A COMPARISON OF TWO INVARIANTS FOR
STEINER TRIPLE SYSTEMS:
FRAGMENTS AND TRAINS

D.R. Stinson

ABSTRACT

We desire invariants for Steiner triple systems that are
fast, effective, and require little space. Two invariants are
described and compared: fragment vectors and indegree
sequences of trains. Both invariants can be computed in
time 0(v3), and require space O(v), where v is the order of
the Steiner triple system. Experimental evidence suggests
that the invariant based on trains is more effective, but it
requires about five times longer to compute. However,
both methods appear very well suited to practical applica-
tions.

1. Introduction.

A Steiner triple system (or STS) of order v is a pair (X,B), where
X 1s a set of v elements called points, and B is a set of 3-subsets of X
(called blocks) such that every pair of points occurs in a unique block.
It follows that every point occurs in r = (v—1)/2 blocks, and there are
b = v(v—1)/6 blocks. Hence v = 1 or 3 mod 6. This necessary condi-
tion for existence is also sufficient, as was demonstrated by Kirkman
[S] in 1847.

Let D; = (X;,B;) be STS of order v, for i = 1,2. We say that D,
and D, are isomorphic if there is a bijection ¢: X; - X, such that
{x,y,z} € By if and only if {$(x),4(y),d(z)} € B,. The number of
pairwise non-isomorphic STS of order is denoted by N(v). It is known
that N(v) =1 for V =1,3,7, or 9; N(13) = 2; and N(15) = 80.
Beyond this point N(v) grows extremely rapidly: N(19) = 284407,
and, in general N(v) = vV (V6+0(1)), (References for all these results
can be found in [6].)

Given two STS of order v, how difficult is it to test them for

ARS COMBINATORIA, VOL. 16 (1983), pp. 69-76

isomorphism? An algorithm which works in time 0(vl°gv) is presented
in Miller [7]. No polynomial-time algorithm is known, though Miller’s
algorithm, in practice, appears to run in time 0(v*logv), on average.
An implementation of this algorithm, due to the author, is described in
[9]. We found that to test isomorphism of typical STS of order 15
required 1.6 seconds (on an AMDAHL 470/V8 computer). We want a
faster test, one that will always run in polynomial time. Such tests
exist, though they do not always succeed.

An invariant is a mapping f, defined on the set of all STS, such
that f(D) = f(D,) if D, and D, are isomorphic. The image f(D) of
an STS D is called a form. Notice that two STS may conceivably have
the same forms, yet not be isomorphic. So, if two STS have the same
forms, we must use some other invariant to prove that they are non-
isomorphic, or alternatively, attempt to find an isomorphism.

We will evaluate invariants by three criteria: effectiveness, time
and space.

The effectiveness of an invariant is the tendency that non-
isomorphic STS is mapped to different forms. In [8], a measure for
effectiveness was proposed. Let f be an invariant, let v be a positive
integer, and let S(v) denote the set of all STS of order v. The
sensitivity of f is the function s where s(v) = |{f(B):B € S(v)}|/| S(v)|.
(The number of forms divided by the number of non-isomorphic STS.)
Clearly s(v) is between 0 and 1. We desire s(v) to be close to 1; if
s(v) is unity, we say that f is complete at order v.

The time of an invariant will be regarded as a function of the
order v of the STS being tested.

The space of an invariant is the amount of computer memory
required to store a form. Throughout this paper, we will be informal
and assume that all integers involved will fit into a single word of
memory. (Certainly this will be true in any practical application of the
methods we describe here.)

Clearly, we wish to maximize sensitivity, while minimizing time
and space. It is currently unknown if there exists a complete invariant
that requires only polynomial time and space.

In this paper we discuss two invariants, trains and cycle structure,
which require time and space 0(v3), but which are not complete.
"Compressed” invariants based on these require only space 0(v). In
section 4, we compare these two invariants, based mostly on empirical
evidence.

70

2. Cycle structure and fragment vectors.

Cycle structure has been independently discovered by many
researchers; Cole [2] and Cummings [3] appear to be the first.

Let (X,B) be an STS of order v, let x,y be any two distinct
points, and let B = {x,y,z} be the block containing x and y. Define
Gy,y = {{a,b}:{a,b,x} € BB} U {{a,b}:{a,b,y} € B\B}. G,y is a 2-
regular graph on vertex set X\{x,y,z}. G,,, consists of even cycles of
length at least four, and hence can be represented as a partition of v—3
into even parts, each at least four. Ordered, this partition is called a

cycle list. The collection of all (5) cycle lists,ordered lexicographically,

is called cycle structure. 1t is not difficult to see that one can determine
cycle structure in both time and space proportional to v°.

We do not object to time O(v3), but space 0(v3) will prove intrac-
tible in any large-scale applications. Gibbons [4] has suggested a way
of "compressing” the cycle structure by considering only cycles of
length 4 (in the graphs Gx,y). For x,y € X, let a, , denote the number
of four-cycles in G,,. For x€X let f,="3 ayy. The list

v
(f,: x € X), ordered, is called the fragment vector o’f the STS.

Note that we do not have to determine all the graphs Gy,y in
order to find the fragment vectors. A fragment is a set of four blocks
of the form {u,v,w}, {u,x,y}, {v,x,z}, {w,y,z}. A fragment gives rise
to a four-cycle in G, ;, G, , and G, - We can determine the frag-
ment vector simply by fincﬁ'ng all fragments, and each time one is
found, incrementing f; by one for each of the six points i in the frag-
ment. This method still requires time proportional to v3, but is consid-
erably quicker than determining the complete cycle structure. Note
that to store a fragment vector requires space proportional to v. This is
a considerable saving in space over the complete cycle structure.

How big are the numbers f, in a fragment vector? It is not diffi-
cult to see that f, < (v—1)(v—3)/4, with equality occurring if and only
if gy, is a union of 4-cycles, for all y. Also, f, = (v—1)(v—3)/4 for
all x 1f and only if the STS is a projective space PG (n,2).

In [4], Gibbons lists the fragment vectors for all 80 STS of order

15. Since they are all different, fragment vectors are a complete
invariant at v = 15,

2!

3. Trains and indegree lists.

Trains were first described by White [11], and then largely
ignored. Recently, Colbourn et al [1] discussed the use of trains as an
invariant,

Let (X,B) be an STS of order v. For any two distinct points x,y,
define other(x,y) = z, where {x,y,z} € B. A train is a directed graph

T whose vertices are the (;) 3-subsets of X. T is regular of outdegree

1; the edge leaving {r,y,z} is directed to {other(x,y), other(x,z),
other(y,z)}.

It is not difficult to see that one can calculate a train in time and
space proportional to v3. As was the case in cycle structure, we desire
a smaller invariant. Colbourn er al [1] define compact trains: a com-
pact train is a set of triples (i,j,k); a triple (i,j,k) means that there are
k components of T which have i vertices, j of which have indegree
zero. Compact trains are certainly more compact that trains, but it is
not clear how much more compact they are. For example, one STS of
order 15 (#23) requires 29 triples for its compact train. Further, com-
pact trains fail to distinguish two of the eighty STS of order 15 (#6 and
#7).

We would like to propose an invariant based on the indegree
sequence of trains.

Lemma 3.1. No vertex in a train has indegree exceeding v—2. Further,
any vertex of indegree v—2 is a block of the STS.

Proof. Let {x,y,z} be a 3-subset. There are p=i pairs {a;,b;} for

which other (a;,b) =x. (1si=< (v—1)72). The point y is in one of
these pairs; let a; =y. If {ay,b1,c} is directed to {x,y,z}, then
other(y,b;) = x and {other(y,c),other(bl,c)} = {y,z}. Hence
other(y,c) = z and other(b,,c) = y. Since {x,y,b,} and {c,y,b,} are
blocks, we must have x = ¢. Then z = other(y,c) = other(x,y), so
{x,y,z} is a block. Hence {y,by,c} is directed to {x,y,z} if and only if
{x,y,z} = {y,bq,c} is a block of the STS.

Now, consider any {a;,b;}, with i > 1. Suppose {a;,b;,c} is
directed to {x,y,z}. Either ¢ = other(a;,y) or ¢ = other(b;,y), so
these are at most two choices for c.

It follows that {x,y,z} has indegree at most 1 + 2(v=3

) =v=2,
and equality is attained only when {x,y,z} is a block. O
It is interesting to note that, in the projective space PG(n,2), all

72

blocks have indegree v—2, and all non-blocks have indegree 0.

Since the indegrees are at most v—2, we may form a vector
(a;:0 = i < v—2), where q; is the number of vertices of indegree i.
We refer to this as the indegree list of the train. The space required to
store an indegree list is clearly proportional to v, so we have a "small"
invariant. However, the time required is still proportional to v°.

For STS of order 15, indegree lists distinguish all non-isomorphic
designs. These lists are presented in Table 1. In fact, the ordered pair
(ag,ay) is a complete invariant for STS of order 15. This is the most
concise complete invariant known to the author. (The 80 STS are num-
hered as in [6]).

Table 1.
Indegree lists of STS of order 15

STS indegree list
1 420 0 0 0 0 0 0 0 O 0 0 O
2 392 0 0 0 24 4 0 0 4 24 0 O
3 354 0 48 0 12 6 0 16 6 12 0 O
4 348 8 20 20 22 8 12 4 2 10 0 O
S 348 16 0 32 20 10 16 0 4 8 0 O
6 336 0 16 44 36 10 0 12 O 0 0 O
7 336 0 0 48 52 18 0 0 0 0 0 O
8 300 40 4 22 15 16 10 4 3 1 0 O
9 288 48 39 34 24 10 8 1 1 2 0 O
10 290 40 4 46 18 6 10 1 1 2 0 O
11 261 61 55 49 18 6 2 2 0 1 0 O
12 287 44 48 42 12 3 13 3 0 3 0 O
13 289 48 48 16 26 17 8 0 1 2 0 O
14 296 48 48 6 21 22 6 4 1 3 0 O
15 269 48 64 38 22 11 0 2 1 0 0 O
16 329 0 84 0 0 7 0 28 7 0 0 O
17 275 36 72 24 40 7 0 0 1 0 0 O
18 273 48 50 48 24 9 0 2 1 0 0 O
19 230 86 78 42 12 3 4 0 0 0O 0 O
20 254 59 66 54 15 3 1 3 0 0 0 O
21 245 68 81 39 15 0 1 6 O 0 0 O
22 236 77 81 45 9 0 4 3 0 0O 0 O
23 219 107 67 46 9 2 S 0 0 0 0 O
24 218 116 59 42 10 5 S 0 O 0 0 O
25 224 104 68 35 15 4 5 0O 0 0 0 O
26 234 99 58 38 13 5 7 1 0 0 0 O
.27 192 138 74 39 9 2 1 0 O 0 0 O
28 198 134 65 46 8 3 1 0 O 0 0 O

3

COOCO OO0 OO OCOCOO0O0OO0C OO0 OO OO0 OCO0O

COO0CO0C OO OO OO OCO0O00OCOOCOCOoOOCOCOrRrRrRrPRPREJW

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72

226
192
220
189
185
183
187
160
150
161
172
175
178
153
159
157
160
151
169
152
149
139
160
162
171
175
162
151
136
156
187
150
245
163
151
178
150
146
138
146
143
159
141
137

98
159
101
142
141
145
140
173
173
173
172
164
152
184
171
172
174
185
166
189
189
201
178
176
163
157
172
195
202
180
149
186

35
164
185
143
188
189
203
190
190
181
196
206

67
83
70
74
82
84
88
90
114
86
65
79
91
86
97
99
87
89
81
78
87
93
79
76
82
83
84
12
98
90
61
89
126
g7
88
97
86
95
90
94
101
75
96
88

45
30
54
39
40
32
24
26
18
30
34
19
18
30
23
23
29
28
21
34
28
20
33
37
29
31
33
32
19
24
51
29
42
27
30
30
29
24
24
23
21
36
21
23

—
N W

— —
*—‘H&ONOHN\!HAOHAO\OUI-FSO\\DAMNNMO\NM&AH&&\OMOO\N\DMW&

OOOOOOOOOOOOONHOOOQ'—‘OOOOONOOOHHMAMOOOMNNNONO

74

OOOOOOOOOOO\)OOOOOOOOOOOOOOOOOOOOOOOOOOOOHO\HO’\

OO

OO

OO

OO

OO

OODOOO

OO

73 136 211 82 24 2 0 0 0 O 0 o0 O
74 144 205 72 30 4 0 O O O O O O
75 144 195 90 25 0 1 O O O O O o
76 165 170 8 35 S O O O 0O O O O
77 123 224 93 15 O O O O O O O o
78 134 21 78 28 O O O O O O O O
79 126 213 108 6 2 O O O O O O O
80 60 365 O0 30 6 0 o0 0 o0 o0 o

4. Comparison.

In order to test these invariants, we have generated STS using a
hill-climbing algorithm described in [10]. This algorithm will construct
STS extremely quickly, and we hope that STS produced in this way will
be (at least, to a degree) random. The average times taken (per
design) are presented in Table 2. (The algorithms were programmed
in PASCAL/VS and run on the University of Manitoba AMDAHL
470/V8 computer.)

Table 2. (time in seconds)
v construction fragment indegree

vector list
15 .011 .0021 .0095
19 .021 .0044 .022
21 .028 .0060 .030
25 .044 .010 .051
27 .048 .013 .065
31 .068 .017 .090

We see that the indegree sequence requires about five times as
long to calculate as the fragment vector. Nevertheless, both are
extremely quick.

We have noted that both fragment vectors and indegree lists are
complete invariants for v = 15. The next step is to test their effective-
ness on STS of order 19. Of 36000 designs constructed, 23966 distinct
fragment vectors were found, and 32292 distinct indegree lists were
obtained. Of the last 1000 designs constructed, there were 553 new
fragment vectors and 785 new indegree lists.

These two invariants seem to be quite uncorrelated. Of the 36000
" designs, there were only two that had the same fragment vector and
_ indegree list.

So, it appears that indegree lists are both slower and more effec-
tive than fragment vectors. Both invariants seem to be very successful
in practice. They can also easily be combined and used as single

75

COO0OO0OOoOOOO

SO OO OCOOo

invariant.

We are currently investigating STS of order 19, using both these

invariants. We have noted that there are known to be 284407 non-
isomorphic STS of order 19; we hope to improve this lower bound
using the methods described in this paper.

References.

[1]
[2]
[3]

M.J. Colbourn, C.J. Colbourn and W.L. Rosenbaum, Trains: an invariant Sfor
Steiner triple systems, Ars Combinatoria 13 (1982), 149-162.

E.N. Cole, The triad systems of thirteen elements, Trans. Amer. Math, Soc. 14
(1913), 1-5.

L.D. Cummings, On the method of comparison for triple systems, Trans. Amer.
Math. Soc. 15 (1914), 311-327.

P.B. Gibbons, Computing techniques for the construction and analysis of block
designs, Ph.D. Thesis, University of Toronto, 1976.

T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. Jour-
nal 2 (1847), 191-204.

R.A. Mathon, K.T. Phelps and A. Rosa, Small Steiner triple systems and their
properties, Ars Combinatoria 15 (1983), to appear.

G.L. Miller, On the n'®* isomorphism technique, Proc. of the Tenth Annual ACM
Symposium on the Theory of Computing, (1978), 51-57.

L.P. Petrenjuk and A.J. Petrenjuk, An enumeration method for non-isomorphic
combinatorial designs, Annals of Discrete Math. , 7 (1980), 265-276.

D.R. Stinson, Isomorphism testing of Steiner triple systems: canonical forms, pre-
print.

D.R. Stinson, Hill-climbing algorithms for the construction of combinatorial designs,
in “Algorithms in Combinatorial Design Theory", Annals of Discrete Math., to
appear.

H.S. White, Triple systems as tranformations, and their paths among triads, Trans-
Amer. Math. Soc. 14 (1913), 6-13.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

R3T 2N2 Canada

76

