(a Xb,b).

If a = 6, then let L; and L, be the two 6X6 Latin squares found by
Horton [4], again on different symbol sets. Say L, is on the symbol set
Sy =1{1,2,...,6} and L, is on S, = {7,...,12}. These squares have the pro-
perty that when superimposed, every ordered pair in 51X S, occurs exactly
once, except that in the lower right 2X2 corner, (6,12) and (5,11) occur
twice, and (6,11) and (5,12) never occur. A bipartite V(6Xb,b), b < 5, can
be constructed by superimposing L; and L, and then deleting the final 6—b
columns. The V(b X6,b) is the transpose.

The nonbipartite V(6,6) is a Howell design H(6,12) and can be found
in Hung and Mendelsohn [5].

Finally, if ¢ = 2, a V(2X1,1) is trivial and a V(2,2) does not exist. O

Our next theorem is similar to the usual Kronecker product for Latin
squares.

Theorem 3.3. (First Product Construction) If there exists a ViaXb,r,)
and a bipartite V(e Xd,ry), then there exists a V(ac X bd,r,r,).
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Proof. Let V;, = V(aXb,r;) and V, = V(e Xd,ry) and say the symbol set
of V, is §,. Since V, is bipartite, it is equivalent to two orthogonal Latin
rectangles L, and L, on the same symbol set Sp. Say {z,y} is in a cell of
V,. Define zL, to be the c¢Xd array obtained from L, by replacing each
symbol s € L; by the new symbol z,. Now, in V;, replace the cell contain-
ing {z,y} with the ¢Xd array obtained by superimposing zL; and yL,. It
is straightforward to check that each symbol in §;X S, occurs riry times
and that this resulting array is indeed a V(acXbd,rrg). D

Corollary 3.4. If n # 2 or 6, then the existence of a V(k,r) implies the
ezistence of a V(nk,nr).

Proof. By Lemma 3.2, if n # 2 or 6 there exists a bipartite V(n,n). The
result follows by Theorem 3.3. O

Using Corollary 3.4, we note that, in Proposition 2.3,
(s(m2+mn),sm?) eV if (m?+mn,m? eV, since s ¥2 or 6. Also
(s(2m2+mn),s-2m2) e V if (2m?+mn,2m?) e V. Thus we focus our atten-
tion on these orders.

We will not use the next theorem; however we include it for com-
pleteness.

Theorem 3.5. (Second Product Construction) If (k,r) eV, then
(kt,r) eV, for every t.

Proof. Place t2 copies of the V(k,r), all on different symbol sets, in atXt
array. O

The remaining theorems all deal with the orders specified in Proposi-
tion 2.3.

Theorem 3.8. If there exist 4 pairwise orthogonal Latin squares of side
om + n, where 0 = n =m, and 2 orthogonal Latin squares of side m,
then there ezists a V((2m+n)m,2m?).

Proof. Let A and B be two of the orthogonal Latin squares of order
9m + n. Use the two other orthogonal squares to find two sets of com-
mon transversals in A and B. Let one set be T1,Tq,...;.T0m +n, and from
the other set choose 2m transversals Fy,Fy,....Fp,, S1,..,5, . Let V, be the
V(2m+n,2m+n) formed by the superimposition of A and B.

Let V, be the bipartite V(m,m) obtained from the two orthogonal
Latin squares C' and D of side m. Now use Theorem 3.3 to take the pro-
duct of V] and V,. Call this V.

Let A be on the symbol set S; = {@1,...,00p +n}, B be on the symbol
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set Sgp = {B1,--,Bom+n}, and C and D be on the set M = {1,2,...m}.
Then V3 is on the symbols (S4XM)U (SgXM). Thus there are
2(2m+n)m = 4m® = 2mn symbols, each occurring 2m? + mn times.
We desire 4m? + 4mn + n? symbols each occurring 2m? times. Thus we
must add 2mn + n? new symbols, and delete each old symbol exactly mn
times.

Call the new symbols ®©; where 1 <i{ < 2m+n and 1 < j < n.
Let E be an m Xn Latin rectangle on the symbols 1,2,...,m.

Remember that V consists of (2mn+n)® m Xm blocks. Now, we
replace the old symbols of an m Xm block X depending on which transver-
sals X occurs in:

1. If X is in transversals 7; and F,, then replace each pair
{(,r),(Bks)} in X by the pair {7 (8;,s)} where r = E(j,p). If for
every 1 = p < n,r # E(j,p), then no replacement is made.

2. If X is in transversals T, and S;, then replace each pair {a;,r),(8,s)}
in X by the pair {(e,r)®!} where s = E(j,p). If for every
1=<p=mn,s # E(j,p), then no replacement is made.

3. If X is not in one of the transversals F\,F,,...F,., S,,...,S,,, then no
replacements are made in X .

We check that this square is a V(2m*+mn,2m?). First, each symbol
(e,,r) or (B,,r) has been deleted from exactly as many m Xm blocks as the
number of times r occurs in the array E. Thus each symbol has been
deleted from m=n cells. The symbol ®/ occurs m times for each transver-
sal of the Fy,....F,, S,,...,S;,. Thus it occurs exactly 2m? times also.

It is relatively straightforward to verify conditions (i) and (iii)
in Definition 1.1, to finish the proof. O

The next theorem is similar, but requires the existence of only 3
MOLS of order 2m +n. However, we now require n to be even.

Theorem 3.7. If there ezist three pairwise orthogonal Latin squares of
order 2m+n where n is even and 0 < n < 2m, and 2 orthogonal Latin
squares of order n, then there is a V(2m2+ mn ,2m?.

Proof. Let A and B be two orthogonal Latin squares of order 2m+n,
and let Fy,...,F,, S,,...,S, be 2n disjoint common transversals of A and B,
obtained from the third orthogonal square (note 2n < 2m + n). Let V,
Vy and V; be as in the previous construction, on the symbol sets
Sa U Sp,M and (S4 U Sg)X M, respectively. The new symbols will be
denoted f! and s/, where 1<i=<m +n/2 and 1<j=<n. Let E
denote a (2m+n)Xm rectangle on the symbols 1,..m=+n/2, in which
each symbol occurs 2m times in total, and at most once in each row. (E
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can be constructed, for example, by detining
E,=1+ (((—1Ym+,) mod(m +n/2)).

Now consider the m Xm block arising from the cell in row i of Fj.
In this block, replace all occurrences of (e,k) (xeSy,1=k=m) by f] where
e = E,. Similarly, in the block arising from the cell in row ¢ of 5,
replace all symbols (8,k) (BeSp,1=k=m) by s/, where e = Ey.

It is clear that each old symbol has been deleted mn times, and each
new symbol now occurs 2m-m = 2m? times. No symbol occurs twice in
any row or column, so we have a V(2m?2+ mn,2m?). O

A diagonal Latin square of order n is a Latin square each of whose
main diagonal and back diagonal are transversals. It has been shown [8]
that two orthogonal diagonal Latin squares exist for all orders n = 7,

n ¥ 10.

Theorem 3.8. If there exists a Howell design H(m,2m) with one
transversal and two orthogonal diagonal Latin squares of order 2m+1,
then there ezists a V(2m®+m 2m?).

Proof. Let L, and L, be the two orthogonal diagonal Latin squares of
order 2m+1, on the same symbol set S = {1,2,....2m+1}. Superimpose
L, and L, so that in each cell is a pair of elements from S. Down the
main diagonal, replace each first symbol in a cell by the new symbol ® and
down the back diagonal replace each second symbol in a cell by . Leave
the cell that is in both diagonals empty. Call this square W. Note that W
contains 2m +2 symbols and each symbol in S!'= S U {=} occurs exactly
4m times.

Now, let H be a Howell design H(m,2m) containing 2 transversal, on
the symbol set 7' = {1,2,..,2m}. Let H,(a,b,eS’) be the square H with
each pair {i,j} in H replaced by {i,,j,}. Construct the array W from the
array W by replacing each pair {a,b} in W by the array H,;. Also replace
the empty cell in W by an empty m Xm array. This array W of side
(2m+1)m contains the (2m+2)2m = 4m? + 4m symbols from TXS§'.
To get our V-square we need exactly one more symbol, which we call (2.

Let the transversal of H contain the symbols 1,2,...,m as the first ele-
ments in its cells and the symbols m+1,..,2m as the second elements. In
every other cell in the main diagonal of W (cells (¢,7) where ¢ is odd,
1 =< { < 2m+1), replace every occurrence of the symbol ¢, 1 = a =m,
in the transversal of He, by the symbol (2. In every other cell in the back
diagonal of W (cells (i,2m +2—1) where i is even, 1 = i =< 2m+1) replace
each occurrence of the symbol b, m + 1 =< b =< 2m, in the transversal of
H,. by the symbol 2. Call this square V.

We have deleted each of the 2m symbols ao, 1 = a =< 2m, exactly
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design H(m,2m) on the symbols a¢w, 1 = a =< 2m. This completes the
construction of V. O

Corollary 3.9. For every m = 4, (2m*+m,2m?) e V.

Proof. In [2] it is shown that 2 orthogonal Latin squares with a common
transversal exist for al orders n # 2,3, or 6. By superimposing these Latin
squares we have a Howell design H(n,2n) with one transversal for all
n # 2,3 or 6. When n = 6, the required H(6,12) is given in |7, Figure 1].
By the remark preceding Theorem 3.8, the appropriate diagonal Latin
squares also exist. The result then follows from Theorem 3.8. O

Our final construction is a direct construction of V(2m?+mn,2m?
with the only constraints being arithmetic in nature.

Theorem 3.10. Suppose that there exist distinct integers a,,...,a,, such
that

1) 1=<g <(2m+n)/2 and
2)  either 2m+n)/g; is even, or 2n+m)lg, is odd and g, =< n, for
1 =<i =< m, where g, = g.c.d.(¢;,2m+n).

Then there exists a V(2m?+mn,2m?).

Proof. First observe that, in a V(2m?+mn,2m?), the number of symbols
is (2m+n)%. We will use the symbol set Zop, 4 X Zopy 4y

We group the 2m2+mn rows and columns into blocks of size
(2m+n)X(2m+n), and note that there are m blocks across each row and
down each column. Let (i,7,r,c) denote the (2m+n)X(2m+n) block
formed by placing the pair {(z—r,y—c),(i+z—r,j+y—c)} in row z and
column y, 1 = z, y = 2m+n (all arithmetic is done mod 2m +n). Note
that (s;,5,) appears in row s; + r, column s, + ¢, where it is paired with
(s;+¢,85F 7); and also in row s, + r — i, column s, + ¢ — 7, where it is
paired with (s,—¢,s,— 7).

Let A denote an m Xm square, in which each cell contains a 4-tuple

(¢,7,r,¢) such that:
1)  There are no repeated pairs in the multiset {(¢,7)} U {(—¢,— j)};

’

2) across a row there are no repeated elements in the multiset

{r} U {r—i}; and
3) down each column there are no repeated elements in the multiset
{c} U {c—Jj}
We will show that A generates a V(2m2+mn,2m2) when we replace
each cell with the (2m+n)X(2m +n) square which corresponds to the 4-
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tuple in that cell. First note that we do get a square of side om? + mn,
and that each symbol occurs 2m? times (twice in each
(2m+n) X (2m+n) block). Next note that no pair occurs twice, since
each pair (s,,85) occurs with (s,+1,s,+ ) and (s;—1,8,— 7). By Condition
1) on the square A, these symbols are all distinct. Similarly, across a row
of A (after replacing the cells by the square of side 2m+n) the symbol
(s1,52) appears in rows s, + r, and s; + r — i. By Condition 2) on A
these are all distinct. The proof that no symbol occurs twice in a column
is similar.

We now show how to use the conditions of this theorem to build the
square A with the desired properties.

Let a,,...,a,, be as hypothesized. In row z, column y of A we set
i = a;, j = —a,. Thus the i’s are constant across the rows of A, and the
—j's are constant down the columns. Moreover,  since
1=<a, <(2m+n)/2, the multiset {(i,7)}U {(=i,—j)} contains no
repeated elements, therefore Condition 1) on A is satisfied.

We next show how to assign the r values across the row z and the ¢
values down column z. Consider the graph on the vertex set Zj, 4,
formed by connecting each b with b + a,. This graph consists of g,
cycles, each of length (2m+n)/g,, where g, = g.c.df{a,2m+n}. Thus
there exists an independent set of edges of size (2m +n)/2 (if (2m +n)/g, is
even) or of size (2m+n—g,)/2 (if (2m+n)/g,. By the second hypothesis
on a,, this set has at least m independent edges, say (b;,b;+a;),
k=1,.m.

Across Tow £ we assign to the r-values these sums b, + a;. Since
the edges are independent, the multiset {r} U {r—i} = {b,+a,} U {b;}
has no repeated elements. Similarly, down column z we set the c-values
equal to the b,’s. The multiset {c} U {c—j} = {b;} U {by—(—a,)} con-
sists of distinct elements.

Having constructed square A, the proof of the theorem is completed.
]

As an example, we construct a V(10,8). Here m = 2, n = 1 and we
pick a; = 1, a; = 2. We use independent edges 40 and 12 for row 1, 30
and 24 for row 2, 01 and 34 for column 1, and 02 and 13 for column 2. We
obtain the array

(1,4,0,0) | (1,3,2,0)

A=

(2,4,0,3) | 2,34,1)

which gives rise to the V(10,8) given in Figure 3. (The second coordinate is
written as a subscript).
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0g1ly | 031|021y | 0315 | 0415 | 3043 | 3144 3240|3341 | 344
1924 | 1120 | 122y | 1325 | 1425 | 4905 | 4,04 | 420, | 450, | 4,0,
2034 | 2030 | 2231 | 2332 | 2433 | Oplg | 0314|0215 | 051y | 041,
3044 [ 3140 | 3241 [ 3342 | 3443 | 1023 | 1124|1520 | 1532, | 1,2
4004 | 4100 | 420, | 4302 | 4503 | 2033 | 2134 | 2,30 | 233, | 243,
022y | 0325 | 0423 | 0924 | 032 | 1435 | 1933 | 1334 | 123 | 13 3,
1231 | 1332 | 1435 | 1034 | 1130 | 2545 | 2045 | 2144 | 2240 | 23 4;
2041 | 2342 | 2443 | 2044 | 2140 | 3405 | 3903 | 3,04 | 3,00 | 350,
320, | 3305 | 3405 (3004|3100 | 451y | 4015|411y | 4215|431,
doly | 451y | 4415 | 491y | 4310 | 0425 | 0923 | 0y 24 | 052 | 052

Figure 3
A V(10,8)

Corollary 3.1l. If n = m, then there exists a V(2m2+mn,2m2).

Proof. In Theorem 3.10, we let a;, =i for 1 =<1 =<m. Then
1 =g, = (2m+n)/2, and, since g, <o, <m =< n, we get g, < n, for
each ¢. Thus the conclusion. O

4. The Spectrum.

By Proposition 2.3, the necessary conditions for the existence of a
V(k,r) fall into two cases:

Case 1. If r =sm? where s is odd and square-free, then

V(k,r) = V(s(m®+mn),sm?) for some n.
Case If r=s(2m® where s is odd and square-free, then
V(k,r) = V(s(2m®+mn),s(2m?)) for some n.

In this section we will show that these necessary conditions are also
sufficient.

Il e

First, we can easily dispose of Case 1.

Theorem 4.1. There ezxists a V(s(m®+mn),sm?), for all odd square-free
s,and all m,;n ¢ Z%.
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Proof. By Lemma 3.2, there exists a bipartite V((m+n) X m,m) and
V(m X (m+n),m) (except for the two cases m = 6, n = 0 and m = 2,
n = 0, which we will handle separately). Now, by Theorem 3.3 there
exists a V(m?+ mn,m?). Since s is odd, then s # 2 or 6, so by Corollary
3.4 there exists a V(s(m2+mn),sm?). If m = 6, n = 0, then there exists
a V(36,36) by Lemma 3.2, and thus by Corollary 3.4 there is a
V(s - 36,s -36) for all odd s. Similarly, if m = 2, n = 0, there exists a
V(4,4) by Lemma 3.2 and again by Corollary 3.4 there is a V(s4,8+4) for all
odds. O

Case 2 is more difficult to settle. However, the constructions from
Section 3 will handle this case. We will use Theorem 3.6 as our main tool.

Therefore, we must consider the special cases when m = 2 or 6.
Lemma 4.2. If m = 2or 6 and 0 < n < m, then (2m*+mn 2m?) e V.

Proof. When m = 2 we have V(8,8) by Lemma 3.2 and a V(10,8) was
given following the proof of Theorem 3.10.

When m = 6, Table 1 below shows (72+6n,72) ¢ V, for 0 = n < 6.

Parameters Equation Authority Remarks

V(72,72) Theorem 3.2

V(78,72) Cor. 3.9

V(84,72) 4XV(21,18) Cor. 3.4 (21,18) € V by Thm. 3.6

V(90,72) 9% V(10,8) Cor. 3.4 V(10,8) given above

V(96,72) 4XV(24,18) Cor. 3.4 (24,18) € V by Thm. 3.6

V(102,72) Theorem 3.10 {a,} ={1,2,34,5,6} O
Table 1.

Since we wish to employ Theorem 3.6 to construct
V((2m +n)m,2m?) we must also consider as special cases the orders
9m+n for which there do not exist 4 orthogonal Latin squares. Let
S = {2,3,4,5,6,10,14,18,20,22,24,26,28,30,33,34,38,42,44,52}.  Then, if
o9m+n ¢ S, there exist 4 orthogonal Latin squares of order 2m+n [3].
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except (2,2) § V.

Proof. Let T = {4,18,20,22,24,26,28,30,34,38,42,44,52}. If 2m+n €T,
then there are 3 orthogonal Latin squares of order 2m+n [3]. Note that
every t € T is even. Thus, if 2m+n € T, then n is necessarily even. By
Theorem 3.7, we conclude that ((2m+n)m,2m?) eV for all 2m+n e T
and0 =n <m.

If 2m+n ¢ S\T, then 2m+n = 2,3,6,10,14 or 33. If 2m+n = 2,
then m = 1, n = 0, and V(2,2) does not exist. If 2m+n = 3, then there
are no cases to consider when 0 = n <m. If 2m+n = 6, then m = 3,

n =0, and a V(18,8) exists by Lemma 3.2. The remaining cases are
displayed in Table 2.

2m+n mn V-square Equation Authority Comments
10 42 V(40,32) 4XV(10,8) Cor. 3.4 (10,8)eV by Lemma 4.2
10 50 V(50,50) Lemma 3.2
14 54 V(70,soj m™m.310  {a;}={1,2,3,4,5}
14 62 V(84,72) Lemma 4.2
14 70 V(98,98) Lemma 3.2
3 120 V(396,288)  9XV(44,32)  Cor.34 (44,32)¢V by Thm 3.6
33 187  V(429,338) Thm. 3.10 {a;}={1,2,..,10,12,13,14}
a3 145 V(462,392) Thm. 3.0 {a;}={1,2,...,10,12,13,14,15}
33 153 1(495,450) 9 XV(55,50) Cor. 3.4 (55,50)cV by Cor. 3.9
<] 161 V(528,512) Cor.3.9
]
Table 2.

Our main result is that the necessary conditions given in Proposition
2.3 are also sufficient. We state this as

Theorem 4.4. The necessary and sufficient conditions for the existence
of a V(k,r) are that either
2

1. r=sm where 38 is odd and square-free and
V(k,r) = V(s(m®*+mn),sm?) for some n = 0, or
2. r=3(2m® where s is odd and square-free  and
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V(k,r) = V(s(2m®+mn),s(2m?) for some n =0, except that no
V(2,2) exists.

Proof. These conditions are necessary by Proposition 2.3.

By Theorem 4.1 a V(_s(m2+mn),sm2) exists for all odd, square-free
s, and all m,n = 0. Thus all the squares in Case 1 exist.

If n» = m, then by Corollary 3.11 there exists a V(2m2+mn 2m?).
Assume 0 < n < m. If 2m+n € S then there exists a V(2m?+mn,2m?)
by Lemma 4.3, except V(2,2) does not exist. If 2m+n ¢ S, then there
exists a V(2m®+mn,2m?) for m # 2 or 6 by Theorem 3.6. Finally if
m = 2 or 6, then there exists a V(2m®+mn 2m?) by Lemma 4.2. Thus
for every m,n = 0, (2m2+mn,2m2) eV, except (2,2) ¢ V. So by Corol-
lary 3.4 and Lemma 3.2 there exists a V(s,(2m?+mn),s(2m?) for all odd
square-free s and all m,n = 0, except V(2,2). O
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