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ON }-PACKINGS WITH BLOCK SIZE FOUR (vlOmod3)

E. J. Billington, R. G. Stanton, and D. R. Stinson

1. Introduction.

Let v > k. A (v,k,\)-packing is a collection of k-subsets
(bLocks) chosen from a set of v points so that no pair of points occurs

in more than ). blocks. A (v,krtr)-packing which is not also a

(v,k,I-l)-packing is said Eo have inder I.

The number D^(2,k,v) is used to denote the maximum number of

blocks in any (v,k,tr)-packing (the "2" indicates that pairs do not occur

more than I times). Dtr(2,k,v) has been determined, for all v, for
k= 3anda1l r (L:l), and fork= 4 and I = 1 (l1l). In rhis paperwe

investigate the case k -- 4 f.or I > 1. We obtain a complete solution for
v I 0 mod 3. (The case v = 0 mod 3 is more difficult and will be pre-
senled in a later paper.)
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l_-_ denofes the number of blocks containing the pair xy. Clearly, thexy
deficienc.y of a packing wirtr b btocks is t(;) - 6b. T\e defect gnaph

is tlre graph in which any rwo vertices x and y are jolnecl by 
^-^*,edges. Tl-re f ollowing properties of ck:f ect graphs can be eras i.ly verif ied.

LEIOIA l. 2 . 1) The nunber of eclges tn the defect gnaph of a packing is
equal to the def'Lctency of the packtng,

2) No edge has rm.r.Ltipl.ictty greaber tlmn I .

3) The degrve of any uertex is congruent (nod Z)

to l(v-l).

In most situations we can construct packings wittr B^(2r4rv)
blocks. Such a packing is saicl to be goocl. In Table l, we tabulate the
deficiencies of gooa p."tings, wher:e v = lla + r (0 ( 1< 11), ancl

). =6c+u (0 <u< 5). Clearly, lfwe conscruct a (v,4,tr)-packingwhose
deficiency is the relevant entry of Table 1, Ehen D^(2,4rv) = B^(2,4,v) for
that ), and v. We record the deficiencies of good packings in Table 1.

Table 1: Deficiencies of good packings (v = L2a*r, I = 6c*u)
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A (v,k, [-packing with deficiency 0 is called a balanced. ineonplete
block destgn (a (vrk, I)-BI"BD). For k = 4, the existence questlon for BIBDs
is solved (cf. t2l). The result ts
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THEOREM 1.3. A

conditions holds

(v,4,I)-BrBD ertsts if, and only tf one of the folloaing

1) v = L ot, 4 (mod 12)

2) v = 1 (mod 3) and 1,, = 0 (mod 2)
3) v = 0 or I (mod 4) and I = 0 (mod 3)
4) l = 0 (mod 6).

Notice that the above conditlons corresponcl preclsely to the
zero entries of Table 1.

In later secfions, r^/e prove

THE0REM 1.4. If 
^, 

1 and v I 0 mod 3, then Dl(2,4,v) = Bt(2,4,v).

2. The Case I = 1.

IJrouwer cornpleted the determinatlon of D, (2,4 ,v) in [1]; the
result is

1)

2)

Dt(2,4,v) = B1(2,4,v) if v I I or IO (mod 12)
or(2,4,v) = Bt(2,4,v) - r if v = J oy, LO (mod 12)
ai.th the follouing small erceptions: Dt = Bt _L for
v = 9, 17; D, = 81 - 2 forv = g, 10, 11;
Dl = Bt - 3 for v = 19.

3. The Case ). = 2.

For v = L,4,7, or 10 (mod 12), BIBDs exist; so
D2(2,4,v) = BZ(2,4,v) in rhese cases.

For v = 2,518, or 11 (mod 12), two copi-es of a good packing of
index 1 will form a good packing of index 2. This handles al} cases
except v = 8111, and 17, for which good packings of index one do not exist.

For v = 8, we have Dr(2,4,9) = B2e,4,g) = g, taking the blocks
1 2 3 5, L 2 4 6, 13 4 7,1 5 6 7, 2 3 4 g, 2 5 6 B, 3 6 7 B, 4 5 7 B.

For v = 11, we have D2(2,4,11) = Br(2,4,-11) = 16, taking the blocks
L 2 3 4, L25 6, 1 3 5 10, L 46 11, 1 g g 10, I 7 B 11, 2 3 6 10,
2 4 5 I1, 27 g 10, 27 g 1I, 3 4 1 g, 3 5 g 11, 3 6 g 11, 4 5 7 10,
4 6 9 1.0, 5 6 B 9.
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For v = 17 we have D, (2,4,L7) = Br(2,4,L7) _ ] = 20, and
B1(2,4,17) = 42.. We construcr a goocl packing of index 2 by taking two
packings of index I wirh 20 blocks each, and adjoining two new blocks.
We start with an affine plane of order 4 on polnts 1,...116. pick 3

non-collinear points, say L,2,3. We may suppose that we have three blocks

Bt

Bz

B3

:L245
:2361
: 3 1 B 9.

In Bi (i = 1,2,3), replace
the resultant packing is

L7

t by a nerr point 17. the defect graph of

41

23

5

10 11 L2 13 L4 15 16

23

9B 76

Now construct an i-somorphic packing in which the points have

been relabelled so that the defect graph is

1

4
10

L2

(The unlabelled points are irrelevant.) We can now adjoin two new blocks
| 2 3 4 and 10 11 12 L1, to get a good packing of index 2.

Sununarizing, we have

THEoREM 3.1. If v t 0'(mod 3), then DZ(2'4'v) = nr(2'4'v) '
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4. 'l'|ru Cusu I = 3.

Here,BIBDs exist for v = L,4,5, and 6 (mod 12); so we need
only consider v = 2,7,10, and 11 (mod 12).

In [1], Brouwer constructs pBDs (palrwise balanced designs) in
which there is a unique block of size 7 and all other blocks have size 4

for v -- 7 or 10 (mocl 12) , v I10,19. 'l'ake tlu:ee coplr:s of suclr a I]BD,

ttrus 1rr:oclucing tlrree blocks L Z 3 h 5 6 7. t{e1:1:rce Lhesc tliree blocks by
the tenblocks: L2 36, t 246,L257,1341,1356,1451,
2 3 4 7, 2 3 5 7, 2 4 5 6, and 3 4 5 6. The resulring packing has
deficiency 3 (the pair 67 occurs zero times). Hence the packing is good
(Table 1) , and D3(2,4 ,v) = B, ( 2 ,1+ ,v) f or rhese v.

We must handle v = 10,19, as speci-a1 cilses. Iror v = 10, we

obtaj-n D3(2,4,10) = r:(2,4,L0) - 22. We use poinrs.i, -i (a,:,/1.r,,
i = 1,2) and blocks

-1 o

-1 0

@oO mod 4

mod 17.

1

2

I

2to
2zL
1a'r'

2

I
2

-'? 02 lZ 2t

ot lt oz tz

and 0t1t2t3t OZLZ2Z3Z

For v = 19, we construct a good packing (85 blocks) on points from

''tl 
u {o1 '-2} :

01410
o 24 7

0 23 8

-t017
*20 4 I

We note that both these packings have deficiency three, the pair (*1 -z)
occurring zero times.

77



l'or v ; ! (rnod 12), we combine three good packings of index 1

(which exist by Theorem 2.1) and adjoin some additlonal blocks. A good
packing of index t has a defecr graph which consists of.. 6a * 1 disjoint
edges, where v = l2a + 2. We take three packings, with defect graphs:

L2,34,56,78 l-Za-j L2a-2, L2a-L L2a , L2a*il L2a+2;

L3,2/+,57,68, ..., L2a-3 LZa-I , l2a-2 LZa ,I2a*l l2a+2;
and L4,23,58,67 L2a-3 L2a , lZa-L l2a-2, 12a*1 l2a+2.

Wecannowadd 3ablocks 2 L234,561 B I2a*3L2a-2LZa-LLZa.
This forms a packing of index 3 with deficiency 3 (rhe pair 12a*L LZa+Z

does not occur at all), which is good, by Table l.

The case v = 11 (mod 12) is similar. A good packing of index 1

exists if v I 11, and has a defect graph consisting of 6a + 3 disjoint
pairs and a /+-star :

ItIe label- points 1n three such packlngs, so that the three defect graphs are:

1_2
3_.-/+
5-.-.----6
7 t]

12a+1 L2a*2

L2a*3 L2a+4

L2a+5 72a+6

1__-3
2_t.&9

5--.-._----7
6----.----B

12a+l 12a+3

l2a+2 L2a+4

l2a+5 L2a+6
12a+8 L2a+7

12a+9
L2a*LO

LZa+Ll

1_.-----4
?.--2rJ

5.--..-._-8
6 l

12a+1 12a+4

L2a+2 l2a+3

I2a*5 L2a+6

l2a+9 tS---o L2a+l

\\---' 12a+B

\ \ 12a+11
o 12a+10

1.2a+7 tN=-*, 
L2a+B

I \ \ r2a+9t\
I \' 12a+ro
o 12a+11

Wecannowadjoinblocks 1234,5678 L2a+L l2a*Z l2a+3 L2a*4,
12a+7 12a*B I2a+9 l2a+10, and l2a*7 12a+g lla+9 l2a+11. Ihe resulring
packing of index 3 is good, with l2a+5 L2a+6 occurring zero times.

We have fo handle v = Il as a speclal case. We construct 27 blocks
using points from V,g u {-r,-r} :
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-] 0 1 .3

a207lt

0135
mod 9.

nod 4, and

mod 4, and

I
t

This packing is good, having cleficiency 3 (the pair: -l *2 occurs zero times).

Thus we have

THEOREM 4.1. D3(2,4,v) = Rl(2,4,v), for v / 0 (rnocl 3).

S. l|he Case ,\ = 4.

For v = Lr4,7,or 10 (mod 12), BIBDs exist. For v = 2,5,8,11
(mod t2), we can combj-ne good packings of inciices 1 ancl 3 to obrain a good
packing of index 4 (see Table I). We have to handle v = g,11, and 17
as special cases, since good packings of inclex 1 do not exist for: these
orders.

For v = B, a good packing has 18 blocks and deficiency 4. We

construct such a packing on the points of. TIO, {1,2} :

ot 1t

1t
1t
')"I

Lz

3z

oz

oz

2t
)"2

2t
2t

2z

,t
lz

1t
1t
Lz

ot
oz

j:l

::\

ot
ot
ot

3

3

I
2

The graph is ot
1t

oz

2t
_3

2
1

2

2
rz

2

2

2

1

2

For v = 11, a good packing has 35 blocks and deficiency 10.
Use points from.i, -i G e V.O, i = 1,2,3), and blocks

-1 o

-1 o

-20

-1-3012
-2-3013

ot
ot
oz

tlt2
zLz2
t2to

-, A2 2Z Lt
*3 01 0Z LZ

ot It oz Lz

I3

3,.

3z

7s



-3The defecr graph is:

-z
-1

oz

Lz _3 2

2

1 I

For v = L7, we requlre g9 blocks (ttre deficiency is 10). We
proceed as for v = L7, \ = 2. We take four cctpies of the packing
of index 1, with defect graphs as follows:

32t10
1

L2 13

11 13

9

234s618

1345618

L7 1.4

2

16

5

L2

15

L]

6

10

9
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11 L2

11

13

L7 151245678

L235678

16 9

10 L4

4

10

4

1

T2 L7

We can add 9 more blocks, for a total of g9, as desired: L 2 3 5,
1 3 4 6, I 2 4 7, 23 4 g, 12 t4 15 16, 13 14 15 17, g 10 14 15,
10 11 L6 L7, and 9 lt 12 13. The defect graph of the resulring packlng
of index 4 ls

)I
$:

\\e
b

7

4 5
o------o

Thus we have

THEOREM 5.1. If " t g (mod 3), then D4(2,4,v) = BO(2,4,v).
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6. The Case tr = 5.

From Table 1, we see that the union of good packings of indices
2 and 3 yields a good packing of index 5, excepr for v : 11 (mod 12) .

For v = 11 (mod 12), we combine three good packings of i-ndices
1,I, and 3, and then add one addiEional block to obtain a good
packing of index 5. A good packlng of index t has a defect graph
consisting of a set of disjoint edges anil a 4_star. The defect
graph of a good packing of index 3 is a triple bond. We may label points
so that these defect graphs contain the eclges:

2 31 2

0125
or25
0136
0247

v and
3

4

3

4

This enables us to add l.Z 3 4 as a nes/ block

Ihe above construction works for all v = Il (moct 12), excepr
v = 11, where a good packing of index I does not exist. A good packing
of index 5 has 44 blocks and deficiency 11, and can be constructed
by taklng

nod 11.

The defect graph is an 1l-cycle. Thus we have

THEoREM 6.1. For v I O (mod 3), D5(2,4,v) = Br(2,4,v).

7. The Case l > 6.

Ttrere exlsts a (v,4r6)_ntnO for al1 v, by Theorem 1.3.
Hence, we can construct a good packing of any index I0 + 6t by taking
a good packlng of lnclex IO and combining it with t. copi-es of a
(v,4,6)-BIBD.
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Using the results of the previous sections, we will he finished,
provided we can construct good packings of index I f.or v = 7,10 (mod 12)
and for v = 8,9,11 ,L7. Cornbinj-nq goocl packings of inclices 3 and 1r yields
a goocl packing of j-ndex 7 for all cases except v = 11.

Thus we need only to construct, a good packing of lnilex 7 for
v = 11. Such a packing has 63 blocks and defect graph

0r*o
o---_4

r-____-O

We proceed as foIlows. The followirig ser of. 28 blocks
contains the pair (-1,-2) 6 times, and aI1 other paLrs 3 times:

*1*2L2

-r*234
-r'256
*r*2.L7
-l-238
-r*259

-l 246
-1 789
-1 149
-1 3 6 7

-1 5 2 g

*2246
-2789
-2 169
*2329
*2547

13
13
13
15
15
15

27
48
69
29
47
6B

35
35
35
46
62
24

28
49
67
89
97
78

Now take a copy of the good packing of index four, and label points so

that (-I -2) is the edge of multiplicity four ln the defect graph.

these 63 blocks form a good packing of index 7.
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B. Sutrunarg

In the previous sectlons, we have shown that good packings
exlst whenever I > I and v + 0 (.mod 3), that is,

o^ (2,4,v) = B^C2,4rv) in these eases.

. The case v = 0 (mod 3) requires recursive eonstructions and
speclal constructlons for a nuriber of small cases. we suspect that
good packlngs exlsE, wlth the slngle exceptlon that, for v = g, 

^ 
= Z,

D2(2,4,9) =82(2,4,9) - 1= 10.

Packlngs for v = 0 (rnod 3) wlll be discussed in a later paper.
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