
THE DISTANCE BETI^TEEN UNITS IN RINGS - AN ALGORIIHMIC APPROACH

Douglas Stinson

ABSTRACT. Giveo a flnite set of positive prime lntegers P - {P1,..-,Pn},
define U(P) to be the smallest positlve integer 6 such that, given

any 6 consecutive positive integers, at least one of them is divisible

by no pi, 1 < i s n. An algorithm which facilitates evaluation of

U(P) is described. Also, values U(Pk) are obtained, where

Pt = {q ( k, g Prirne}, for k < 50'

1 . fntr'odu.ctian.

Suppose P is a finite set of positive priae integers. Define

U(P) to be the smallest positive integer 6 such that, given any

positive integer n, there exists an lnteger t such that

n<t<n+6 and (t,p)=1 forevery P€P. Aslsusual,(a,b)
rienotes the greatest common divisor of positive integers a and b.

Let p* = il p. Then (a * kp*,p) = (a'p) for all positive
P€P

integers a and k, and for any p € P. For a positive integer n,

let Zn denote the ring of lnteters modulo n. A inlit ia ,n is any

invertible element. Then, in view of the remark above, the desired

value U(P) r.ray be described as the rnaximum distance between "consecutive"
units of Z .-. Since 1 is a unit of Z *, we have iumediately that

P"
U(P) < p*, thus guaranteeing that Lr(P) is finite.

Let P, = {q s k, q prirne}. The values U(P,-) are of particularK.-K
interest in the study of rirutually orthogonal Latin squares (MOLS) , as

lJe now demons trate .

A Lctin sc,'i:are L of order n is an n by n array of elements

of an n-set S(L) such that the elements in any row or column of L

coilprise the totality of S(L). Tr+o Latin squares L and M of
order n are said to be ort'hogoneT i'f, given any ordered pair
(t,m) e S(L) x s(II), there exists a unique ce11 (i,i) such that
,- e L(i,j) and m € M(i,i). Several Latin squares of order n are
said to be nu"tuai!'Lt ot,i'hcqorlal if each pair of squares is orthogonal.

The fo11or^'rrr r" a fundamental result of MacNeish t2].
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o1 o2
THEOREM 1.1 If n_Pl P2 is the faetori.zatton of

ok

pttne po'uier,s, there ertst at least ,rr, {r],
1si<k( l

We may now prove

-1 ) MOLS of order

Proof. If (t,p) = 1 for p < pk then there exist k MOLS of order
by theorem 1.1. The existence of such t is guaranteed by the
deflnition of U(p).

theorem 1.2, or special cases of it, is used in proofs of the
existence of M0LS. See, for example Wilson [5] or Mul1in et a1. t3l.

2. A l4etlicC to E,:cl,taf_e U(p).

I{e will depend fundamentally on the Chinese Remainder Theorem,
proven in many textbooks, e.g. Schilling and piper [4J. We state it
here as a 1emna.

THEOREM 1.2. Let k be a positi,-e integer,.
integer n, there erists an integet, t sueh
and there erist k I,iOLS of order t.

LEIIYA 2.1. Let m1 ,...rrr, be

integers" eaeh greeter tL"qt f,
inteaer.s. ?hen tl-.e systen of n

lhen giuen ary posittue':.,
that n < r < n + u{rn1 :'r,,'

n pcirsise relqtiuelE prine
and let a1r. ..,3r., be n arbitrary

CCr.C?UerLCeS

* = .i mod m., 1<i<n

has a u.tiiqt,.e sci:ttion ncditlo m*
tl

llm j

I{e now present several definitions. Suppose p, and p* are
as described in Section 1. Let p = Q u R, where
Q n n = 6. Dencte q* = Il q, r* = ll r. Ihen p* = q*r*. For a

q€Q reR
finite set A of positive integers, 1et U(A) = {x < Z I (x,a; = 1 if
ae A), 1et ub(a)={ue U14;1..r<b}. rf A:B, let
B-A= {blb e B, b /A}. Now, let B beafiniteserofpairwise
relatively prime integers greater than 1. Def ine a co?.rgr,uerlce assiqnnent,

Jf
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n
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C4' be a functio,n fon, B to
Def ine partia congr>uence

such that f(b
asstgntnent, oE

\ every

PCA, B to
)

b

a CA on S(f), for some S(f) : B. Ler CA(B) and PCA(B) denore

respectively the set of all CAs and PCAs on B.

Ior x€ Uc
1 Q) (equivalently, for each unit of Z .) andqx'

f e PCA(R), 1et x(f) satisfy

(1) x(f) I x modulo q*;
(2) x(f) = f(r) modulo r for each r € S(f);
(3) 0<x(f) <q*(1r)*, where (r')*- fl rl

rres(f)

By Lemma 2.1, x(f) satisfying (1) and (2) exists and is unique

modulo q*(r')*; thus (3) determines x(f) uniquely.

We now define several functions based on the concepts defined
above.

Suppose f e PCA(R) anil x and y are positive integers with
ySx. Let ur(r,q)={".uv(q) lr-*l-f(r) niodulo r, for

*
(

every r e S

v(f) = ln -
(f))
s (f)

. Ler u(x,f ,6) = I U*6(r,Q) l, and ler
l. Finally 1et t(x,f,6) = v(f) - u(x,f,6). We

{

are now able to prove the following leurna.

LEIIIA 2.2. S'uppcse f e eCA(R), * . Ulo{Q), and 6 is a positiue
integer. If t(x,f ,6) > 0, then tl-tere er-Lsts an integer y euch thot

(1) Y=xmoduloq*,
(2) (t,pn)r1 if y<t.y*6.

>,+6Ftoof. Let A = {ar,...,ajl = U (f,Q). Then, by assunption,x
j < v(f). Let g: A + R - S(f) be any one-to-one function. Let
T = S(f) u g(A) and define h e PCA(R) by

h(r) =
f(r) if
x - g(s) if

Then S(h) = 1. Let y = x(h). Then y = x(f) ilodulo q*(r')* so

Y = x modulo q. Also, by the choice of g, (t,p*) > 1 if y < t . y * 6.

As an example, suppose P = { 2,3,5,7,11 ,13,17 ,Ig,23,29} ,

Q = {2.3,5,7}, R = P - Q, x = 37, 6 = 33, and f(11) = 0, f(13) = 9,
so s(f) = {11,13i. Ttren us6 (Q) = {ll ,41,43,47,53,59,61,67}, and

f)
A)

r e S(
s e g(
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a) 53,61 1 Thus u(x, f 6) v (f)4,
0 Applying Lemma 2 see tha there vt exis ts

1 0 such tha t P

r: i, i,so

t(x,f,6
modulo

P s 29.

( ) 1 s t v + 3 dri d

:, ' l.

The following lernma describes the behaviour of t

LEle{A 2. 3. Suppose *. ul*{O), f e PCA(R), and 6 > 0. ?he

t(x,f,6) > t(x,f,6 + 1) > t(x,f,6) - 1.

Proof. The proof is immediate.

For *.Ul*{Q) and fePCA(R) define
B(x,f) = max{6lt(x,f,6) > 0}. Since t is monotonic and decreases
by unit i-ncrements (Leinna 2.1), we have 0 = t(x,f ,B(x,f)) and

-1 = t(x,f,8(x,f) + 1). In the example, i.t may be checked that
t(x,f,6 + 1) - -1, so B(x,f) = 6 = 33.

Now define .r(x) = max {g (x, f) } .

We relate
fo11ows.

fePCA(R)

y(x) to the distance between units modulo p*

LEI.'oiA 2.4. Su-ppose * u UlotQ) . Let 6O = o(x). ?hen there erists
y0 = * modulo q* such that (t,p*) ,1 if y0 = . s lO + OO.

Fut"ther, fcr' a:y y1 = , modulo q* tl:.ere erists t such that
y1. .. y1 * 60 + 1 ond (t,p*) = 1.

Proof. Let B(x,fO) = 6O = r(x). Then t(x,f0,60) > 0. By Lemma

2.2, there exists y0 with the required properties. Now suppose,
for some y1, that y1 = , modulo q* and (t,p*) > 1 if
y1 =. = yl * 60 + 1. Define f, e PCA(R) bV fr(r) = y1 modulo r,
for each r e R. Then 8(x,fr) , 60, a contradiction.

Let x'(x) = max{yly. *, (y,q) = 1} and 1et e (x) = x- x'(x).
Then we have

THEORIM 2.5. U(P) = max {r(x) + e(x)}.
uq*x€ ( a)

-l6q-

P t



* (a) Eaximize y(x) + e(x).

Suppose f,ff e PCA(R) and x €

f < f if S(f) : S(f') and f(r) = f

LEIO{A 2.6 . Sup-pose

tuclt i.rtot f t s f , f I

Y6 xO oodulo g* and (trP*)

yt = y0 - e(x). Then, by the definition of e(x),

if y1 a a = yO since q*lp*, we have (t,P*) ' 1

Since yO * 6 - yt = y("0) + e(x.), we have

U(P) > max {y(x) + e(x)}
*. ul* to)

Now suppose there exists y0 such that (t,P*) > 1 if

y0 . a < t + 6 for some 6 >'v(x,) + t(*0). Let

y, = min{zl, > yO, (z,q*) = 1}. I'Ie may assume that y0 = x'(y1) (this

can only increase the number of consecutive non-units modulo P*) '

Let *1 = y1 modulo q*, x1 . Ul*tOl. Now, e(xr) + Y(xl) ' 6,

so we apply Lenma 2.4 with 6O = 6 - e(xt) - 1. Then there exists t

suchthat yl.a.yl*60+1 and (t,p*)=1. But Yt*60+1=y0+6'
so we have a contradiction.

The problem with the above description of U(P) is that "f(x) is

difflcult to evaluate. We now describe a more efficient method to

evaluate yr by taking the maxinum value of B(x,f) over a (relatively)

srnalI subset of PCA(R).

,l*
'(r)

(a). He will say that
if r < S(f). lle saY

that f < f if f < f ' and S(f) + S(f '). I^le now define a strcrq

PCA as fo11ows. If S(f) = 0 then f is strong. Further, if f is

srrong, f < f', ls(t')l = ls(f)l * t, and B(x,f') > E(x,f), then

ft is strong. We say that f is nartmal if f is strong and there

dces not exist ft such that f < ft and fr is strong' It would be

nore precise to say that a PCA is strong or maxinal r';ith respect to
,.o*a certain " 

. Lirq" (Q) , but in all cases the value of x will be

understood, so we use strong and maximal for sinplicity.

The following lemna states that' in evaluating f(x), only

strong PCAs need be considered.

f e PCA(R) . Then there ertsts f' e PCA(R)

is sttang, eitd. B(x,f ') >:(x,f).

-285-
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Pnoof. Suppose

h(x, f, r) = max{6 I

^t * ^Z and

fr(r') = f(r')
Let o(x,f) =

In r.ihat

* . ul*tQ),
there do n

T € R. Define i
+f^'"(f,Q) such th,

f be definedr
.l(rr - ar)).

1f and only if rt €

min {h(x,f ,r)i
reS(f) r

follows we may assume

f e PCA(R), and

.ot exist a, ,a^ e Utz
If reS(f), let

S(f) # 0. We have

s(f) - {ri. rhus s(fr) - s(f

!

two cases.

Ca.se(1). o(x,f)<B(x,f). I{ewi11 showthat f isstrong. Let
S(f) = {ra,...,rg}, where h(x,f..,.i) . h(x,f, ,r.) if i < j
(certainly no two of these hrs arB equal). t"tj.rr'define a sequence
of PCAs as follows, f0 is the empry pG, and f.(rr) = f._r(rr)
if i s k - 1, fu(ru) r x - n,*,frk,rU) modulo ru if 1 s i < 0.

Then t = f l-. Now, for any i such thar 1 < i . [, S(fi) S(f ._a)u{rr}
where r' I s(tr-r)' and tr-, ' fr' Thus we need only show that

l(",tr_r) 
< B(x,f .). I{e have "(r.i = ,(fi_1) + 1. Let 6 = g(x,fr).

Then u(x,f.,6) > ,(r,f1_1,6) + 2. Then 0 = t(x,f_,6)>t(x,fi_1,0) i f,
and e(x,f.-r) . gf*,fi), as required. 

1

Case (2). o(x,f) > E(x,f). suppose h(x,f.,,r,) . g(x,f) for
some r'e S(f). Define f1. f by fa(r) = f1r; if r < S(f) _ {r},
It is easy to check thar g(x,fr) > g(x,f). Now if o(x,fr) < g(x,fr),
Case (1) applies and ft is strong. Otheri^,ise, we continue, and
obtain a sequence. of pCAs f = fO ,f1,f2,...,f, r,here ,, , ,r*r,
tlltr*1lt =.st lr, l) - r, 6(*,rji i sL,ir_rl ="!(x,r), .,a
o(x,f .) > 8(x,f .) for 1 . j I *. Eventually we rnusr have
o(x,frr) < 6(x,fr.,) for sorne positirre integer n, ,*hence \re may
apply case (1); or s(fn) = 0. Howe'er in rhis case
strong, so L'e are f inished . 

"e\:er 1n Enls case as u'e11' f''' is

Thus we may redefinc r.

THEOREM 2. 7. Y (x)
fePCA(R)

iS(-,r)l r is naxinall.

Proof

(1)

(2)

I'0

Let fO e PCA(R) satlsfy

is maximal, and

f is maximal, then !(x, fO) > B(x,f)
if

286
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Since

that f^ is strong and
I

If is not maximal,

there exists a maximal e PCA(R) such that f- . Then

g(x,f ,) > B(x, tr) ' 
g(x,fr)

3(x,fo) > B(x,fl) . Y(x)'

(1)

(2)

(3)

tion of f0,
giving the reverse inequalitY'

y(37) = g(37,fr) = 33.

To illustrater let us return to the example described earlier'

Llith P,Q,R,x as defined, r'ie will evaluate t(x) ' speaking in-

formally. Starting at 37, the units nodulo 210 are

37,47,43'47,53,5g,61,67,71, " ' ' We are interested in numbers from

the above list whose difference is divisible by a member of R' in

order to obtain stroog PCAs. For example, we have 11l(59-37)' and

131(67-41). It is easy to check that the following are the only

strong PCAs.

fl = "tt'11 PCA"'

f2(11) =0modu1o11,

f3(11) =0rnodulo11,
f3(13) =9modu1o13'

is a maxirnal PCA. Thus0f these, onlY f:

We may rePresent this maxiurum PCA as follows:

37 4t 43 47 53 59 61 67

111300011013

The first line lists units modulo 2J0 ' and the second line

lists elements of R by which the corresponding units nay be divisible'

as determined b,v the PCA f r^'hich maximizes B(x'f ) ' or a zero

where that unit would be divisible by some r e R - S(f)' 0f course'

the Chinese Remainder Theorem could be used to solve the systern of

congruences, if desired'

Here, we could so1ve, for examPle'

y =- 37 nrodulo 210

y = 0 nrodulo 11

y= gmodulo 13

y = 11 modulo 11

y= gmodulo 19

y= Tmodulo 23

y= 5modulo 29

:.
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d
PCA(R)

6,

S(x,fO)

1)
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To obtain U(29).

each unit modulo 210.

3. An Algorithn far the Eualuation of y.

We now have all the necessary machinery to produce an algori
to evaluate y. We r"'i11 be slightly more informal in describing the
algorithm than we have been while developing the theory. lte alsg
emphasize that we do not intend to deserlbe the algorithn in comp

detail, but rather give an idea of how the preceding theory "", l,to obtain an efficient algorithu suitable to be prograumred on a
cotrputer.

. ..i -

Lre first describe a procedure, or subroutine, which accepts as 1,..

1ete

input a strong PCA and attempts to "extend" it.
procedure as EXTEND,

We refer to this , rrili,...
.; i

1-.d\* 1
. " d*!\

. .:!i..

lnput :

0utput:
which may equal

x€ ul*fOl r B srrong PCA f, the sets Q, R, and 6=8(x,f).
(1) A vecror M(i), 1 s i < n (for some

zero, in which case M is enpty).
(2) A vector RES(i), i s i < n.

integer n,

For any i, 1 < i < n, H(1) e R - S(f) and RnS(i) denotes a residue
molulo !1(i). We require that the following property (*) be satisfied:
(*) Let f. e PCA(R) be defined: fr(r) = f(r) if r E S(f) and

f.(II(i)) = RES(i) modulo M(i). Then f, is srrong.

A1so, we r^'ish 1"1 and R_ES to contain all possible ways of
extending f to an fi r^rhieh enjoys (*) .

EXTf\D

(1) Set n = 0, mod = 1, i = 1, j = 2 (mod will index R - S(f),
which we denote by B, f rom 1 to m, say; i and j r^,i11

deternine al 1 unrrciered pairs or e1e:ents f rom UI6 ( f ,Q) ,
say 1 < i < j < k. tr,e will dencte ,I*u <r,ql ;, A) .

1f B(mod) divides A(j) - A(i) go to (5).
Set j= j-1. If j>k ser i=i*1, j=1+1.
If i > k go to (4); orherwise, go to (2).
Set mod = mod * 1. If mod ) m, return. Otherwise sef
i = 1, j = 2. go to (2).

(2)

(3)

(4)

288 -
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(5) Set n=n* 1, M(n) =,B(uod), RES(n) = x.- A(i) nodul-o M(n)

go to (3).

lrle now incorporate EXTEND into a backtrack algorithm GA]'I]"IA, whlch

naturally enough evaluates v(x), given ^t.x e uj (Q).

* . u!*to.

B(x,f) = Y(x) -

Input: The sets Q, R,

Output: V(x) and a PCA

GA}O{A

(1)

,l* (q), and

for whichf

(2)

(3)

(4)

(s)
(6)

(7)

(8)

(e)

( 10)

Set lev = 0, f = "nu11 PCA", fmax = "nul1 PCArr, Y = 0.

Notes: (a) Lev will equal the number of elements in S(f)'
(b) Because we will be checking several maximal PCAs we must

keep a record of the maximum PCA throughout the backtrack'

Determine B(x, f) .

Ca11 EXTEND (the values of n obtained are stated in a

vector, subscripted as n(1ev + 1)).
If n(lev + 1) = 0, go to (7).

Set 1ev = 1ev * 1, c(1ev) = 1 (c is a "counter" vector)'

EXTEND f to f,, as descrlbed 1n EXTEND, where i = c(1ev) ;
l_

go to (2).
(Here f is maximal.) If. B(x,f) < r(x) go to (9).

Set f = f. v = 6(x. f ).max - max
Set c(lev) = c(lev) + 1. rf c(1ev) < n(lev) go to (6).

Set 1ev = 1ev - 1. "Cut back" on f by eliminating the last

"extenslon" 1n step (6) .

If 1ev = 0 stop; otherwise go to (9).

(3) Glven the procedure GAMMA, it is a sirnple matter to

max {v(x) + e(x)J. Thus we have a straightfori+ard

( 11)

Corrnents. (1) Actua11y, a list of vectors M and R-ES must be

stored aceording to the value of 1ev when they were calculated, in

order that steps (6) and (10) may be carried out. That is, M and

RES should be doubly subscripted. To sirnplify the description of

the algorithm, we have omitted the necessary "cataloguingt' procedures

(2) Calculation of 3(x, f ) is straightforu'ard, and r^'e do

not describe it in detail.

determine

(a)

algorithm to determine U(P) .

*e U9
1

-289-



once more to.the examPl of Section
execution of GAill,lA.

x=37.
Thus

1ev = 0, f = ttnull PCAtt, f_^-- =,,nu11 pCA,t, y = 0

B(x,f) = 23

n(1) = 1, u(1) = 11, RES(I) = 0
lev = 1, c(1) = 1

f(11) = 0
B(x,f) = 29

n(2) = 1, M(1) = 13, RES(I) = 9

1ev = 2, c(2) = 1

f(11) = 0, f(13) = 9

8(x,f) = 33

n(3) = I
fo**=fry=33
c(2) = 2

fev = 1, f(11) = 0

c(1) = 2

1ev=0rf=t'nu11 pCA"

s top.

(1)

(2)

(3)

(s)

(6)

(2)

(3)

(s)
(5)

(2)

(3)

(8)

(e)

(10)

(e)

(10)

(11)

Thus the backtrack is very siople in this exanple" It may,
of course, be considerably more conplicated.

4" Applications.

As indicated in the introduction, the main interest of this
author is the evaluation of U(pk). The author was able to carry
out hand calculations of U(pk) for k < 29 with no difficulty. With
a 1itt1e patience larger sets could also be done by hand. Of eourse
the cor:irputer can handle larger sets p,

By eomputer, \re have evaLuated U(pk) for k < 50. We tabulate
the results in Table 1 below. For k > 23 we use Q = {2,3,5,7} in
the evaluation of U(pk). Thus we considered units modulo 210. This
modulus is large enough to keep the amount of backtracking sma11;
for the largest case (k = 47) just over 1 second of computer time
was needed to evaluate y(x) for each unit x. However, since there

-290-
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considered is also small.

TASLE 1 U(P. )
K

2

3
6

10
14

k

2
3
5
7

11

U(P )k

3r. 58
37 66
4L 74
43 90
47 100

In Table 2 ve indlcate how these values can occur, for 23 < k < 47.

We list maximum PCAs, in the same Eanner as in the exanple

of Section 2.

TABLE 2 Examples Where U(Pk) Is Attained

Maxirnum PCAk

23 67
11

7L
13

193
17

73 79 83 89
11

97
13000

29 19L
19

31 187
23

37 37
77

47 ]-79
31

199 2A9
11 0

211 22L
011

197
13

223
13

227
L7

223
13

229
19

191
t9

L97
13

193
t7

199 209 2Lt
11 00

53 59

22L
11

67
0

209
0

131
.LJ

ll

227
L7

t27
11

))a
19

223
13

233
23

aa1

17

41
19

43
/.)

47
13

61
11

71
L7

73
13

79
19

83
11

89
2300

181
29

191
19

101
29

]-97
13

1/.1

31

73
t7

t2l
31

61
11

107
t7

L87
23

193
77

l99
l-1

221
11

2Ll
0

229
19

t)J
23

239
29

43 53' 
13

59
31

67
l3

7L
19

109
I9

113
23

47 41
31

.+3

)a
47
)l

53
13

59
t9

61
11

l9
13

727
11

67
a1

109
0

83
11

89 97 101
000

103 107
0 17

73
tl

103
31

113
23

127
37

19
13

39 97
190 0

83
11

131
13

r Fincl Comr;ents.

The pattern which occurs for k = 29 or 31 can be generallzed

I

I

I

I

I
I
I
I
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ku(Pk)

22
26
34
40
46

k

13
L7
19
23
29



to 8i the loser bormd U 2q rrhere ::and q are
p rimes and n for P 19 rioe uaxlurm PCAs

This is proven by a straightforward application of the inclusion_
exclusion princlple (see, for exauple, tll). We ask what the true
order of magnitude of U(pk) is.

the author intends to establish a bound *:O such that
guarantees the existence of 30 }IOLS of order n. To thls end,
result that U(31) = 58 is of importance. That is, using the
constructions of Wilson [5J, it is desirable to have 31 MOLS of
varj.ous orders in order to perform recursive constructions. This
topic will be pursued in a later paper.
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may be obtained in this matter.

The best upper bound we have established is U(p)s2lPl n
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