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Perfect Pair-Coverings with Block Sizes
Two, Three, and Four
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We investigate the minimum number of blocks in a perfect pair-cover-
ing (pairwise balanced design) which contains only blocks of sizes 2:.3;
and 4. This number is denoted by g(*)(v), where v is the number of points.
We determine g (v) for all positive integers v, with three exceptions:

v =17, 18, and 19.

1. INTRODUCTION

Let X be a finite set. A perfect covering of X is a set B of subsets of X
such that every pair of points {x, X} C X occurs in a unique B & $. We
refer to the members of X as points and the members of B as blocks. (A
perfect covering is also referred to in the literature as a pairwise balanced
design or a finite linear space.)

Stanton er al introduced the covering number g*)(v), which denotes the
minimum number of blocks in a perfect covering of a v-set, where k is the
size of the longest block. In [4], g®)(v) is determined for k = 2 and 3 and
all v. Also, g®(v) is determined for all & > v/2 in [4]; and gM(2k + 1) was
found in [3] and [4].

In this paper, we study g“)(v). Complete results are given for all » with
the exception of v = 17, 18, and 19.

2. LoweRr BOUNDS FOR g(*)(v)

Let By, By, ..., B, form a perfect covering of the v-set {1,2,...,%},
where each B; has cardinality at most four, We will let k; = 1B, 1 <i<eg.
For 1 <7 < w, let r; denote the number of blocks containing the point ;.

Since all blocks have size at most four, it is clear that ri = }—?Z—:J—} Now

k.
'}E ki = ;‘: ri=v|]—vzl_1|+eforsomee>0
i=] =
Also,
g
Y 1=g
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and

}i kitki — 1) = v(v — 1).

i==1

Denote the number of blocks of size i by g;(i = 2, 3, 4). Then we obtain

22, =Y (ki — 3)(k; — 4)
i=1

= — 1) — 6(0{—” - 1.1 + e) + 12g.

Solving for g, we obtain

LEMMA 2.1.  In any perfect covering of a v-set in which the largest block
has size four, we have

71(6‘[/0 _3_ lv_{ — v -+ 1) + 6e -+ 2g>
= = 12

COROLLARY 2.2.

rv(Gly—v - 1-_} = 1 1)—;
12

Proof. e and g, are non-negative, and g¥)(v) is an integer.

gW(v) =

Any positive integer v can be written in the form 127 4+ §, where
—1 <8 < 10 and § and  are integers. We record the bound of Corollary
2.2, for v written in the above form, in Table 1. We denote this bound by
8o(v). '

TABLE 1

v 8o(v)
12r —1 12t + ¢
12 1202 4 ¢
12t 4+ 1 1212 4 ¢
12t 42 12¢2 + 7t 4+ 1
12t + 3 12¢2 4+ 7t 41
12t + 4 1262+ 7t + 1
12t 45 1212 4+ 13t 4+ 4
12t +6 12¢2 4+ 13t + 4
12¢ 47 1212 4 13t 4 4
12t + 8 1212 4 19¢ 4 8
12t 49 1212+ 191 4 8
12¢ 4+ 10 1202 4+ 19+ + 8
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For v =7 or 10 (mod 12), we are able to improve the bound of Table 1.
Our proof 1s based on the packing number D(2, 4, v), which denotes the
maximum number of blocks of size four, chosen from a v-set so that no pair
of points occurs in more than one block. It is well-known, for v =7 or

10 (mod 12), that

— 1]
D2, 4,v) < |27 _
Goo0<E ™5 ]
(see, for example, [1]).
LEMMA 2.3. Forv =17 or 10 (mod 12), g*(v) = go(v) + 3.

Proof. We describe the proof for v =7 (mod 12); it is similar for v = 10
(mod 12). Notation is as before. We have

olv =1 _ {1224
i3] 1 12t—{13t—1—2

g < D2, 4,v) <

The number of pairs not covered in the blocks of size four is (;) — 0ga.

In the graph formed by these pairs, every vertex has valence divisible by
three.

If g4 = 12¢2 4+ 13f 4 2, we obtain a cubic graph on six vertices. There
are two such graphs:

and ¢

V

To cover these pairs would require nine blocks, for Gy, or five blocks, for Gz
Hence g > 122 4 13t + 7 = go(v) + 3.

If g4 = 1262 4 13¢ + 1, we have fifteen pairs not covered by the blocks
of size four. If g < 1242 4 13¢ 4+ 7, then we must be able to cover these
fifteen pairs by at most five blocks. Thus we must have precisely five blocks
of size three. But there is no way that five edge-disjoint triangles can be
combined to form a graph in which every vertex has valence divisible by
three. Thus g = 12¢2 + 13t 4+ 7 in this case, as well.

Gl Gz
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Finally, assume g4 < 1212 4 131. We have at least 21 pairs not yet
covered, which requires at least sever more blocks. Hence g > 12¢2 -+ 13¢
+ 7.

Since we have covered all cases, we have

N2 +T) = 1202 + 131 + 7 = go(v) + 3. B

3. UPrPER BOUNDS

LEMMA 3.1. Forv= —1,0, 1, 2, 3, or 4 (mod 12) g®(v) = go(v).

Proof. Delete zero, one, or two points from a BIBD (12t + 4,4, 1) or
aBIBD (12t +1,4,1). 8

LEMMA 3.2, For v =7 or 10 (mod 12),v % 7, 10, 19, §9(v) = go(v) + 3.

Proof.  For v=7 or 10 (mod 12), v 5 10, 19, Brouwer [1] has construct-
ed a perfect covering with one block of seven and &o(v) — 4 blocks of size
four. Replace the block of size seven by a Fano geometry (seven blocks of
size three), thus constructing a perfect covering with gy(v) + 3 blocks. (We
cannot do this for v = 7, for the resulting covering would contain no block
of size four.) Lemma 2.2 proves that gMW) = go(v) + 3; hence, we have

equality. §
LEmMMA 3.3. Forv =35, 6,8, or 9 (mod 12), v = 20, g®(v) = gy(v).

Proof.  For allv=7 or 10 (mod 12), » > 22, Mills (2] has shown that
there exists a collection C of gy(w) blocks of size 4 which contain one pair
four times, and all other pairs once. Let xy be the repeated pair. If x is
deleted from all blocks of C containing it, then we obtain go(w — 1) = go(w)
blocks which form a perfect covering of the w — 1 points other than x. If
any other point z is deleted from all blocks containing it in this resulting
configuration, we have go(w — 2) = £o(w) blocks which form a perfect cover-
ing of the w — 2 points other than x and z.

Hence g™ (v) < go(v) for the stated v; of course 89(v) = go(v). §
There are nine small values of » not covered by the above results: » = 35,

6,7,8,9, 10, 17, 18, and 19. In [4], gM(v) is found for all v < 12. The
results can be summarized as

Lemma 3.4, ¢(5) =5, g4(6) = 8, g¥(7) = 10, g9(8) = 11, g*(9)
= 12, and g*(10) = 12.

Thus we have determined g@() for all v £ 17, 18, 19. These last three
values are currently under investigation; we know that g9(17) = 30 = gy(17)

<+ 1.
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We summarize our results in tabular form.

TABLE 2
|4 gW() exceptions
12t -1 1262 + ¢
12¢ 1262 4 ¢
12t 4+ 1 1262 4 ¢
12¢ 4 2 12024 7t 4 1
12t + 3 1262+ 7t 4+ 1
12t + 4 122+ 7t + 1
12¢ + 5 1202 4-13t 4+ 4 gM(5) =5, g®(17) not known
12t + 6 12¢2 4131 4 4 g™W(6) =8, g (18) not known
12¢ 4+ 7 1262413t + 7 g@W(7) =10, g*(19) not known
12¢ + 8 12¢2 4+ 19t 4+ 8 g™ (8) =11
12¢ 4+ 9 12¢2 41914 8 g9 =12
12¢t 4- 10 1212 4 19t 4+ 11 gW10) =12
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