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ABSTRACT

We desire invariants for Steiner triple systems that are
fast, effective, and require little space. Two invariants are
described and compared: fragment vectors and indegree
sequence"s of trains. Both invariants can be computed in
time O(vr), and require space 0(r), where v is the-order of
ttre Steiner triple system. Experimental evidence suggests
that the invariant based on trains is more effective, but it
requires about five times longer to compute. However,
both methods appear very weU suited to practical applica-
tions.

1. Introductlon.
A Steiner triple system (or STS) of order v is a pair (X,B), where

X is a set of v elements called points, and B is a set of 3-subsets of X
(called blocks ) such that every pair of points occurs in a unique block.
It follows that every point occtus in r = (v-\n blocks, and there are
b : v(v -l)/6 blocks. Hence y - 1. or 3 mod 6. This necessary condi-
tion for existencc is also sufficient, as was demonstrated by Kirkman
[s] in t847.

LetDi: (Xi,B;) be STS of order v, for i: \,2. We say thatDl
and Dr are isomorphic if there is a bijection Oi Xt*Xz SUch thai
{x,y,z} € B1 if and only if {S(r),0Cy),S(r)} e \. The nurnber of
pairwise non-isomorphic STS of order is denoted by il(v). It is known
that N(v) - 1 for V = L,3,7, or 9; N(11) = 2. and N(15) = 80.
Beyond this point t{(r) glgys^exrremely rapidty: N(19) ) Zgq4O7,
ffid, in general N(r) - yv'(v0+u(r)). (References for all these results
can be found in [6].)

Given two STS of order v, how difficult is it to test them for
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isomgrphi_sry? An algorithm which works in time 0(vlorr; is presented
in Miller [7]. No polynomial.time algorithm is known, thousir Miller,s
algo^rithm, in practice, appears to run in time 0(valogv), oi 

"n"ruge.An implementation of this algorithm, due to the author, is described in
t9]. We found that to test isomorphism of typical STS of order 15
required 1. 6 seconds (on an AIvIDAI{L 470N8 computer). We want a
faster test, one that will always run in polynomial time. Such tests
exist, though they do not always succeed.

An invariant is a mapping /, defined on the set of all SS, such
that /(D ): f(D) if Dl and D2 are isomorphic. The image !(D) ot
an STS D is called a torm. Notice that two STS may conceivably have
the same forms, yet not be isomorphic. So, if two STS have thi same
forms, we must use some other invariant to prove that they are non-
isomorphic, or alternatively, attempt to find an isomorphism.

We will evaluate invariants by three criteria: effectiveness, time
and space.

The effectiveness of an invariant is the tendenry that non-
isomorphic STS is mapped to different forms. In t8], a measure for
effectiveness was proposed. Let.f be an invariant, lat v be a positive
integer, and let S(r) denote the set of all STS of order ;. The
s.ensttivity of / is the funaion s where s(v) = ltf(B):B € S(v))lll S(v)l .

(The number of forms divided by the ntrmber of 
.non-isomiipt 

ii SfS.l
Clgarly s(v) is between 0 and 1. We desire s(v) to be cloie to 1; ii
s(v) is dU, we say that/ is complerc at order v.

The time of an invariant will be regarded as a function of the
order v of the STS being tested.

Th9 space of an invariant is the amount of computer memory
required to store a form. Throughout this paper, we wiil be informal
and assume that all integers involved will fit into a single word of
memory. (Certainly this will be true in any practical appliiation of the
methods we describe here.)

- Clearly, we wish to maximize sensitivity, while minimizing timc
and space. It is currently unknown if there exists a complete invariant
that requires only polynomial time and space.

this paper we discuss two invariants, trains and cycle structrue,
which require time. and space 0(r,), but which are ,tot 

"omplete."Compressed" invariane based on these require only space 0(v). In
section 4, we compare these two invariants, based mostly on empiricul
evidence.
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2. Cycle structure and fragmcnt yeetors.

Cycle structure has been inrte-pendenfly discovered by many
researchers; Cole [2] and Cumrnings [3] appearto be the first.

. Let (XrB) be an STS of order v, let ;r,y be any two d.istinct
points, and let B = lx,y,z) be the block containing , *O y. DefineGr,r-: lla,b!:{a,b,x! € B\s} U l{a,bl:{o,b,yl € frs}. G,,, is a 2-
regular graph on vertex set X\{.r,y,z}. Gr., consists of even-'cyctes of
length at least foru, and hence can be repreiented as a partition of v-3
into even parts, each at least four. Ordered, this parhtion is called a
cycle list. The collecrion of dl (l) cycle lists,ordered lexicographically,
is called cyclc structure. It is not difficult to see that one can determine
rycle structure in both time and space proportional to v3.

We do not object to time 0(r3), but space O(r3) will prove intrac-
dPl:- in any large-scale applications. Gibbons [a]'has suggested a wayof "compressing" the rycle structure by coniidering onfy rycles oi
length 4 (in the graphs Gr,r). For r,) ( X, let ar,, dinote-the"number
of four-cycles in Gr,y.'' For x (. X let fr!' ), ,r,r. The list
(!ri r ( X), ordered, is called thefragment vector Jf-tir. SfS.

Note that we do not have to determine all the graphs Gr,, in
order to find the fragment vertors. A fragmenr is a set of four bi6cks
of the form lr,vrw), {r,x,!L {u,r,z}, {w,y,z!. A fragment gives rise
to a four-rycle h_Gr,r, Gv,l Md Gr,r. We can detJrmine -the 

frag-
ment vector simply by finding aU fragments, and each time one is
found, incrementing fr by one for each of the six points i in the frag_
ment. This method still requires time proportional to v3, but is consid-
erably quicker than determining the complete rycle sffucture. Note
that to store a fragment vector requires spaie proportional to v. This is
a considerable saving in space over the complete rycle structure.

How big are the numbers f, in a fragment vector? It is not diffi_
cult to see that frs (v-1)(v-3)/4, with equality occtrring if and only
if gr,, is a union of 4-cycles, for all y. Also, f, = (v-1)(v-3)/4 f.or
all .r if and only if the STS is a projective space pG(n,Z).

In [4], Gibbons lists the fragment vectors for all g0 STS of order
15. .Since they are all different, fragment vectors are a complete
invariantatv = 15.
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3. Trains and lndegrec llsts.
Trains were first descibed. by White [11], and then largely

ignored. Recently, C-olbourn et al fi) disarssed the use of trains as an
invariant.

Let (X,-B) be an STS of order v. For any two distinct points r,y,
define other(x,y) = ,, where {r,y,e} € B. it oin is a direaea graih
7 whose vertices are the (p f-r"Usea of X. ? is regular of outdegree
t;- th9 edge leaving lr,y,rl is directed to {other(.r,y), other(r,z),
other(y,z)).

It is not difficutt to see that one can calctrlate a train in time and
space proportional to v3. As was the case in cycle structure, we desire
a srnaller invariant. Colbourn et al [1] define compact trains: a com-
pact rrain is a set of triples (r,j,&); a friple (r,j,k) means that there are
& cornponents af. T which have i vertites, J of which have indegree
zero.- Compaa trains are certainly more compact that trains, but it is
not clear how much.mor!_compact they are. For 

"*umple, 
one STS of

order 15 (#21) requires 29 triples for its compact train. Further, corl.
pact trains fail to distinguish two of the eighry STS of order iS (#6 and
#7).

We would like to propose an invariant based on the indegree
sequence of trains.

Lcnrmn 3.1. No vertex in a tain has indegre€ exceeding v-2. Further,
any vertex of indegree v-Z ts a block of the STS.

Proof. Let {.r,y,z} be a 3-subset. There *r, $ pairs {ai,b;l for
Z

yhich other (ai,b1) = x. (1 s i s (, -r[). ThJpoint y is in one of
these pairs; let aL= y. If la1,b1,cl is directed to {x,y,r\ then
other(y,br) =, and {other(y,c),other(bt,c)I= lJ,;}'.- 

' 'Hence

other(y,c) = , *9 other(D1,c) = y. Since ti,y,ari *d l",y,D1) are
blocks, we must have x = c. Ttrn z = otherfu,;) = otr.rir,j), so
{r,y,z} is a block. 

.Hence b,bt,c} is d.ireaeO tJ iriy,z} if ani'onfy if
{*,y,2} : ly,bycl is a block of the STS.

Now, consider auly -lai,bi, with i > 1. Suppose {ai,bi,cI is
directed to lr,y,rl. Either c : other(oi,y) or c-: othei(Ar,J), So
these are at most two choices for c.

and equaliry is attained only when {r,},2} is a block. n

v-3
2

It follows that {x,y,z} has indegree at most I + Z( ) = v-2,

It is interesting to note that, in the projective space pG(n,2), all
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blocks have indegree v-2, and all non-blocks have indegree 0.

Since the indegrees are at most v-2, we may form a vector
(a1:0 s i s v-2), where ai is the number of vertices of indegree f.
We refer to this as the indegree Jisr of the train. The space required to
store an indegree list is clearly proportional to y, so we have a- "small"
invariant. However, the time required is still proportional to yr.

For STS of order 15, indegree lists distinguish all non-isomorphic
designs. These lists are presented in Table 1. In fact, the ordered pair
(ro,o) is a complete invariant for STS of order 15. This is the most
concise complete invariant known to the author. (The 80 STS are num-
bered as in [6]).

Table 1.

Indegree lists of STS of order 15

STS indegree list
1,42000000000000
23920002440042400
3 354 0 48 0 12 6 0 16 6 t2 0 0
434882020228t2421000
53481603220101604800
63360164436100t20000
733600485218000000
8 300 40 44 22 15 16 10 4 3 1 0 0
92884839342410811200

10 290 40 41 46 18 6 10 r 1 2 0 0
11 26t 61 55 49 18 6 2 2 0 1 0 0
L22874448421231330300
132894848t6261780L200
142964848621.22641300
152694864382211021000
16 329 0 84 0 0 7 0 287 0 0 0
L7 275 36 7224 40 7 0 0 1 0 0 0
18273485048249021000
19230867842723400000
20254596654153130000
21245 68 81 39 15 0 1 60 000
22236 77 81 45 I 0 4 3 0 0 0 0
23219L07 67 46 9 2 5 00 000

.24218 116 59 42 10 5 5 00 000
252241046835154500000
26234 99 58 38 13 5 7 1 0 0 0 0

.27192138743992100000
28198134654683100000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

73

35
7
1

1

1

1

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



13 0 6 00 0000 0t2 21 00 0000 04 0 6 00 0000 0I 21 00 0000 05 2 0 00 0000 09 2 0 00 0000 013 3 0 00 0000 06 0 0 00 0000 00 0 0 00 0000 05 0 0 00 0000 09 3 0 00 0000 0t4 4 0 00 0000 013 3 0 00 0000 01 1 0 00 0000 041 0 00 0000 04 0 0 00 0000 05 0 0 00 0000 02 0 0 00 0000 06 2 0 00 0000 02 0 0 00 0000 02 0 0 00 0000 02 0 0 00 0000 05 0 0 00 0000 04 0 0 00 0000 09 1 0 00 0000 06 3 0 00 0000 04 0 0 00 0000 05 0 0 00 0000 00 0 0 00 0000 06 I 0 00 0000 04 3 0 00 0000 01 0 0 00 0000 00 0 7 00 0000 04 0 0 00 0000 01 0 0 00 0000 07 0 0 00 0000 02 0 0 00 0000 01 0 0 00 0000 00 0 0 00 0000 02 0 0 00 0000 00 0 0 00 0000 04 0 0 0 0 0 0 0 0 0.1 0 0 00 0000 01 0 0 00 0000 0

29 226 98 67 4s
30 192 135 83 30
31 220 101 70 54
32 1gg 1,42 74 39
33 185 141 82 40
34 183 145 84 32
35 187 140 88 24
36 160 173 90 26
37 150 173 114 18
38 161 L73 86 30
39 172 172 65 34
40 175 LU 79 19
4L 178 152 91 18
42 153 194 86 30
43 159 L7t 97 23
44 L57 L72 99 23
45 160 174 87 29
46 151 185 89 28
47 L69 166 81 _11

48 L52 189 78 34
49 149 189 87 28
50 139 aAL 93 20
51 160 178 79 33
52 162 176 76 37
53 L7L 163 82 29
54 L75 L57 83 31
55 162 172 84 33
56 1s1 195 72 32
57 136 2U2 98 19
58 156 180 90 22
59 t87 t49 6L 51
60 150 186 89 29
61 245 35 126 42
62 163 LU 97 27
63 151 185 88 30
& 178 t43 97 30
65 150 188 86 29
66 146 189 95 24
67 138 203 90 24
68 L46 190 94 23
69 t43 190 101 2L
7A 159 181 75 36
7L 141 196 96 2L
72 137 206 88 23
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2
4
0
5
0
0
2

30

73
74
75
76
77
78
79
80

136
t44
144
165
123
134
t26

2tL
205
195
t70
224
215
213

60

82
72
90
80
93
78

108
365

24
30
25
35
15
28

6
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

4. Comparlson.

In order to test these invariants, we have generated STS using a
hill-ctimbing algorithm descibed in [10]. This algorithm will construct
STS extremely quickly, and we hope that STS produced in this way will
be (at least, to a degree) random. The average times taken (p.t
design) are presented in Table 2. (Th" algorithms were programmed
in PASCAI-A/S and run on the University of Manitoba AIvIDAHL
470N8 computer. )

Table 2. (tinre in seconds)
v construction fragment indegree

vector list
15

19
2L
25
27
31

.011

.02t

.028

.0M

.048

.068

.0027

.0044

.0060

.010

.013

.017

.0095
,022
.030
.051
.065
.090

We see that the indegree sequence requires about five times as

long to calculate as the fragment vector. Nevertheless, both are
extremely quick.

We have noted that both fragment vectors and indegree lists are
complete invariants for v s 15. The next step is to test their effective-
ness on STS of order 19. Of 36000 designs constructed, 23966 distinct
fragment vectors were found, and 32292 distinct indegree lists were
obtained. Of the last 1000 designs constructed, there were 553 new
fragment vectors and 785 new indegree lists.

These trvo invariants seem to be quite uncorrelated. Of the 36000" designs, there were only two that had the same fragment vector and
- indegree list.

So, it appears that indegree lists are both slower and more effec.
tive than fragment vectors. Both invariants seem to be very successful
in practice. They can also easily be combined and used as single
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invariant.

We are arrently investigating STS of order 19, using both theseinvariants. We have noted Gat there are known to be 2g4407 non-
isomorphic STS of order 19; we hope to improve this lower bound
using the methods described in this paper.
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