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HOLEY SOLSSOMs

R. C. Mullin and D. R. Stinson

ABSTRACT. In this paper we study sets of three
orthogonal partitioned incomplete Latin squares, of
type 2" (n odd), which have the property that two

of the squares are mutual transposes and the third

is symmetric. Such squares have applications to
several problems, which are discussed. We prove

that such a set of 3 squares exists for all odd

n > 3, except possibly for n = 15, 33, 39, 75, or 87.
The result is proved, in part, by means of a PBD-
closure result which is of interest in its own right:
If P5 denotes the set of odd prime powers not less
than 5, then there is a pairwise balanced design
on v points with block sizes in PS’ for all odd
v > 3 except possibly for v = 15, 33, 39, 51, 75,
87, 93, 183, 195, or 219.

1. Introduction.

A useful generalization of the idea of a set of mutually
orthogonal Latin squares is to allow certain disjoint subsquares to be

missing. Such objects are discussed in [1], [2], and [3], for example.

In this paper we consider the situation where the missing
subsquares are spanning. Such arrays are called OPILS (as an acronym
for orthogonal partitioned incomplete Latin squares), and were studied

in [2]. For convenience, we repeat the definition here.

let P ={S.,,...,5 } be a partition of a set S(n 2 2). A
1 n
partitioned incomplete Latin square, (or PILS), having partition P,

is an |S| by I[S| array L, indexed by S, satisfying the following

properties:
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(0) a cell of 1 either contains an element of §
or is empty,

(1) the subarrays indexed by Si x Si are empty, for
1l <1i<n (wewill refer toc these subarrays as
holes),

(2) the elements occurring in row (or column) s of L

are precisely those in S\Si’ where s € §

i
We will say that the type of L is the multiset {ISll,...ISnI}.

u u
We will use the notation t l...t k to describe the type of a PILS, where

1 k

there are precisely uy Sj's of cardinality ¢t

i’ for 1 <1 < k.

Suppose L and M are both PILS having partition P. We say
that L and M are orthogonal if their superposition yields every
ordered pair in Sz\Ui:l Si - Several PILS, each having partition P,
are said to be orthogonal if each pair is. We abbreviate the term

orthogonal PILS to OPILS.

In this paper we investigate sets of three OPILS of a special
kind. (However, the results we prove are new results for sets of three

OPILS, even without the extra conditions we impose.)

A holey SOLSSOM having partition P will denote a set of three
OPILS (having partition P), say A,B,C, where B = AT and C = CT.
(SOLSSOM is an acronym for self-orthogonal latin square with a symmetric

orthogonal mate. Such squares are used for the construction of certain

tournaments; see [9].)

A holey SOLSSOM of type 2" g a particularly useful combina-
tional object (applications are given in [4] and [5]). We construct
holey SOLSSOMs of type 2" for n odd. Such arrays can be constructed
for n > 3 an odd prime power (Section 2), and such an array does not
exist for n = 3. 1In Section 3 we Prove a PBD-closure result which reduces
the list of possible exceptions to n e {15,33,39,51,75,87,93,183,195,219}.
In Section 4, we produce holey SOLSSOMs of type 2" for n = 51, 93, 183,
195, and 219. Thus the spectrum is determined, except for n = 15, 33,
39, 75, and 87.
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2. Direct constructions.

The following result is proved in [4].

LEMMA 2.1. If q =1 mod & s a prime power, then there exists a
holey SOLSSOM of type 294.

We now give a construction for the remaining odd prime powers,
3
except 3. It is trivial to observe that a holey SOLSSOM of type 2

cannot exist (see [2], for example).

Our construction is accomplished by difference methods. We
will take two copies of the Galois field G = GF(q)(q = 3 mod 4), say
G x {1} and G x {2}. Choose c # 0 so that c2 - 1 1is a quadratic
non-residue in G (this can be done whenever q > 3). Denote by Q the

(q-1)/2 quadratic residues in G, and let B denote the set of 4(q-1)

quintuples:
Yo 7Yy @y, -ay; 0 \
-y, Yo T3y, ay, 04
Yo Y1 Wy "Wy O
Y1 Yo Tayg  ayg 0
ay, -ay ¥ ~¥; U > y-€Q
1 1 0 11
T W Yy Yy O
Wy Ty Yy Y1 O
RS 1 Yy O )

It is not difficult to see that the differences obtained from any two
columns contain every value Xij (x # 0), once. (The difference ui-Vj
is defined to be (u—v)ij.) Hence, if we develop this set B through G,
and use any two columns to codrdinatize, we get a set of three OPILS of
type 24 (having partition {x x {1,2}: x € G}). 1If, however, we use

the first two columns to cobrdinatize, we get a holey SOLSSOM of type

Zq. This is easily seen as follows. The quintuples of R have the
property that (a,b,c,d,e) ¢ B if and only if (b,a,d,c,e) € B. This
property remains true for the set of 4q(q-1) quintuples obtained by develop-
ing through G. So, if C, D, and E are the three squares obtained
from columns 3, 4, and 5 (respectively), we get E(a,b) = E(b,a), so E

is symmetric, and C(a,b) = D(b,a), so C = Dr. Thus we have
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LEMMA 2.2. If q = 3 mod & s a prime power exceeding 3, then there is
a holey SOLSSOM of type 29.

In Figure 1 below, we present the holey SOLSSOM of type 27

obtained by this construction (A is orthogonal to AT and B, and B is

symmetric).
Figure 1
A holey SOLSSOM of type 27

0 Lo 2 3% 4 S % 01 L % 31 4 5 &
0 6,15, % 13,121 5o | 3| 2016 | 1 | 4
I | % Gy 195 |5 (1] %% || "2 69| %0{31{% |2
2, | 4| 3 1,0, 6505 [ 3,6 00 | 50 | 41 | 2o
3, | 61| 5 | 4 2,1 0y | 20 ]4 |0; 1, | 6 | 5
4 | 20|01 | 60| % 3,02 6,35 0 25| 9
5, |31 ]2 11| % | 4 1500, | 4] 61| 2 3
6, |51 |% |3 |21 ] %] % 4o | 2111 S0l 0 |31
&) 39161 Yo |°1] %] % 211411 % | t1| 30| 0
13 4191 %0 %] % || % 311311 % | 21| %
2y [ %% P11t 3% || %] % 4101 3
31 1111 %1 > 611 2] %0 || “1| % | Yo 3 |9 %
4 1% | 2|t % 01131 3|°11%| % 6 |
5. 1411% 31| %% Ll 2]%]|% %] Gy
60 |21( 51| %% ]3] "% L1321 % | %] %] %
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Figure 1 (continued)

% %[0 (% ]%]%]3% P B %
Iy | % 0% |%]|3]% | % 211208319
25 |t | % {30 ]%|% | 1|1 611311% |4
3 |20 2| % % %% |2 | °1| 2|5 O % |4
4% 12| % |3 |% Yol {22039 Ll
% | %3 |% |% | 20 161|310 %y 2
6 130]% | % | |%| 2 310 4 5

0, G111 (51121]61]3; 451 1o 56 | 25 65 | 39
! 4 3 (291893 |9 || % 20| %0 | % | 30 | %
21 45 6113119 %1 || Yo % %130 ] % | %
31514 8 O 1% |1 % | %] % % | % | Yo
b0 2061319 L 1% %] %3] % 9 |20
5116 31|09 |4k 2 1% |3 1{% ]| % | 20
61 13 |% |43k 30 1% { % | % || %

3. A PBD-closure result.

In this section we use the notions of pairwise balanced design
(PBD), group-divisible design (GDD), transversal design (TD), and PBD-

closure. For definitions, we refer to Wilson [10].

We state the following simple result without proof.
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LEMMA 3.1. The set S = {n : there exists a holey SOLSSOM of type 2™y
18 PBD-closed.

Let us denote by P5 the set of odd prime powers greater than
or equal to 5. We know that P5 €S and S 1is PBD-closed, so
B(PS) ¢ S. Thus, in this section we study the set IS(PS), which denotes

the PBD-closure of PS.

We note that Wilson has shown that IK(PB) = {v 23 :v is odd},
but ﬂ&(PS) has not previously been studied. In this section we show

that B (PS) 2 {vz25:vis odd}\{15,33,39,51,75,87,93,183,219}.

The following result is an easy extension of the result of

MacNeish [6].

LEMMA 3.2. Let S ﬁe a PBD-closed set. If Qys-ee5Qy are all prime
powers in S, then 1] q. € S.
=1 i

COROLLARY 3.3. If v tsodd, v=25 and v ¥ 3 or 15 mod 18, then
v € B (PS)'

LEMMA 3.4. If vz1mod 4, v =25, and v # 33, 93, then v e B (PS).

Proof. 1t is shown in [7] that B (5,9,13,17) 2 {v 2 5:v = 1 mod 4}\
{29,33,49,57,93,129,133}. Now, {29,49,133} ¢ IS(PS) by Corollary 3.3.
Wang [9, p. 61] has shown that 129 ¢ B (5,29) c ]3(P5). Also, there is a
TD(7,8), so 57 ¢ B(7,9) ¢ B (PS)' O

LEMMA 3.5. Suppose there is a TD(l7,m), and 0 < s,t <m. If S 4is
a PBD-closed set and {5,17,m,mtbs,m+4t} c s, then 17m + 4(s+t) € S.

Proof. First, we note the existence of 3 GDDs. There is trivially a
GDD with group-type 117 and one block of size 17. We can obtain a
GDD with group type 11651 and blocks of size 5 from the projective
plane of order 4. From the affine plane of order 5, we obtain a GDD

with group-type 11552 and blocks of size 5.

We now apply Wilson's fundamental construction for GDDs [10].

Give all points of a TD(17,m) weight one, except for s points in one
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group and t points in another, which get weight 5. The result is a

PBD with blocks of size 5,17,m,mt4s, and mt4t. |

LEMMA 3.6. Suppose m = 3 mod 4, m € B (PS)’ and there exists a
TD(17,m). If v =3mod 4 and 17m + 8 < v < 25m-8, then v e B (PS).

Proof. From Corollary 3.3 it follows that, given three integers

m+ 4a, m+ 4a + 4, m+ 4a + 8 (a 2 0), at least two of them belong to

B (PS)' Thus any integer a satisfying 2 < a < 2m-2 can be written as
a =s+ t where 0 < s,t <m, {4m+s,4m+t} c I&(PS). O
LEMMA 3.7. If m = 3 mod 4 is a positive integer, then at least one of

m,m+4,m+8,...,m+44 <s relatively prime to 60060 = 2+3+5+7.11+13.
Proof. This is a matter of checking residue classes mod 60060. []
LEMMA 3.8. If v 1s odd and v 2 331, then v ¢ B (PS)'

Proof. First, we note that if (m,60060) = 1, then there is a TD(17,m).
Let v 2 331 be odd. If v = 1 mod 4, we apply Lemma 3.4, so assume

v = 3 mod 4. We wish to find m = 3 mod 4 so that a TD(17,m) exists

and 17m + 8 < v < 25m - 8. We can use m = 19,23,27,31,43,47,59,67,71,79,
83,87, and 103. This handles 331 < v < 2567. TFor larger v, we can
use the fact that the gap between suitable values of m is no more than

44 (Lemma 3.7), and 17(m+44) + 8 < 25m - 8 for m > 103. a

COROLLARY 3.9. If v25 isoddand v ¢ B (Pg), them v e {15,33,39,
51,75,87,93,111,123,147,159,183,195,219,231,255,267,291,303,327}.

Proof. Corollary 3.3, and Lemmata 3.4 and 3.8. []
LEMMA 3.10. B (P) > {111,231,291}.

Proof. From TDs of depth 5 we obtain 111 ¢ B (5,23), 231 ¢ B (5,57)
c B(5,7,9), and 291 ¢ B (5,59). 0
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We can handle several other values by means of indirect
products. These utilize incomplete transversal designs
T(k,n) - T(k,m), which are defined in [1]. If K 1is a set of positive
integers, then a (v,K)-PBD will denote a PBD on v points with block-

sizes in K.

LEMMA 3.11. (L8, Theorem 2.151) let wu,v,w, and a be positive
integers, a <w, and let K be a set of positive integers. If there
exist a (v,K)-PBD which contains a block (or subdesign) of size w,

and a TD(u,v-a)-TD(u,w-a), and u(w-a) + a ¢ K, then u(v-a)+aec B(K).

In Table 1 we make several applications of Lemma 3.10, where

K=1B (PS)'

Table 1
equation ;
u(v-a) + a PBD w incomplete TD u(w-a) + a
123 = 7(21-4) + 4 | PG(2,4) 5 | TD(7,17) - TD(7,1) 11
147 = 5(35-7) + 7 | TD(5,7) 7 | TD(5,28) - TD(5,0) 7
159 = 5(35-4) + 4 | TD(5,7) 5 | TD(5,31) - TD(5,1) 9
255 = 5(55-5) + 5 | TD(5,11) 5 | TD(5,50) - TD(5,0) 5
267 = 5(55-2) + 2 | TD(5,11) 5 | TD(5,53) - TD(5,3) 17
303 = 5(63-3) + 3 | TD(7,9) 7 | TD(5,48) - TD(5,4) 23

The incomplete TD(5,53) - TD(5,3) is obtained by using Wilson's
construction ([11]) with the equation 53 = 7.7 + 1 + 3. A TD(5,48)

- TD(5,4) is constructed as a direct product 48 = 12.4,

We can handlc onc more valuc, 327, by Lemma 3.5. We write
327 = 17.19 + 4(1+0). Since there is a TD(17,19), and {19,23,27}
c B (PS), we have 327 ¢ IS(PS).

Summarizing Corollary 3.9, Lemma 3.10, and the above discussion,

we obtain

THEOREM 3.12. B (Pg) 2 {v 25 : v odd}\{15,33,39,51,75,87,93,183,
195,219},
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4. A few more holey SOLSSOMs.

We have two recursive constructions for holey SOLSSOMs : a
singular direct product, and a GDD construction. Both these construc-
tions use holey SOLSSOMs of type ln. A SOLSSOM of odd order n is
equivalent to a holey SOLSSOM of type 17, SOLSSOMs can also exist
for even orders n, but there exists no holey SOLSSOM of type 1" for
n even. GSOLSSOMs are known to exist for all but a few orders; we refer

the reader to [4]. (Any orders we use here exist by [4].)

We do not state our constructions in their most general form,

but in a form which is sufficient for our needs.

LEMMA 4.1. (Singular direct product.) Suppose there exists a holey
SOLSSOM of type 1", a holey SOLSSOM of type 2°, and a SOLSSOM of

order 2(v-1). Then there exists a holey SOLSSOM of type gulv=1p#1.
Proof. The proof is similar to [4, Construction 2.3]. [
COROLLARY 4.2. There exist holey SOLSSOMs of type 2" for
n = 51,93,183.
Proof. 51 = 5(11-1) + 1, 93 = 23(5-1) + 1, and 183 =7(27-1) + 1. 0
LEMMA 4.3. Suppose there is a GDD (X,G,A) which satisfies the two
properties:

Y

1) for every block A € A, there is a holey SOLSSOM of type 1
2)  for every group G e G, there is a holey SOLSSOM of type 2",
where n = (|G| + 2)/2.

Then there is a holey SOLSSOM of type 2°, where
v=(lxl+2/2. 0O

Proof. This is essentially the usual PBD construction for Latin

squares. []

We can eliminate the values 195 and 219 by this construction.
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195 219

COROLLARY 4.4. There exist holey SOLSSOMs of types 2 and 2
Proof. It is proved in [7, Lemma 6.12] that if there exists a
TD(10,m) and 0 < s,t
(AS)l(At)l(Sm)l(Am)7 with blocks of size 5 and 9. The value 195 is
killed with m =9, s = t = 8; the value 219 by m =11, s =t = 5, O

< m, then there is a CDD with group-type

Summarizing, we obtain our main result.

THEOREM 4.5. There exist a holey SOLSSOM of type 2" for all odd
n > 3 with the possible exceptions n = 15,33,39,75, or 87.

Proof. Lemma 3.1, Theorem 3.12, and Corollaries 4.2 and 4.4. 0

In closing we conjecture that holey SOLSSOMs of type 2
exist for all even n = 6. At present, however, there are no holey

SOLSSOMs of type 2" known for even n.
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