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HOLEY SOLSSOMs

R. C. Mullin and D. R. Stinson

ASSTRACT. In this paper we study sets of three
orthogonal partitioned incomplete Latin squar:es, of
type 2' (.t odd), which have the property that two

of the squares are mutual transposes ancl the third
is syrnmetric. Such squares have applications to
several problems, which are discussed. We prove

that such a set of 3 squares exists for all odd

n > 3, except possibly for n = 15r 33, 39,75, or 87.

The result is proved, in part, by means of a PBD-

closure result which 1s of lnterest in its own right:
If P- denotes the set of odd prlme powers not less

5

than 5, Ehen Ehere is a pairwlse balanced deslgn

on v points with block sizes in n5, for all odd

v > 3 except possibly for v = 15,33, 39,51,75,
87, 93, 183, 195, or 2L9.

1". Introduction

A useful generalization of the ldea of a set of rnutually

orthogonal Latin squares is to allow certain disjoint subsquares to be

missing. Such objects are discussed in [1], l2), and [31, for example.

In thls paper we consider the situation where the mLssing

subsquares are spannlng. Such arrays are called OPILS (as an acronym

for orthogonal partitioned incomplete Latln squares), and were studled
in [2]. For convenience, we repeat the deflnltion here.

Let p = {S1,...,tr} be a partltlon of a set SCn > 2). A

pattittoned tncomplete Latin squtt?e, (or PILS), havtng partltlon P,

is an lSl by lsl array L, lndexed by S, satlsfylnB the follmring
properties:
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kind.
OPILS,

OPILS

(0) a cell of L elther contains an element of S

or j-s empfy,

(1) lhe subarrays lndexed by Si r Si are empty, for
l- < i < n (we will refer to these subarrays as
holes) ,

(2) the elements occurring in row (or column) s of L
are precisely those in S\Si, where s e S..

We will say rhat. the type of L is the
wewillusether u1 ur, 

multiset{lsrl""lsnl}'
rotation at'...rU" to describe the type of a pTLS, where

there are precisely u, S.'s of cardinaliry ai, for I < i < k.

Suppose L and M are both pILS having partltion p. We say
that L and M ar-e orthogorutl if their superposition yields every
ordered palr in s2turl, sl . severat prLS, each having parririon p,
are said to be orthogonal if each pair is. We abbreviate the term
orthogonal PILS Eo OPILS.

In this paper we investigate sets of three OPILS of a special
(However, the results we prove are new results for sets of three
even without the extra condilions we impose.)

A holey SOLSSOM having parririon p will denore a set of rhree
(having parrltion p), say A,B,C, where g = AT and C = CT.

(SOLSSOM is an acronym for self-orthogonal latin square wiEh a symmetric
orthogonal mate. Such squares are used for the construction of certain
tournaments; see t9 l. )

A holey SOLSSOM of type 2rL is a particularly useful combina_
tional object (applications are given in i4l ana t5l). We construcL
holey S0LSSOMs of type 2r' for n odcl. Such arrays can be constructed
for n > 3 an odd prime power (Section 2), ancl such an array does not
exlst for n = 3. In Section 3 we prove a pBD_closure resultwhichreduces
the 1lst of possible exceptions to n € {15,33,39,51,75,g7,93r183,195,219}.
In Sectlon 4, we produce holey SOLSSOMs of type 2n for n = 51, 93, 183,
195, and 219. Thus the spectrum is deEermi-ned, except for n = 15, 33,
39, 75, and 87.
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q Dir,ee t cons tructtons .

The followi.ng result is proved in [4].

LEMMA 2.1. If q - 1 mod 4 is a pnime poaer,, then thet,e esists a
holey SOLSSOM of type Zq.

We now give a construction for the remaining odd prime por"rers,

except 3. It. is trivial to observe fhar a holey SOLSSOM of type 23

cannot exisE (see [2], for example).

Our constructlon is accomplished by
will take two copies of the Calois field C =
Gx{1}andCx{2}. Choose cfO sorhar
non-residue in C (this can be done whenever
(q-1) f2 quadratic reslciues in G, and let B

quintuples:

difference methods. We

cF(q) (q = 3 rnod 4) r say
)

c--1 isaquadrat.ic
q > 3). Denote by Q the
denoEe the set of 4(q-1)
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It is not difficult to see that the differences obtained from any two
columns contain every value *ij (x I 0), once. (fhe difference ui-vj
is defined to be ("-r)ij.) I{ence, if we develop this set B through G,

and use any t[7o columns to coijrdinatize, we get a set of three OpILS of
type 2q' (having partition {x x {L,Z}: x e C}). If, however, we use
the first two columns to coijrdlnarize, we get a lioley SOLSSOII of type

oz'. 'llhis is easily seen as fol,l.ows. The quintuples of 11 have the
property that (a,b,c,d,e) c B if and only if (b,a,cl,c,e) e B. This
property remains true for the set of 4q(q-1) quintuples obtainecl by clwelop_
ing through G. So, if C, D, and E are the three squares obtained
from columns 3, 4, and 5 (respectively), we get E(a,b) = E(bra), so E

is synunetric, ancl C(arb) = D(bra), so C = nT. Thus we have
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LIIMI{A 2.2. ff e =, 3 mod 4 is a pnime pane" erceedinq 3, then there is
a 'holey 

SOLSSOM of type 2q.

In Figure 1below, \^re pr:esent the hotey SOLSSOM of type 27

obtained by this consrruction (A is orthogonal to AT and B, and B is
symmetric).

oo 1o 2o 3o 4o

Flgure I
A holey SOLSSOM of type 2
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Figure I (.continued)
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3. A PBD-closure result.

In this section we use the notions of pair-wise balanced design
(PBD), group-divisible design (GDD), rransversal design (TD), and pBD-

closure. For definitions, we refer to Wilson tl0l.

We state the following simple result without proof.
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Let us denote by PS fhe set of odd prime powers greater than
or equal to 5. We know ttrat P, S S and S is pBD-closed, so

m(PS) ! S. Thus, in this section we study the set ts (p5), which denotes

the PB}-closure of P5.

Iale note that Wilson has shown that E (p3) = {v > 3 : v is odd},
but ts (P5) has not previously been studied. In this section we show

that ts(P5) ? {v > 5 : v is odd}\{15,33,39,51 ,15,87,93,183,2t9}.

The following result is an easy extension of the result of
I,lacNeish [6].

LEI'OI,A 3.1. The set S = {n :

is PBD-cLosed.

there erists a Vnley SOLSSOM of type 2n]

be a PBD-cLosed set. If 91,... r9p are aLL prtme
k
lI q. € s.i=l 'r

is odd, v > 5 and" v I 3 ot, L5 mod LB, then

LEMMA 3.2.
pouers in

Let S

S, then

coRoLLARY 3.3. If
v e JB (PS).

LEMMA3.4. If v=1mod4, V25, and v133,93, then veB(pr).

Proof. It is shown in [7] rhat B (5,9,13,17) : {v > 5:v = 1 mod 4}\
{29,33,49,5J,93,t29,133}. Now, {29,49,L33} s B (p5) by Corollary 3.3.
Wang [9, p. 61] has shown rhat 129 € E (5,29) . B (pS). Also, rhere is a

TD(7,8), so 57 ( B (7,9) g E (P5). n

LEI"ftIA 3.5. Suppose there is a TD(17,m), and 0 < s,t s m. If S is
a PBD-cLosed set and. {5,17,m,rrF4s,m*4t} q s, then I7m + 4(s+t) e S.

Ptoof. First, we nofe the existence of 3 GDDs. There is trivially a

GDD with group-type 117 and one block of size 17. We can obtain a

GDD with group type 11651 and blocks of s ize 5 from the projective
plane of order 4. From the affine plane of order 5, we obtain a GDD

wiEh group-cype 11552 and blocks of size 5.

We now apply Wilsonrs fundamental construction for GDDs [10].
Give all polnts of a TD(17,m) welght one, except for s points in one
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group and t points in another, which get weight 5. llhe result ls a
PBD wirh blocks of size 5, 17,m,rrF4s, and rn-F4t. I

LEMMA 3.6. Suppose m = 3 mod 4r il € B (p5), and there exists a

TD(17,m). If v=3mod4 6nd l7m*B<v<25m-g, then ve E(pS).

Pt'oof. From Corollary 3.3 it follows that, glven three integers
m * 1+a, m * 4a * 4, m + 4a + B (a > 0), at least lwo of them belong to
ts (P5). Thus any integer: a satisfying 2 ( a ( Zm- Z can be written as
a = s * t where 0 < s,t S m, {4m*s,4m*t} g ts (pS). X

LEI.['{A 3.7. If m = 3 mod 4 is a posttiue integer, then at Least one of
m,m*4,m*8,...,m]-1+1+ is relatiuely prime to 60060 = 2.3.5.7.11.13.

Proof. This ls a matt.er of checklng residue classes mod 60060. D

LElolA 3. B. If is odd and v > 331, then v e lB (pS).v

Proof. First, we note that if (m,6006Q) = 1, then there i-s a TD(17,m).
Let v > 331 be odd. If v = -1 mod 4, we apply Lemma 3.4, so assume

v = 3mod 4. Wewish to find m= 3mod4 sorhar aTD(17,m) exists
and l7m + 8 < v < 25m - B. We can use m = 19,23,27,3L,43,47,59,67,jI,7g,
83,87, and 103. This handles 331 < v s 2561. For larger v, we can
use the fact thaf the gap between suitable values of m is no more than
44 (Lemma3.7), and17(m+44) +B< 25m-B for m>103. I

COROLLARY3.9. If v>5 isoddand v/ts(pS), then ve{15,33,39,
51, 75 ,BJ ,g3, 111, L23 ,t41, 15g , 183, 195 ,zlg ,23L,2.55,261 ,2g1,303 ,327 \ .

FYoof. Corollary 3.3, and Lemmata 3.4 and 3.g. n

LEMMA 3.10 B (P5) ? {111 ,231,29L}.

Proof. From TDs of deprh 5 we obtain 111 e B(.5123), Z3L e B(5,57)
g ts (5,7,9), and 291 € 3(5,59). I

r65



We can handle several other values by means of indirect
proclucts.'l'hesc uCillze incomplete transver:sa1. clesigns
1'(k,n) - l'(k,m), which are clef inecl in [1]. If K is a set of positive
integers, rhen a (v,K)-plJD will- clenote a pRD on v poincs wlth block_
sizes in K.

LEI"OIA 3.11. ([8, Theorem 2. t5]) Let u,v,w , and a be posttiue
tntegers, a < w, and Let K be a set of pot;itiue integers. If bhere
erist a (v,K)-i,BD uhtch corLtains a bl.ock (or subd.esign) of size w,
and a TD(u,v-a)-TD(u,w-a), and u(w-a) * a e K, then u(v-a) +a e ts(K).

In Table l we make several applications of Lennna 3.10, where
K=ts

Table I
equaElon

u(v-a) + a w incomplece TD u(-w-a) + a

(Ps).

PBD

123 =

L47 =

159 =
255 =
267 =
303 =

PG(2,4)

TD(5,7)

TD(5,7 )

TD( 5 ,11)
TD( 5 , 11)

TD(7,9)

TD(7,17)

TD(5,2B)

TD(5,31)

TD(5,50)

TD( 5 ,53)

TD(5,48)

TD( 7, 1)

TD(.5,0)

TD(5 ,1)
TD(5,0)

TD( 5,3)

TD(5,4)

7(2L-4) + 4

5(3s-7) + 7

s(3s-4) + 4

s(ss-s) + s

s(s5-2) + 2

s(63-3) + 3

5

7

5

5

5

7

11

7

9

5

L7

23

The incomplere TD(5,53) - TD(5,3) is obrained by using Wilson,s
construction (t111) with rhe equarion 53 = 7.7 + l + 3. A TD(,5,4g)
- TD(5r4) is constructed as a direct product t+B = 12.4.

trle can handlc onc morc valuc , 327, by Lcmrna 3.5. I,lc r.rr:ite
32.7 = 17.19 + 4(1+0). Since rhcrc is a TD(17,19), and {:.:g,Z3,Zj}
s E (P.), we have 327 e E (p-).)' 5'

Summarizing Corollary 3.9, Lemma 3.10, and the above discussi-on,
we obtain

THEOREM 3.L2.
195, 219 ) .

ts (P5) ? {v > 5 : v add.}\{L5,33,39,5L,75,g7,93,183,
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4. A feu nore holey S)LSSOMs.

We have two recursive constructions for holey SOLSSOMs : a

singular dir:ect procluct, ancl a CDD construction. Both ttrese construc_
tions use holey SOLSSOMs of type ln. A SOLSSOM of odd order n i-s

equivalenr Eo a holey SOLSSOM of type ln. SOLSSOMs can also exisr
for even orders n, buE there exists no holey SOLSSOM of type 1n for
n even. SOLSSOMs are known to exist for all but a few orders; we refer
the reader ro [4]. (Any orders we use here exist by t4J.)

We do not state our constructlons in their most g,eneral form,
but in a form which is sufficient for our needs.

LElolA 4.1. (Singular direct product. ) Suppose there er.Lsts a holey
SOLSSOM of type It, a holeg S7LSSlM of type 2', and a SL\SSOM of
ord.ey, 2(v-1) . Then thet,e erists a holey SOLSSOM of type ,u(v-1)+1

Proof. Ttre proof is similar to [4, Construction 2.3_l.

COROLLARY 4.2.
n = 51r93,183.

1) for euery block A e A,

2) foz. euery grtoup G e G,

uheye n = (lcl+ 2)/2.

There erist holey SOLSSOMs of type ZrL for

Ptoof. 51 = 5(11-1) + L, 93 = 23(5-1) * I, and 193=7(27-L)+ L.

LEMI"IA 4.3.
pToperties:

Suppose there ts a GDD (X,G,A) uhich satisftes the kto

thete is a holeA SOLSSOM of tApe llAl
there is a holey SOLSSOM of type 2n,

Then there is a holey SOLSSOM of type 2v
v= (lxl+z)lz. n

uhere

Proof.

squares.

Thj-s is essentially the usual pBD construction for Latin
I

We can eliminate the values 195 and, 2L9 by this construction.
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COROLLARY 4.4. They,e erist holey SOLSSOMs of types ZI95 and 2219

Proof. It is proved in [7, Lemma 6.12] that if there exists a
Tll(f0,m) and 0 < s, t { m, ttren there is a CDD witii group-Eype
(A s) 

1(+t)'(gr) t(**) 7 wirh blocks of s j-ze 5 and 9. .the value 195
killed with m = 9, s = t = B; the value 2Lg by m =11, s = t= 5.

Summarizing, we obtain our main result.

l_s

TI{EOREM 4. 5. There erist a holey SOLSS)\| of fupe 2n for all. orJd.

n > 3 uith the possible exceptions n = 15,33,39,15, or 87.

Proof. Lemma 3.1, Theorem 3.12, anci Corollaries 4.2 and 4.4. I
In closing we conjectur:e thaE holey SOLSSOIIs of type Zn

exist for all even n > 6. At present, however, there are no holey
SOLSSOMs of type 2n known for even n.

l
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