On Scheduling Perfect Competitions

D.R. Stinson

The following problem was posed by M.S. Brandly in [2; p. 759]. Let $v \geq 4$ be an integer. A perfect competition is the set of all possible games, where in each game two of v players play against two other players. Clearly, there are $\frac{1}{2}\binom{v}{2}\left(\begin{array}{c}v-2\end{array}\right)=3\binom{v}{4}$ games. It is desired to schedule these games into rounds, so that any player plays in at most one game in each round. Denote by $R(v)$ the minimum number of rounds necessary to schedule a perfect competition, subject to the above constraint. The problem posed by Brandly is to determine $R(v)$.

In this paper we accomplish this: for any integer $v \geq 4$, $R(v)=3\binom{v}{4}\left\lfloor\frac{v}{4}\right\rfloor$. (Note that this quantity is always an integer.) First, we observe that at most $\left\lfloor\frac{v}{4}\right\rfloor$ games can be played in a given round, so clearly $R(v) \geq 3\binom{v}{4}\left\lfloor\frac{v}{4}\right]$. The remainder of this paper describes the construction of schedules with the desired number of rounds.

Our proof follows easily from a result of Baranyai. It is necessary first to give some terminology. Let X be a finite set, and denote $v=|X|$. If $1 \leq k \leq v$, then $\binom{X}{k}$ denotes the set of all k-subsets (called edges) of X. If k_{1}, \ldots, k_{m} is a list of integers (not necessarily distinct), with $1 \leq k_{i} \leq v$ for $1 \leq i \leq m$, then $K\left(v ; k_{1}, \ldots, k_{m}\right)$ (based on $\left.X\right)$ denotes the multiset union of the $\binom{X}{k_{i}},(1 \leq i \leq m)$. Thus, edges will be repeated if $k_{i}=k_{j}$ for some $i \neq j$.

A scheme based on $K\left(v ; k_{1}, \ldots, k_{m}\right)$ is an $m \times n$ matrix $A=\left(a_{i j}\right)$ of non-negative integers, which satisfies

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j}=\binom{v}{k_{i}}, \quad 1 \leq i \leq m \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m} k_{i} a_{i j}=v, 1 \leq j \leq n . \tag{ii}
\end{equation*}
$$

A resolution of $K\left(v ; k_{1}, \ldots, k_{m}\right)$ according to A is a partition $\mathbf{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ of $K\left(v ; k_{1}, \ldots, k_{m}\right)$, where each $P_{j}=\bigcup_{i=1}^{m} X_{i j}$, which satisfies

$$
\begin{gather*}
\left|X_{i j}\right|=a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n \tag{i}\\
\bigcup_{j=1}^{n} X_{i j}=\binom{X}{k_{i}}, 1 \leq i \leq m \tag{ii}\\
\bigcup_{i=1}^{m} \bigcup_{0} s=X, \quad 1 \leq j \leq n . \tag{iii}
\end{gather*}
$$

We remark that each $X_{i j}$ consists of disjoint k_{i}-subsets of $\binom{X}{k_{i}}$.
Baranyai proved the following Theorem in [1].
Theorem 1. If A is any scheme based on $K\left(v ; k_{1}, \ldots, k_{m}\right)$, then there exists a resolution of $K\left(v ; k_{1}, \ldots, k_{m}\right)$ according to A.
Baranyai's theorem is related to scheduling perfect competitions as follows.
Lemma 2. Let $v \geq 4$ be a positive integer. Suppose $k_{1}=k_{2}=k_{3}=4$, and $1 \leq k_{i} \leq 3$ for $4 \leq i \leq m$. Suppose $\bigcup_{j=1}^{n} P_{j}$ is a resolution of $K\left(v ; k_{1}, \ldots, k_{m}\right)$ according to some scheme A. Then a perfect competition for v players can be scheduled, using n rounds.

Proof. For each P_{j}, delete any edges of size less than 4. Then replace an edge $a b c d$ (where $a<b<c<d$) by:

$$
\left\{\begin{array}{l}
a b \text { vs. } c d, \text { if } a b c d \in\binom{X}{k_{1}} \\
a c \text { vs. } b d, \text { if } a b c d \in\binom{X}{k_{2}} \\
a d \text { vs. } b c, \text { if } a b c d \in\binom{X}{k_{3}} .
\end{array}\right.
$$

Thus it is necessary only to construct suitable schemes.
For $v=0 \bmod 4$, this is easy. We take $m=3$, and our scheme is

$$
A=\left(\begin{array}{llllllll}
\frac{v}{4} \cdots & \cdots & \frac{v}{4} & 0 & \cdots & 0 & 0 & \cdots
\end{array}\right) 0
$$

Here $n=3\binom{v-1}{3}=3\binom{v}{4} \frac{v}{4}$.
The case $v=3 \bmod 4$ is almost as simple. Here we set $m=6$, $k_{4}=k_{5}=k_{6}=3$, and let

$$
\begin{aligned}
& \binom{v}{3}
\end{aligned}
$$

Here', $n=3\binom{v}{3}=3\binom{v}{4} \frac{v-3}{4}$.
For $v=1 \bmod 4$, we desire $n=\frac{v(v-2)(v-3)}{2}=3\binom{v}{4} \frac{v-1}{4}$. We set $m=3+\frac{(v-2)(v-3)}{2}$, and $k_{i}=1$ for $4 \leq i \leq m$. We have two subbases: $v=5$ or $9 \bmod 12$; and $v=1 \bmod 12$.

If $v=5$ or $9 \bmod 12$, then $m, n=0 \bmod 3$. For $1 \leq i_{1} \leq 3$, $4 \leq i_{2} \leq m$, and $i_{1}=i_{2} \bmod 3$, construct v columns of A, with $a_{i_{1} j}=\frac{v-1}{4}, a_{i_{2} j}=1$, and $a_{i j}=0$ if $i \neq i_{1}, i_{2}$.

If $v=1 \bmod 12$, then $m, n=1 \bmod 3$. First, we describe the first three rows of A. Construct $\frac{n-1}{3}$ columns each of the form

$$
\left(\begin{array}{c}
(v-1) / 4 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
(v-1) / 4 \\
0
\end{array}\right) \text { and }\left(\begin{array}{c}
0 \\
0 \\
(v-1) / 4
\end{array}\right) ; \text { and one column }\left(\begin{array}{c}
(v-1) / 12 \\
v=1) / 12 \\
v-1) / 12
\end{array}\right) .
$$

We now add $m-3$ rows, where each row contains $v 1$'s and $n-v 0$'s, and each column contains one 1. This forms the desired matrix A.

Lasty, we consider $v=2 \bmod 4$. Here, we desire $n=\frac{v(v-1)(v-3)}{2}=3\left(\begin{array}{c}v \\ 4\end{array} \frac{v-2}{4}\right.$. We set $m=3+(v-1)(v-3)$, and $k_{i}=1$ for $4 \leq i \leq m$. We have two subcases: $v=6$ or $10 \bmod 12$; and $v=2 \bmod 12$.

If $v=6$ or $10 \bmod 12$, then $m, n=0 \bmod 3$. First, construct the first three rows of $A: \frac{n}{3}$ columns each of the form

$$
\left(\begin{array}{c}
(v-2) / 4 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
(v-2) / 4 \\
0
\end{array}\right), \text { and }\left(\begin{array}{c}
0 \\
0 \\
(v-2) / 4
\end{array}\right)
$$

Call this matrix A_{1}. Now, let A_{2} be any $m-3$ by $n 0-1$ matrix, with all column sums 2 and all row sums v. Then $A=\left(\frac{A_{1}}{A_{2}}\right)$.

Finally, we consider $v=2 \bmod 12$. Note that $m, n=2 \bmod 3$. Construct A_{1}, the first 3 rows of $A: \frac{n-2}{3}$ columns each of the form $\left(\begin{array}{c}(v-2) / 4 \\ 0 \\ 0\end{array}\right), \quad\left(\begin{array}{c}0 \\ (v-2) / 4 \\ 0\end{array}\right)$, and $\left(\begin{array}{c}0 \\ 0 \\ (v-2) / 4\end{array}\right) ;$ and two columns $\left(\begin{array}{l}(v-2) / 12 \\ v-2) / 12 \\ (v-2) / 12\end{array}\right)$.

Let A_{2} be any $m-3$ by $n 0-1$ matrix, with all row sums v and all column sums 2. Then $A=\left(\frac{A_{1}}{A_{2}}\right)$.

As a consequence of Theorem 1, Lemma 2, and the matrices A we have constructed, we have

Theorem 3. For any $v \geq 4$, the minimum number of rounds required to schedule a perfect competition with v players is $3\left(\begin{array}{l}v \\ 4\end{array} \backslash\left\lfloor\frac{v}{4}\right\rfloor\right.$.

References.

[1] 2. Baranyai, On the factorization of complete sniform hypergrepho, Proc. Collog. on Infinite and Finite Sets (ed. Hajnal et al) (1073), 01-108.
[2] M.S. Brandly, Query 209, Notices of Amer. Math. Soc., Vol. 30, No. 7 (1083), 750.
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
R3T 2N2

