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Some Improved Results Concerning the Cordes Problem

D.R. Stinson* and G.H.J. van Rees**

1. Introduction.

Let X be a set of size 2m. A round is a partition R = {B,B} of X
into two subsets (blocks) of size m. If Ry = {B),B)} and R, = {B,,H,}
are two rounds, then the common pairs between rounds are those pairs
of elements that are in B, cr B, and also are in B; or B,. The number

of common pairs between rounds s 2(5) + 2(’"; "), where
x = |B; N B,|. This quantity is minimized when x = [—'5—] where the
L | signifies the greatest integer not exceeding the given expression.
Thus we have

Lemma 1.1: The minimum number of common pairs between two rounds
is

—1\2
=1 it mis odd

2
_mm_gz;Z). if m is even

\

We denote the above quantity by o(m).

Cordes [1] was the first to consider the problem of finding the
maximum number of rounds, any two of which contain o(m) common
pairs. Let this maximum be denoted by R(m). Cordes proved

Theorem 1.2: If m is even, then R(m) < 2m—1, with equality occurring
if and only if there exists a Hadamard matrix of order 2m.

Hadamard matrices are conjectured to exist for all orders divisible
by four. If this is true, then R(m) would be determined for all even
m. For odd m, much less is known about R(m). The following results
are the best bounds previously known.

Theorem 1.3: [2] For k > 2, R(2k+1) < 4k+4.
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Theorem 1.4: [2] If there exists a Hadamard matrix of order 4k, then
R(4k+1) = 8k—1.

Theorem 1.5: [2] If 4k+1 is a prime power, then R(2k+ 1) = 4k+1.
Theorem 1.6: /3] If 4k—1 is a prime power, then R(4k—1) = 8k—1.

Theorem 1.7: (1] R(3) = 10,
[2] R(5) = 12, R(9) = 19 and R(13) = 26.

In Section 2 we study results on the structure of a
C(2k+1,4k+4). We extend these results in Section 3 to show the
uniqueness of C(5,12). We also show that C(7,16) and C(9,20) do
not exist. Finally in Section 4, we improve Theorem 1.6 to show that
R(4k—1) = 8k—1 whenever there exists a Hadamard matrix of order
4k.

2. Configurations with 4k+4 rounds.

Consider a set X of 2m elements with rounds as defined previ-
ously. Let C(m,r) denote a set of r rounds, any two of which contain
o(m) common pairs. We will study the structure of a C(2k+1,4k+4).

Suppose there are x; pairs which occur i times in the blocks of C,
a C(2k+1,4k+4). Counting pairs, we have

Sx = (%2 = s2v6r+1.
The total number of airs, counted with respect to multiplicity is
> iy, = 235 1) (ak+4)
= 8(2k3+3k2+k).
Also, any two rounds contain o(2k+1) = 2k? common pairs, 80
3 (9 = 2284
= 4(4k*+TK3+312).
Using the previous three equations we calculate
0 < 3 x(i~(2k+1))2 = 4k2+2k+1. *)

Thus we have

Lemma 2.1: x5, ; = 4k2+4k.
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Proof. Any pair which does not occur precisely 2k+1 times yields a
positive contribution of at least one in the sum in (*). Hence, at most
4k*+2k+1  such pairs  occur. Thus x5 ., = (4";2)-
(4k%+2k+1) = 4k%+4k. O

We now construct a graph G on vertex set X (the symbol set of C)
The edges of G will be precisely those pairs that occur an odd number
of times in C. We shall show that G is a complete bipartite graph.

For a subset Y C X, let N(Y) denote the number of blocks B’ € C
with ¥ C B’. For disjoint subsets ¥, Z C X, let N(¥,Z) denote the
number of rounds {B,B} with Y CBandZCB, orYC B andZ C B.
Then for any distinct elements a, b, ¢ € X, we have

N(abc) + N(ab,c) = N(ab).

Similarly,

N(abc) + N(bc,a) = N(bc),
and

N(abc) + N(ac,b) = N(ac).
Also

N(abc) + N(ab,c) + N(ac,b) + N(bc,a) = 4k+4.
Thus

N(abe) = N(ab)+~(ac)+2~(bc)-(4k+4) **)

Since N(abc) is an integer, we have

Lemma 2.2: For any distinct elements a, b, ¢ of X.
N(ab) + N(ac) + N(bc) is even.

Thus, in G, given any three distinct vertices a, b, c, either zero
or two of ab, ac, bc are edges of G. Such a graph can easily be shown
to be a complete bipartite graph (see [4, Lemma 2.5]).

The number of edges in G is an integer e of the form z(4k+2~-2),
where we may assume 0 < z < 2k+1. But e = 4k°+4k from Lemma

2.1. Thus we have z =2k or 2k+1 and
4k +4k S x| S e S 4K+ 4k+1.

Let us first assume that x5, = 4k*+4k and e = 4k2+4k+1,
Then some x3;+1 = 1 for j # k and hence (2j+1—(2k+1))2121+ = 4,
Also, T x,, = 4k*+4k which implies 3 (2i—(2k+ 1))2x2, = 4k&+2k
Thus 3, (i— (2k+1))%x; = 4k%+2k+4 which is a contradiction.
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Hence we have e = x5, ). If some xy; = 1for j # k, k+1, then
(2= (2k+1))%xy; = 9 and 3 (i— (2k+1))2x; = 9+4k?+2k—1, which is
also a contradiction. Thus x; = 0 if i ¢ {2k,2k+1,2k+2}. Using this,
the three equations preceding Lemma 2.1 have a unique solution,
which we record as

Lemma 2.3: In a C(2k+1,4k+4) there are k+1 pairs that occur 2k
times, 4k*+ 4k pairs that occur 2k+1 times and 4k+4 pairs that occur
2k+2 times.

Now we can suppose that our complete bipartite graph G has
bipartition (v,Y) where Y ={1,2,...,2k} and
Y = {2k+1,2k+2,...,4k+2}. Any element occurs in 4k+4 blocks
with 2k other elements. Hence, for any i, we have
S N(ij) = 2k(4k+4). For i €Y and j €Y, N(ij) = 2k+1. Hence

ir] _— —
SN(ij) = 2k(2k+1), fori € ¥. Ifi € T then

34
2N(@ij) = TN(j) — TN(J).
;g iv) Jer

Hence
S N(ij) = 4k2+6k.

e}
Jey

Now N(ij)=2k or 2k+2 if i,j€Y. Since |Y| = 2k+2,
N(ij) = 2k+2 for 2k j's and N(ij) = 2k for one j where both i, j € Y.

Thus there is_a unique j = j(i) € Y with N(ij) = 2k and
N(ij) = 2k+2 if j € Y\{i,j}. Hence the k+1 pairs that occur 2k times
form a 1-factor (perfect matching) of Y. Suppose, without loss of gen-

erality, that these pairs are precisely those in F = {{2i+1,2i+2}:
k < i < 2k}. Thus we have

Lemma 2.4: If1 < | < j < 4k+2, then
2k, if {i,j} € F
N(ij) = {2k+1,ifieY,jeY
2k+2, otherwise.

Now, let (X,R) be any collection of 4k+4 rounds that has the
above pair-distribution (each round consists of two blocks of size
2k+1). We can develop necessary and sufficient conditions for (X,R)
to be a C(2k+1,4k+4).
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Let B, be a block in an (X,R) and define
C = C(By) = T (N(ab)—1) where the sum is over all pairs in By.
Summing over all blocks other than B, or By we have

1 = 8k+86,
318 N Byl = (4k+3)(2k+1)

and

2(
Thus 3 |B N By|? = 2C+8k2+10k+3, and

S[(B N Byl =k)(|1B N Byl = (k+1))] = 2C - (8k3+6k2).

|BNB|
2 )=C

Since the blocks must intersect in either k or k+ 1 elements in a
C(2k+1,4k+4), we have that an (X,R) is a C(2k+1,4k+4) if and only
if the above sum is zero for all choices of By. This can be restated as

Lemma 2.5: (X,R) is a C(2k+1,4k+4) if and only if
S, (N(ab)-1) = 4k’+3k2 for every block B.

{a,b}CB
Pick a block B. Then, for 2k < i < 2k+2, let y; denote the
number of pairs {a,b} C B with N(adb) = i. Then
YutYau+1+Yusz = 22+k,
and  (2k=1)yy+2kyy 1+ (2k+1)yg .0 = C = 4k3+3k2.

Hence Yo+ = y2k+k2 and Yu+1 = k2+k"'2yu. Let z = IB N YI.
(k=2) (k22 +1) |

Then yy 1 = z(2k+1-2), so Yo = 2 13 a triangular
2
number. If we let 0=k—gz, then y, = 2 ;9 y
62+0

You+1 = k2+k-(62+0) and yo, ., = k2 + We may assume

that z < k, by switching the roles of B and 3, if necessary. Thus

6 =0. We must have 2y,, < |B N ¥| = 2k+1-z which reduces to
0% < k+1; hence 0 s |Vk+1

_ 2
A round {B,B}, where yu(B) = e and where |B N Y| < &,

will be called a 8-round, and r¢ will denote the number of O-ro:x)'mds.
Clearly, $rg = 4k+4. Now it is easy to show, if y,,(B) = g ;9 A,
62-9

2

that y,,(B) = . Hence we obtain
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82+0  02-¢

which simplifies to
36%rg = 2k%+2k.

]
We have been unable to prove any more general results concern-
ing the structure of a C(2k+1,4k+4). However, for specific values of

k, this structural information can often be applied to show existence or
non-existence of configurations.

3. Specific results.

The first case which we consider is the existence of a Cc(5,12).
Such a configuration was found by computer in [2]. Thus R(5) = 12.
We can show that this configuration is unique, up to isomorphism.

Theorem 3.1: A C(5,12) exists and is unique up to isomorphism.

Proof. Consider a C(5,12). By Lemma 2.5, it will have 6-rounds as
described in the previous section. That is, ro+r; =12 and ry = 12,
So ro=0. Thus all rounds {B,B} have y4(B) =1, ys(B) = 4 and
ye(B) =5._Y =1{1,2,3,4} and Y = {5,6,...,10} with |B,NnY| =1
and |B; N Y| = 4 for 1 < i =< 12. The pairs 5 6, 78, and 9 10 each
occur four times in the 12 B’s and since ¥4(B) = 1, exactly one of these
pairs occurs in each B. Thus let B,,B,,8; and B 4 contain the pair 5 6.
Let 35,86,87 and BB contain the pair 7 8, and let 89’510'811 and 812
contain 9 10.

Consider B,,B,,B5 and B,. No two of these blocks contain the
same pair {i,j} C {7,8,9,10}, for then the intersection between blocks
would not be two or three, as required in a C(5,12). Thus the pairs
79, 710, 89, 810, each occur in one of these blocks. A similar
argument applies to the second and third groups of four blocks.
Hence, we have, without loss of generality:

By 5679
Bz! 56710
833 5689
By 56810
BS: 7859
8‘3 78510
By 7869
By 78610
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By: 91057

By 91058
Bu: 91067
By 91068

Next, we observe that the triples j § 6 (1 < j < 4) each must
occur once, by equation (**) preceding Lemma 2.2. No such triple
can occur in any B,, so each j (1 < j < 4) occurs in one of B,,B5,,B,
and B4. Similarly, each such j occurs in one of Bs, B, By and Bg, and
in one of By, Big, By, and B;;. Without loss of generality, we can
assume j € B; for 1 < j < 4, Thus we have

By: 15679
By 256710
By 35689
B4: 456810

We now consider Bs, Bs, B7 and By. By considering block inter-
sections with By, B2, B; and B4, we see that neither 1 nor 3 can occur
in Bs or B,; and neither 2 nor 4 can occur in B¢ or Bs. Thus 2 occurs
in Bs and 4 in B,, or vice versa. However, in view of the automor-
phism (1 3) (2 4) (5 6) (7 8) of our partial design, we may assume that
2 occurs in Bs and 4 occurs in Bj.

We now turn our attention to By, By, By, and B;. Calculating
intersections, we see that 4 € By and 3 € By;. Then 2 € By, and
1 € Byo. Finally (again, by calculating intersections), we have 3 € B,
and 1 € Bs. Thus the following C(5,12) is unique up to isomorphism.

Ry 15679 234810
Ry 256710 13489
Ry 35689 124710
Ry; 456810 12379
Rg 25789 134610
Rg 357810 12469
Ry 46789 123510
Ry 167810 23459
Ry: 457910 12368
Ryg: 158910 23467
Ry: 268910 13457

This completes the proof. O

Next we show that no C(7,16) exists. We have ro+r,+r;, = 16
and r+4r; = 24. This system has four solutions in non-negative
integers.
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rh nn n

case(l) 10 0 6
case(2) 7 4 5
case(3) 4 8 4
case (4) 1 12 3

Our point set is {1,2,...,14} and the pairs which occur six times are
those in F = {7 8,9 10,11 12,13 14}. The three types of rounds are:

0 Y5 Y, Y,
0 0 12 9
1 1 10 10
2 3 6 12

The intersection of two blocks from different rounds is 3 or 4. Case
(1) and Case (2) can be quickly eliminated.

Lemma 3.2: Cases (1) and (2) are impossible.

Proof. A 2-round contains three of the four pairs in F. If r, > 4,
then two blocks must contain three common pairs from F for an inter-
section of at least six. Since the intersections are supposed to be three
or four, r; < 4. 0

Lemma 3.3: Case (3) is impossible.

Proof. There are four 2-rounds. These rounds have blocks B which
contain three of the four pairs in F and blocks B which contain no pairs
of F. Now the blocks B intersect in two of these pairs giving a max-
imum intersection of four. Thus we may assume:

B;: 1789101112 By: 234561314
By 2789101314 By 134561112
By: 37811121314 By 12456910

By 491011121314 B, 1235678

There are eight 1-rounds whose B blocks contain one pair from F
and whose B blocks contain no pairs from F. Since each pair in F must
occur twice more and since the O-rounds contain no F pairs, these pairs
must occur in Blocks Bs-By;. We may assume without loss of general-
ity that 7 8 is in Bs and B, 9 10 is in B, and Bg, 11 12 is in By and B,
and finally 13 14 is in By; and By;. Thus we have accounted for all
occurrences of pairs from F.

Using equation (**), we know that each triple i x x+1, where
{x,x+1} € Fand 1 < i < 6, occurs twice. Thus we have:
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Bs: 4578 Bg: 1236

Bg 4678 Bg 1235
87: 35910 41: 1246
Bg: 36910 By 1245

By: 251112 By 1346
Blo: 261112 &0: 1345
Bu: 151314 qdul 2346
By 161314 B 2345

There are four O-rounds. Using equation (**) we know that each
triple i S 6, 1 < i < 4, must occur four times in the design. Thus each
such triple must occur once in the remaining blocks, giving:

Byy: 456 Byy: 123
314: 356 ql‘f 124
Bis: 256 By 134
Blﬁ: 156 BI.‘: 234

A triple 56 j, 7 < j < 12 occurs three times in the design (using
equation (**)). Thus each j, 7 < j < 12, occurs twice in the blocks
B13-Bi1s. Now consider the occurrences of triples i67, 1 <i=<4.
Each of these four triples occurs three times in the design, for a total
of 12. We have three such triples in the first four founds and two in
the last four rounds. So there are seven occurrences in the middle
eight rounds.

_ Suppose the pair 6 7 occurs a times in Bs-By; and b times in Bs-
By;. Then a+3b = 7, by the discussion above. But we can also count
occurrences of the pair 6 7 in the design. There is one occurrence in
the first four rounds, a+& occurrences in the middle eight rounds and
two occurrences in the last four rounds which should total to seven.
Thus a+b = 4. Solving, we have a = 5/2 and b = 3/2. Buta and b
must be integral, so we have a contradiction. O

Lemma 3.4: Case (4) is impossible.

Proof. There are three 2-rounds and thus without loss of generality we
have:

B: 789101112 By: 1314

By 789101314 By 1112
By 7811121314 By 910

The pair 7 8 does not occur in any blocks of O-rounds and in three
blocks of 1-rounds, say B4, Bs and Bs. Each of these blocks contains
two points from {1,2,...,6}. If we count occurrences of triples 1 7 8,
1=<i=6, using equation (**), we see that these six triples occur
twice in each block, for a total of twelve. But these triples can occur
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only in B,-B¢ and in these blocks only nine such triples are found. This
contradiction proves the result. O

Thus we have
Theorem 3.5: R(7) = 18.

Proof. Lemmata 2.7, 2.8 and 2.9 show that R(7) < 15. But
R(7) = 15 by Theorem 1.6. O

We can also show that no C(9,20) exists. We have
ro+ri+r; = 20 and ry+4r; = 40.

There are four cases to consider:

rh nn n
case (1) 1 12 7
case(2) 4 8 8
case(3) 7 4 9
case(4) 10 0 10
The three 6-rounds are:
8 ys ¥ Yo
0 0 20 16
1 1 18 17
2 3 14 19

Here a 6-round consists of {B,B}, where [B N Y| = 4—9 and
|BNY| =4+0. The pairs that ooccur cight times are those in
F ={910,11 12,13 14,15 16,17 18}. For a given pair {i,i+1} in F,
suppose that it occurs in ue blocks B of 6-rounds and ve blocks B of 0-
rounds. Then it is casy to see that wy=vyy=y, = 0_and
urtuz+va = 8. Also we can count triples {i,i+1,j} where j € Y and
{i,i+1} in F. Counting (using equation (**)) gives that the eight such
triples occur four times each. Hence we obtain 4uy+Suz+vy = 32,
There are three solutions for u;,u, and v, in non-negative integers:

uy Uy Va2
8 0 0
4 3 1
0 6 2

Now a block B in a 2-round contains three of the five pairs in F.
No two of these blocks can contain the same three pairs, for then they
would intersect in six points which is not allowed. Since r; = 7 and
since u; = 0,3 or 6 at least two of the pairs in F must have u, = 6.
Since the sets of three pairs from F must be distinct in the B blocks of
the 2-rounds, we have r; = 9. But this implies a third pair in F has
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u = 6 which then implies r; = 10. So cases (1), (2) and (3) are
impossible. In the remaining case, all five pairs of F correspond to the
solution

uy =0, ua =6, v = 2.

Now we can count triples 1ii+1 where {i,i+1} is in F. Each
such triple occurs three times, for a total of 15. Suppose 1 occurs ¢
times in blocks B of the 2-rounds and hence 10—¢ times in blocks B of

the 2-rounds. Then 3c+10—c = 15 or ¢ = —g— which is an absurdity.

Thus we have
Theorem 3.6: R(9) = 19.

Proof. We have shown that R(9) < 19; and R(9) = 19 by Theorem
1.7. 0

4. Configurations with 4k+3 rounds, k odd.

In this section we give a construction for a C(4k—1,8k—1) when-
ever a Hadamard matrix of order 4k exists. This improves Theorem
1.6.

Theorem 4.1: If there is a Hadamard matrix of order 4k, then
R(4k—1) = 8k—1.

Remark. It is well-known that a Hadamard matrix of order 4k exists
whenever 4k—1 is a prime power.

Proof. A C(2k,4k—1) exists by Theorem 1.2. Let S denote the sym-
bol set of this configuration and label the rounds R, . . . ,Ry-;. Let
x be any element of S. Each round R, = {B,,B,} where we may assume
x €8, 1=i=4k—1. We take two copies of §, say §; = § X {1}
and S2 =S X {2}. ForanyTC S, letT ={t: t €T}, i = 1,2. (We
write ¢ for (t,i) for simplicity.) Consider the following set of blocks:

C={C = (B‘—I)l U (B,—x)’: 1<i=<4k-1}
D={D,=(B-x)'UB,:1=si=4k-1}.
We know that |B,NB)| =k if 1 <i<j=4k—1. Thus, if
1< S] < 4k-1, then ID‘ N DJI = I(B‘—I) N (BJ—I)I +
[BiNB)| = k—1+k=2k-1. Alo, if 1=i<j= dk—1, then

lC;ﬂC,|=2k—2. If 1<i+# j=<4k-1, we have lC[ﬂD]|=
2k—-1. As well, |C,ND)| =2k-1 for 1<i<dk~1. Finally
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|§=x)'NC| = |(S-x)'N D] =2%-1for1=i=dk-1. We will
form a C(4k—1,8k—1) on symbol set (S—x)! U (S-x)2. The blocks
are supposed to be of length 4k—1 30 that the blocks C; of C need to be
lengthened by one element ¢, ¢ C,. It is sufficient to choose these ¢,’s
so that, for all 1 <i =< j < 4k—1 either ¢, € C, or c; € C, (or both).
Note that this increases their intersection to 2k—1 or 2k. Then we will
let the rounds for the configuration be the following 8k—1 blocks and
their complements:

{D;} U {C U {c}} U {(S—x)1}.

It remains to determine the ¢,’s. This can be done by the follow-
ing algorithm:
While not all ¢,’s are defined do
(1) Choose any i such that ¢, is not yet defined.
(2) Define ¢, to be any element of (S—x)!-C,.
(3) For all ¢;’s such that ¢, is not defined and ¢, ¢ C,, define ¢ = a.

Note that the algorithm must stop after 2k iterations and thus i
can always be chosen. This completes the proof. O
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