THE DISTANCE BETWEEN UNITS IN RINGS -~ AN ALGORITHMIC APPROACH

Douglas Stinson

ABSTRACT. Given a finite set of positive prime integers P = {pl,...,pn},

define U{(P) to be the smallest positive integer ¢ such that, given

any & consecutive positive integers, at least one of them is divisible

by no P> 1 <1i<n. An algorithm which facilitates evaluation of

U(P) is described. Also, values U(Pk) are obtained, where

Pk = {q € k, q prime}, for k < 50.

1. Introduction. -

Suppose P 1is a finite set of positive prime integers. Define
U(P) to be the smallest positive integer & such that, given any

positive integer n, there exists an integer t such that

n<t<n+d8 and (t,p) =1 for every p € P. As is usual, (a,b)
denotes the greatest common divisor of positive integers a and b.

Let p*= T p. Then (a + kp*,p) = (a,p) for all positive

peP

integers a and k, and for any p € P. For a positive integer n,
let Zrl denote the ring of integers modulo n. A wniit in Zn is any
invertible element. Then, in view of the remark above, the desired
value U(P) may be described as the maximum distance between 'consecutive"
. Since 1 is a unit of 2

units of Z we have immediately that

o
<

p*’
U(P) < p*, thus guaranteeing that U(P) is finite.

Let Pk = {qg <k, q prime}. The values U(Pk) are of particular

interest in the study of mutually orthogonal Latin squares (MOLS), as

we now demonstrate.

A Latin sq?are L of order n is an n by n array of elements
of an n-set S(L) such that the elements in any row or column of L
comprise the totality of S(L). Two Latin squares L and M of
order n are said to be orthogonal if, given any ordered pair

(2,m) € S(L) x S(M), there exists a unique cell (i,j) such that

¢ L(i,j) and m € M(i,j). Several Latin squares of order n are

said to be mutually orthogonal if each pair of squares is orthogonal.

The following is a fundamental result of MacNeish [2].
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We may now prove

integer n, there exists an integer t

and there exist k MOLS of order t.

definition of U(P).

2. A Method to Evaluate U(P).

here as a lemma.

LEMMA 2.1. Let m,,...
1 n

integers, each greater than 1, and let

has a unique solution modulo m* = 1 m

finite set A of positive integers, let
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THEOREM 1.1 If n = pll P, ...pkk is the factorization of n into

a,
prime powers, there exist at least min {p.l o } MOLS of order =,
k Gy

by Theorem 1.1. The existence of such t

integers. Then the system of n congruences

X Za, modm,, 1*<
i i

We now present several definitions.
as described in Section 1. Let P = Q U R,

QnR =@, Denote gq* = ] q, r* = T r.
qeQ TeR

) = {x
a e A}, let UZ(A) = {u ¢ U(A)[ a<uc<hbl.

B-A=1{blbeB, b¢A}. Now, let B be a finite

relatively prime integers greater than 1. Define a

THEOREM 1.2. Let k be a positive integer. Then given any positivej¥
such that n <t <n + U(Pk)i“l

Proof. If (t,p) =1 for p ¢ Pk then there exist k MOLS of order t
is guaranteed by the

Theorem 1.2, or special cases of it, is used in proofs of the

existence of MOLS. See, for example Wilson [5] or Mullin et al. [3]. /-

We will depend fundamentally on the Chinese Remainder Theoreﬁ;ui

proven in many textbooks, e.g. Schilling and Piper [4]. We state it

»m_ be n pairwise relatively prime

be n arbitrary

P, and p* are

Then p* = g*r*., For a

€ Z | (x,a) =1 if
< B, let

set of pairwise

congruence assignment,



 or CA, on B tobe a function £ such that £(b) e Zb for every

b € B. . Define a partial congruence assignment, or PCA, on B to be
a CA on S(f), for some S(f) < B. Let CA(B) and PCA(B) denote
respectively the set of all CAs and PCAs on B.
*
For x € U? (Q) (equivalently, for each unit of Zq*) and
f € PCA(R), 1let =x(f) satisfy
1) x{f) = x modulo q%*;
(2) x(f) = £(r) modulo r for each r € S(f);
(3) 0 £ x(f) < g*(x")*, where (r")* = ) r'
r'eS(f)
By Lemma 2.1, x(f) satisfying (1) and (2) exists and is unique
modulo q*(r')*; thus (3) determines x(f) uniquely.
We now define several functions based on the concepts defined
above.
Suppose f € PCA(R) and x and y are positive integers with
y £ x. Let Ui(f,q) = {u € Ui(Q) | u-x # -f(r) modulo r, for
every T € S(f)}. Let u(x,f,8) = | U§+6(f,Q) |, and let
v(f) = IR - S(f)|. Finally let t(x,f,8) = v(f) - u(x,f,8). We

are now able to prove the following lemma.

*
LEMMA 2.2. Suppose f e€ PCA(R), x € Ui (Q, and & <s a positive

integer. If t(x,£,8) 2 0, then there exists an integer y such that
(1) y = x modulo g%,
(2) (t,p*) > 1 Z2f y <t <y + 8.

§
Proof. Let A = {al,...,aj} = U§+ (£,Q . Then, by assumption,

j£v(f). Let g: A+ R - S(f) be any one-to-one function. Let
T = S8(f) u g(A) and define h € PCA(R) by
_ Jf(n) if r e S(f)

h(r) = {x - g(s) 1if s € g(4)
Then S(h) = T. Let y = x(h). Then y = x(f) modulo g*(r')* so
y = x modulo q. Also, by the choice of g, (t,p*) >1 if y <t <y + 8

As an example, suppose P = {2,3,5,7,11,13,17,19,23,29},

Q=1{2,3,5,7}, R=P-0Q, x=37, § =33, and £(11) = 0, £(13) =9,
so S(f) = {11,13}. Then Uz+6 (Q) = {37,41,43,47,53,59,61,67}, and
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WO(£,Q) = 143,47,53,61). Thus u(x,f,6) = 4, w(£) = 4, so
t(x,f,6) = 0. Applying Lemma 2.2, we see that there exists y =
modulo 210, such that (t,p) >1 if y <t <y + 33 and,
p < 29. o

The following lemma describes the behaviour of t.

*
LEMMA 2.3. Suppose x ¢ Ui (Q), f € PCA(R), and 6 2 0. Then
t(x,£,8) 2 t(x,£,6 +1) > t(x,f£,8) - 1.

Proof. The proof is immediate.

For x € Ug*(Q) and f € PCA(R) define
B(x,f) = maX{élt(x,f,s) 2 0}. Since t is monotonic and decreases
by unit increments (Lemma 2.3), we have 0 = t(x,f,B(x,f)) and
-1 = t(x,f,B(x,f) + 1). In the example, it may be checked that
t(x,f,6 + 1) = -1, so B(x,f) = § = 33,

Now define vy(x) = max {B(x,f)}.

fePCA(R)

We relate vy(x) to the distance between units modulo p* as

follows.

*
LEMMA 2.4. Suppose x € U? (Q. Let 6. = a(x). Then there exists

0
Yo = % modulo q* such that (t,p*) > 1 <if Yo £ts Yo F 50-
Further, for any ¥y = x modulo q* there exists t such that

¥4 < t< ¥y + 60 + 1 and (t,p*) = 1.

Proof. Let B(X,fo) = 50

2.2, there exists Yo with the required properties. Now suppose,

= y(x). Then t(x,f0,6o) 2 0. By Lemma

for some i that y; = x modulo gq* and (t,p*) > 1 if

< £ + 1. i =
vq t < ¥y + 60 1 Define fl € PCA(R) by fl(r)

for each r € R.. Then B(X,fl) > 8

¥y modulo r,
0* @ contradiction.

1} and let e(x) = x- x"(%).

Let x'(x) = max{yly < x, (y,q)

Then we have

THEOREM 2.5. U(P) = max {vy(x) + e(x)}.
x e U*(Q)
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0
§. = B(x,fo) = y(xo). Then by Lemma 2.4, there exists Yo such that

% 5
Proof. Let x,. € Ug (Q)  maximize ' y(x) + e(x). Let:

Yo =] X, modulo gq* and (t,p*) > 1 if Yo <t< Yo + 60. Let
¥, =5~ e(x). Then, by the definition of e€(x), we have (t,q*) > 1

if Y1 < t< Yo since q*lp*, we have (t,p*) > 1 if Y1 <t¢< Yo + 6.

Since y0 + 6 - v, = Y(xo) + e(xo), we have

u(p) = max {y&) + e(x)} .
eri*(Q)

Now suppose there exists Yo such that (t,p*) =1 if

Py $EHEE + & for some & > Y(xo) + e(xO). Let

vy = min{z|z 2 Yoo (z,q%) = 1}. We may assume that vy, = x'(yl) (this
can only increase the number of consecutive non-units modulo P*).

*
Let X modulo q*, x, € Ui (Q). Now, e(xl) + y(xl) < 6,

17N

1
so we apply Lemma 2.4 with 60 =6 - e(xl) - 1. Then there exists t
< < + *) = =
such that g t 1 + 60 1 and (t,p*) 1. But vy + 60 + 1 y0+6,

so we have a contradiction.

The problem with the above description of U(P) is that vy(x) is
difficult to evaluate. We now describe a more efficient method to
evaluate Yy, by taking the maximum value of B(x,f) over a (relatively)

small subset of PCA(R).

*

Suppose f,f' € PCA(R) and x € Ui (Q). We will say that
f < f' if S(f) < S(f') and f(r) f'(r) if 1 € S(f). We say
that f < £f' if £ < £' and S(f) # S(f'). We now define a strong

PCA as follows. If S(f) =@ then f is strong. Further, if f is
strong, f < f', 1s{gt)] = |s(f)| + 1, and B(x,f') > B(x,f), then

£' is strong. We say that £ is maximal if f is strong and there
does not exist f' such that f < f' and f' is strong. It would be
more precise to say that a PCA is strong or maximal with respect to

a certain X € Uf*(Q), but in all cases the value of x will be

understood, so we use strong and maximal for simplicity.

The following lemma states that, in evaluating vy(x), only

strong PCAs need be considered.

LEMMA 2.6. Suppose f ¢ PCA(R). Then there exists f' e PCA(R)

such that f' < f, f' 48 strong, and B(x,f') 2 8(x,f).
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% .

Proof. Suppose  x € U; (Q, f € PCA(R), and r € R. Define i

a. ,a; e UX+6(f,Q) such that
1°72 X

a, # a, and r,(al - az)}. If r e S(f), 1let fr be defined ‘
fr(r') = f(r') if and only if r' e S(f) - {r}. Thus S(fr) = S(f):

Let a(x,f) = min {h(x,f ,1)}
reS(f) r

h(x,f,r) = max{él there do not exist

In what follows we may assume S(f) # @. We have two cases;

Case (1). o(x,f) < B(x,f). We will show that f 1is strong. Let
S(f) = {rl,...,rﬁ}, where h(x,fr.,ri) < h(x,fr.,rj) if i < j
(certainly no two of these h's ara equal) . LetJus define a sequence
of PCAs as follows: f_ 1is the empty PCA, and fk(ri) = f
1 i < -

if i<k-1, fk(rk)

(ri)
2.

m o

k-1
- 1 < 4 <
X h(x,frk,rk) modulo T if 1 <4 <

Then f = fz. Now, for any i such that 1 < i < 2, S(fi)

S(fi_l)u{ri3
where r. ¢ S(f, .), and f. < f . Thus we need only show that
i i-1 i-1 i
) \ = - ,
B(X,fi_l) < E(X,fi). We have v(fi) v(fi_l) + 1. Let § B(X,fi).
Then u(x,f.,8) 2 u(x,f, _,8) + 2. Then 0 = t(x,f.,8)2t(x,f, _,8) + 1,
i i-1 i i-1

and B(x,fi_l) < B(x,fi), as required.

Case (2). a(x,f) > B(x,f). Suppose h(x,fr,,r') < B(x,f) for

some r' € S(f). Define £, < f by fl(r) = f(r) if r e S(f) - {r},
It is easy to check that B(X,fl) 2 B(x,f). Now if a(x,fl) < B(X,fl),
Case (1) applies and fl is strong. Otherwise, we continue, and
obtain a sequence of PCAs f = fO’fl’fZ""’fm where fj > f
s({fj+ll) = s(lfjl) -1, B(x,fj) > B(x,fj_l) > 8(x,f), and

Q(X,fj) 2 B(x,f.) for 1< 3§ <mn, Eventually we must have

i+l

a(x,fn) < S(X,fn) for some positive integer n, whence we may
apply Case (1); or S(fn) = . However in this case as well, fn is
strong, so we are finished.

Thus we may redefine v.

THEOREM 2.7.  vy(x) = max  {B8(x,f)| f is maximall.
fePCA(R)

Proof. Let fO € PCA(R) satisfy

(1) fO is maximal, and

(2) if f is maximal, then S(X,fo) 2 B(x,f).
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Since 'fo € PCA(R) + we certainly ﬁavef B(x,f.) < y(x). Let:y
v(x) = B(x,f.). Then by Lemma 2.6, there exists f2 € PAC(R) - such

that f2 is strong and B(x,f,) 2 B(x,fl). If f2 is not maximal,

there exists a maximal f3 ¢ PCA(R) such that f2 < f3. Then

B(X,f3) > 8(x,f2) > B(x,fl). By definition of fo,
B(x,fg5) 2 B(x,f3)

v

v(x), giving the reverse inequality.

To illustrate, let us return to the example described earlier.
with P,Q,R,x as defined, we will evaluate v(x), speaking in-
formally. Starting at 37, the units modulo 210 are
37,41,43,47,53,59,61,67,71,... . We are interested in numbers from
the above list whose difference is divisible by a member of R, in
order to obtain strong PCAs. For example, we have lll(59~37), and
13|(67-41). It is easy to check that the following are the only
strong PCAs.

@) fl = "null PCA",

(2) fz(ll) = 0 modulo 11,

(3) f3(ll) = 0 modulo 11,
f3(l3) = 9 modulo 13.

0f these, only f3 is a maximal PCA. Thus v(37) = B(37,f3) = 33.

We may represent this maximum PCA as follows:

37 41 43 47 53 59 61 67
11 13 0 o0 0 11 0 13

The first line lists units modulo 210, and the second line
lists elements of R by which the corresponding units may be divisible,
as determined by the PCA f which maximizes BR(x,f), or a zero
where that unit would be divisible by some r € R - S(f). Of course,
the Chinese Remainder Theorem could be used to solve the system of
congruences, if desired.

Here, we could solve, for example,

vy = 37 modulo 210

y = 0 modulo 11
y = 9 modulo 13
y = 11 modulo 17
y = 9 modulo 19
y = 7 modulo 23
y = 5 modulo 29
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To obtain U(29), one could repeat the above procedure for

each unit modulo 210.

8. An Algorithm for the Evaluation of «.

We now have all the necessary machinery to produce an algorith
to evaluate y. We will be slightly more informal in describing the”
algorithm than we have been while developing the theory. We also
emphasize that we do not intend to describe the algorithm in completeﬂﬂg
detail, but rather give an idea of how the preceding theory can be useig(,
to obtain an efficient algorithm suitable to be programmed on a :

computer.

We first describe a procedure, or subroutine, which accepts as
input a strong PCA and attempts to "extend" it. We refer to this iEd

procedure as EXTEND, e e

%
Input: x € U? (Q), a strong PCA f, the sets Q, R, and 6=B(x,f).

Output: (1) A vector M(i), 1 < i <n (for some integer n,
which may equal zero, in which case M is empty) .

(2) A vector RES(i), i < i < n.

For any i, 1< i < n, M(i) € R - S(f) and RES(i) denotes a residue
molulo M(i). We require that the following property (*) be satisfied: '
(*) Let fi € PCA(R) be defined: fi(r) = f(r) if r € S(f) and
fi(M(i)) Z RES(i) modulo M(i). Then fi is strong.

Also, we wish M and RES to contain all possible ways of

extending f to an fi which enjoys (*).

EXTEND

(1) Set n=0, mod =1, i=1, j =2 (mod will index R - S(f),
which we denote by B, from 1 to m, say; i and j will
determine all uncrdered pairs of elements from U (f Q,

>+
say 1 < i< j<k. Wewill denote U* 8 (f,Q) by A).

(2) If B(mod) divides A(j) - A(d) go to (5).

(3) Set jJ=3 - 1. If >k set i=1 +1, 7 =41+ 1.
If i 2k go to (4); otherwise, go to (2).

(4) Set mod

mod + 1. If mod > m, return. Otherwise set

i=1, j =2, go to (2).
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(5) - Set .m=n+1, M(n) = B(mod), RES(n) = x - A(i) modulo M(n)
go to (3).

We now incorporate EXTEND into a backtrack algorithm GAMMA, which

*

naturally enough evaluates y(x), given x € U? Q).
q* Q¥

Input: The sets Q, R, Ul (Q, and x € Ul Q.

Output: vy(x) and a PCA f for which B(x,f) = v(x).

GAMMA

(1) Set lev = 0, f = "null PCA", fmax = '"null PCA", y = 0.

Notes: (a) Lev will equal the number of elements in s(f).

(b) Because we will be checking several maximal PCAs we must

keep a record of the maximum PCA throughout the backtrack.

(2) Determine B(x,f).

(3) Call EXTEND (the values of n obtained are stated in a ‘ﬁ
vector, subscripted as n(lev + 1)).
(4) If n(lev+1) =0, go to (7). P
(5) Set lev = lev+ 1, c(lev) =1 (c 1is a "counter" vector). ‘
(6) EXTEND f to fi’ as described in EXTEND, where i = c(lev); ? ==
go to (2).
(7) (Here f 1is maximal.) If B(x,f) < y(x) go to (9).
(8) Set fmax = f, vy = B(x, fmax)'
(9) Set c(lev) = c(lev) + 1. If c(lev) < n(lev) go to (6).
(10) Set lev = lev - 1. "Cut back" on f by eliminating the last -
"extension" in step (6).
(11) If 1lev = 0 stop; otherwise go to (9).
<
Corments. (1) Actually, a list of vectors M and RES must be -
stored according to the value of lev when they were calculated, in
order that steps (6) and (10) may be carried out. That is, M and
RES should be doubly subscripted. To simplify the description of s
the algorithm, we have omitted the necessary '"cataloguing' procedures o
(2) Calculation of B(x,f) is straightforward, and we do i =
not describe it in detail. o
e
(3) Given the procedure GAMMA, it is a simple matter to .
determine max {y(x) + £(x)}. Thus we have a straightforward
erT*(Q)
algorithm to determine U(P). il &
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“Returning once more to the example of Section 2, we trace the
execution of GAMMA. Thus Q = {2,3,5,7}, R = {11,13,17,19,23,29}, and
x = 37.

(1) lev =0, £ ="null PCA", £ .= "mull PCA", y =0

(2) B(x,f) =23

(3) n(1) =1, M(1) = 11, RES(1) = O
(5) lev=1, c(1) =1

(6) f(11) =0

(2) B(x,f) = 29

(3) n(2) =1, M(D) = 13, RES(1) = 9

(5) lev =2, c(2) =1
(6) £(11) =0, £(13) = 9
(2) B(x,f) = 33

(3) n(3) =0

(8) max = f, vy = 33

(9) c(2) =2

(10) lev =1, f(11) = 0

(9) (1) =2 e
(10) lev = 0, f = "null PCA" 4
(11) stop.

Thus the backtrack is very simple in this example. It may,

of course, be considerably more complicated.

4. Applications.

As indicated in the introduction, the main interest of this
author is the evaluation of U(Pk). The author was able to carry
out hand calculations of U(Pk) for k < 29 with no difficulty. With
a little patience larger sets could also be done by hand. Of course

the computer can handle larger sets P.

By computer, we have evaluated U(Pk) for k < 50. We tabulate
the results in Table 1 below. For k > 23 we use Q = {2,3,5,7} in
the evaluation of U(Pk). Thus we considered units modulo 210. This
modulus is large enough to keep the amount of backtracking small;
for the largest case (k = 47) just over 1 second of computer time

was needed to evaluate y(x) for each unit X. However, since there
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are only 48 units modulo 210, the number of cases which need be

considered is also small.

TABLE 1. Values of U(Pk)

Eoum) o xoue) o x ey
2 2 13 22 31 58
3 3 17 26 37 66
5 6 19 34 41 74
7 10 23 40 43 90
11 14 29 46 47 100

In Table 2 we indicate how these values can occur, for 23 < k < 47,

We list maximum PCAs, in the same manner as in the example

of Section 2.

TABLE 2. Examples Where U(Pk) Is Attained

k Maximum PCA

23 67 71 73 79 83 89 97
11 13 0 0 0 11 13

% 29 191 193 197 199 209 211 221 223 227 229
e 19 17 13 11 0 0 11 13 17 19

31 187 191 193 197 199 209 211 221 223 227 229 233
23 19 17 13 11 0 0 11 13 17 19 23

37 37 41 43 47 53 59 61 67 71 73 79 83 89

17 19 23 13 0 0 11 0 17 13 19 11 23

; 41 179 181 187 191 193 197 199 209 211 221 223 227 229

3 31 29 23 19 17 13 11 0 0 11 13 17 19
73 233 239 241
23 29 31

43 53 59 61 67 71 73 79 83 89 97 101 103 107

13 31 11 23 19 17 13 11 0 0 0 0 17

109 113 121 127 131
19 23 31 11 13

47 41 43 47 53 59 61 67 71 73 79 83 39 97
31 29 37 13 19 11 23 0 17 13 11 0 19

101 103 107 109 113 121 127 131
29 31 17 0 23 37 11 13

5. Final Comments.

The pattern which occurs for k = 29 or 31 can be generalized
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to give the lower bound:~U(Pp) 2 2q,
primes and  p > q.

may be obtained in this matter.

This is proven by a straightforward application of the inclusion-
exclusion principle (see, for example, [1]).

order of magnitude of U(Pk) is.

guarantees the existence of 30 MOLS of order
U(31) = 58

constructions of Wilson [5], it is desirable to have 31 MOLS of

result that

various orders in order to perform recursive constructions.

topic will be pursued in a later paper.
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[2]

[3]

(4]

(5]

Ohio State University
Columbus 43210

In fact, for p <

The best upper bound we have established is

We ask what the true

The author intends to establish a bound N such that
To this end, the

is of importance. That is, using the
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