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Abstract

We consider an optimization problem motivated by the tradeoff
between connectivity and resilience in key predistribution schemes
(KPS) for sensor networks that are based on certain types of combi-
natorial designs. For a specific class of designs, we show that there is
no real disadvantage in requiring the underlying design to be regular.

1 Introduction

In Section 1.1 we briefly state the problem we are solving in this paper.
Section 1.2 provides some background and motivation for the interested
reader. The proof of our main result is then given in Section 2.

1.1 The problem

Briefly, the problem we are solving is as follows. Suppose we have a set
system on n points, having b blocks of size k, and no pair of points occurs
in more than one block. Denote the number of blocks containing the ith
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point by ri, 1 ≤ i ≤ n. We are interested in values taken on by the function

(
∑n

i=1 ri(ri − 1))
2∑n

i=1 ri(ri − 1)(ri − 2)
.

when n, b and k are fixed positive integers. Our main result is that, for
bk > 2n, this function is maximized when all the ri’s are equal.

1.2 Background and motivation

There has been considerable recent interest in using various types of set
systems, including t-designs and various generalizations, to construct de-
terministic key predistribution schemes (KPS) for sensor networks. There
will be a set of n keys chosen randomly by a trusted authority, and a k-
subset of the n keys is assigned securely to each node in a sensor network.
This assignment could be done randomly (as suggested by Eschenauer and
Gligor [3]) or deterministically, using a suitable combinatorial design. For
a nice introduction to the combinatorial approach, see Martin [6].

Before proceeding further, we present some basic definitions regarding
set systems and designs. A set system or design is a pair (X,A), where the
elements of X are called points and A is a set of subsets of X, called blocks.
The number of points will be denoted by n and the number of blocks by
b. The degree of a point x ∈ X is the number of blocks containing x. The
design (X,A) is regular of degree r if all points have the same degree, r.
If all blocks have size k, then (X,A) is said to be uniform of rank k. If a
design is uniform of rank k and regular of degree r, then bk = nr.

A configuration is a design that is uniform of rank k and regular of degree
r, and which satisfies the additional property that any two blocks intersect
in at most one point. Some basic information about configurations can be
found in [1, pp. 352–355]. Examples of configurations include generalized
quadrangles, BIBDs with λ = 1, and transversal designs with λ = 1.

To construct a key predistribution scheme, we start with a design that
is uniform of rank k. The correspondence between the design and the
associated KPS is straightforward. The n points in the design correspond
to the n keys in the key pool. The b blocks correspond to the b sensor
nodes in the network. Each block specifies the k keys that are given to the
corresponding node. More precisely, the points in the block are the indices
of the keys given to the node (i.e., if a block contains a point i, then the
corresponding node contains the ith key in the key pool, which we denote
by keyi). Note that blocks are public, while the values of the keys are secret.

Two nodes N1 and N2 comprise a link if they can construct a pair-



wise key to enable secure direct communication between them. This can
be done if and only if the two nodes N1 and N2 are within each other’s
communication range and they have at least one common key. Suppose
that Ni and Nj have exactly ` ≥ 1 common keys, say {keya1

, . . . , keya`
},

where a1 < a2 < · · · < a` and i < j. Then they can each compute the same
pairwise secret key,

Ki,j = h(keya1
‖ . . . ‖ keya`

‖ i ‖ j),

using an appropriate public key derivation function, h, which has suitable
input and output sizes. Such key derivation functions could be constructed
from a secure cryptographic hash function.

The most studied adversarial model in wireless sensor networks is ran-
dom node compromise [3], wherein an adversary compromises a fixed num-
ber of randomly chosen nodes in the network and extracts the keys stored
in them. Under the assumption that these nodes are then removed from
the network, it is obvious that any links involving the compromised nodes
are broken. In addition, a link formed by two nodes corresponding to two
blocks A1, A2, where |A1 ∩ A2| ≥ 1, will be broken if a node correspond-
ing to a block B 6∈ {A1, A2} is compromised, provided that A1 ∩ A2 ⊆ B.
More generally, if nodes corresponding to blocks B1, . . . , Bs are compro-
mised, then a link corresponding to two other blocks A1, A2 will be broken
whenever

A1 ∩A2 ⊆
s⋃

i=1

Bi.

Here are three fundamental metrics that are relevant when evaluating
a KPS for a sensor network.

Storage requirements

The number of keys stored in each node is equal to k, which is the rank
of the underlying design. In general, we want to minimize storage.

Network connectivity

It is common to measure local connectivity of a network by computing
the probability that a randomly chosen pair of nodes can compute a
common key, i.e., that they have at least one common point. This
probability will be denoted by Pr1. In general, we want Pr1 to be
large.

Network resilience

Resilience against node capture is commonly measured by computing
the probability that a random link is broken by the compromise of a



set of s random nodes not in the link, for suitable values of s. We
denote this probability by fail(s). In general, we want fail(s) to be
small. For simplicity, we will restrict our attention in this paper to
the value of fail(1).

There is an inherent tradeoff between connectivity and resilience. In [2],
Dong, Pei and Wang suggested studying the quotient Pr1/fail(s) in order to
quantify this tradeoff. We will mainly consider Pr1/fail(1), which we denote
by ρ. The goal is to find schemes with high values of ρ (given a specific
value for k).

For a configuration-based KPS, we have the following simple analysis
from [5]. Every block intersects k(r− 1) blocks in one point and is disjoint
from all the other blocks. Therefore

Pr1 =
k(r − 1)

b− 1
.

A link L is defined by two blocks that intersect in one point, say x. There are
r−2 other blocks that contain x; the corresponding nodes will compromise
the link L. Therefore,

fail1 =
r − 2

b− 2
.

The tradeoff ρ = Pr1/fail1 is therefore given by the following formula:

ρ =
k(b− 2)(r − 1)

(b− 1)(r − 2)
≈ k.

Next, we describe a possible relaxation of configuration-based KPS. Sup-
pose we employ a set system with block size k where the maximum inter-
section of any two blocks equals 1. However suppose we no longer require
that the design is regular. Denote the degree of point i by ri, for 1 ≤ i ≤ n.
Then it is clear that

n∑
i=1

ri = bk.

For set systems of this type, it can be shown using formulas (4) and
(10) in the paper [4] that

Pr1 =

∑n
i=1 ri(ri − 1)

b(b− 1)

and

fail1 =

∑n
i=1 ri(ri − 1)(ri − 2)

(b− 2)
∑n

i=1 ri(ri − 1)
.



Therefore,

ρ =
(b− 2) (

∑n
i=1 ri(ri − 1))

2

b(b− 1)
∑n

i=1 ri(ri − 1)(ri − 2)
.

It seems to be an interesting question to determine if we can obtain an
increased value of ρ by relaxing the conditions of a configuration in this
manner, since there is no particular reason to require that the underlying
design is regular. The main purpose of this paper is to show that this
possible relaxation does not provide any benefit: assuming that

∑n
i=1 ri =

bk > 2n is fixed, we prove that the value of ρ is maximized when r1 = · · · =
rn = bk/n.

Define the function

f(x1, . . . , xn) =
(
∑n

i=1 xi(xi − 1))
2∑n

i=1 xi(xi − 1)(xi − 2)
. (1)

Observe that

ρ =
(b− 2)f(r1, . . . , rn)

b(b− 1)
.

Treating b and k as constants and writing S = bk, the problem then is to
maximize the value of f(x1, . . . , xn) subject to the constraint

n∑
i=1

xi = S, (2)

where x1, . . . , xn > 0. Here we are treating f as a function of n real
variables.

It will be convenient to write f(x1, . . . , xn) = p2/q, where

p = p(x1, . . . , xn) =

n∑
i=1

xi(xi − 1) (3)

and

q = q(x1, . . . , xn) =

n∑
i=1

xi(xi − 1)(xi − 2). (4)

2 The proof

In this section, we will prove our main theorem.

Theorem 2.1. Suppose that x1, . . . , xn > 0 and
∑n

i=1 xi > 2n. Then, the
maximum value of f(x1, . . . , xn), as defined in (1), subject to the constraint
(2), is attained when x1 = x2 = · · · = xn = S/n.



First, using Lagrange multipliers, we prove the following:

Lemma 2.2. The maximum value of f(x1, . . . , xn), subject to the con-
straint (2), is attained when the xi’s have at most two distinct values.

Proof. Define g(x1, . . . , xn, λ) = f(x1, . . . , xn)− λ(x1 + · · ·+ xn − S). It is
straightforward to compute the partial derivative

∂f

∂xj
=
p

q

(
q(4xj − 2)− p(3xj2 − 6xj + 2)

)
− λ, (5)

where p and q are given by (3) and (4), respectively. Now suppose that
∂f
∂xj

= ∂f
∂xk

= 0. Then, from (5), we have

q(4xj − 2)− p(3xj2 − 6xj + 2) = q(4xk − 2)− p(3xk2 − 6xk + 2),

which simplifies to give

4q(xj − xk) = 3p(xj − xk)(xj + xk − 2).

Therefore, if xj 6= xk, it follows that

xj + xk =
4q

3p
+ 2. (6)

Now suppose there are three different values taken on by the xi’s, say
xj 6= xk 6= x` 6= xj . Then, from (6) we obtain

xj + xk =
4q

3p
+ 2 = xk + x`,

so xj = x`, which is a contradiction.

In the proof of the Lemma 2.2, we do not need the condition S > 2n.
It seems that the above result is the best that we can do in general (i.e.,
without this condition) from the following example.

Example 2.1. Suppose n = 4 and S = 5. If x1 = x2 = x3 = x4 = 5/4,

then f(x1, . . . , x4) = −5/3. However, if x1 = x2 = 5−
√
15

4 and x3 = x4 =
5+
√
15

4 , then f(x1, . . . , x4) = 40/3.

In the remainder of this section, we assume that S > 2n. Now we
suppose that there are u xi’s having the value X and v xi’s having the
value Y , where u+ v = n and uX + vY = S. Then let

g(X,Y ) = f(x1, . . . , xn) =
(uX(X − 1) + vY (Y − 1))

2

uX(X − 1)(X − 2) + vY (Y − 1)(Y − 2)
.



We will prove that g(X,Y ) is maximized when X = Y = S/n. In what
follows, we assume without loss of generality that v ≥ u. Also, denote
a = S/n. By the condition S > 2n, we have a > 2.

Let x = X − a and y = Y − a. Then ux + vy = 0. Suppose we define
x = t and y = −u

v t. Since X,Y > 0, we have −a < t < v
ua.

Now consider the function

F (t) = g(X,Y )− g(a, a) = g
(
t+ a, a− u

v
t
)
− g(a, a).

Our goal is to show that F (t) < 0 for −a < t < v
ua.

Using some Maple computations, we have F (t) = A(t)
B(t) , where

A(t) = (−u2ta− 2u2t2 + u2t2a+ u2ta2 − 2uvt2 + ut2va− ua3v + uva

− v2ta2 − v2a3 + v2ta+ v2a)t2u

and

B(t) = −(a− 2)(t3u2 − 3ut2va+ 3uvt2 − ut3v − v2a3 + 3v2a2 − 2v2a).

We will now examine the behaviour ofA(t) andB(t) in the interval
(
−a, vua

)
.

Lemma 2.3. B(t) > 0 when t > −a.

Proof. We have

B(t) = (a− 2)
(
(v − u)ut3 + 3(a− 1)uvt2 + v2a(a− 2)(a− 1)

)
.

Let

d(t) =
B(t)

a− 2
= (v − u)ut3 + 3(a− 1)uvt2 + v2a(a− 2)(a− 1).

If u = v, then d(t) > 0, so we assume that v > u. Then

d′(t) = 3(v − u)ut2 + 6(a− 1)uvt.

d′(t) has two roots: 0 and − 2(a−1)
v−u . Since v−u > 0, we have that d′(t) > 0

when t > 0 or t < − 2(a−1)
v−u , and d′(t) < 0 when − 2(a−1)

v−u < t < 0. Therefore

d(t) is an increasing function for t > 0 or t < − 2(a−1)
v−u , and a decreasing

function if − 2(a−1)
v−u < t < 0.



Since a > 2, we have

d(0) = v2a(a− 2)(a− 1) > 0, and

d(−a) = (u− v)ua3 + 3(a− 1)uva2 + v2a(a− 1)(a− 2)

= u2a3 + 2uva3 − 3uva2 + v2a(a− 1)(a− 2)

> u2a3 + 4uva2 − 3uva2 + v2a(a− 1)(a− 2)

> 0.

From the above, we see that d(t) has one real root, which is less than 0,
and therefore the conclusion follows since d(−a) > 0.

Next we consider A(t). Let h(t) = A(t)/(t2u); then

h(t) = −u2ta− 2u2t2 + u2t2a+ u2ta2 − 2uvt2 + ut2va− ua3v + uva

− v2ta2 − v2a3 + v2ta+ v2a

= (au2 − 2u2 − 2uv + uva)t2 + (u2a2 − au2 + av2 − v2a2)t− uva3

+uva− v2a3 + v2a.

From a Maple computation, h(t) has two roots:

t1 =
C +D

2u(a− 2)
and t2 =

C −D
2u(a− 2)

,

where
C = (v − u)a(a− 1)

and

D = a
√
v2 − 4uav − 6uv − 2v2a+ u2a2 − 2u2a+ 2ua2v + u2 + v2a2 + 8uv/a.

The leading coefficient of h(t) is

au2 − 2u2 − 2uv + uva = u2(a− 2) + uv(a− 2)

= u(u+ v)(a− 2)

> 0.

Also,
h(0) = av(u+ v)(1− a2) < 0.

Therefore h(t) has two real roots and hence D is a positive real number.

Lemma 2.4. h(t) < 0 for t2 < t < t1 and A(t) < 0 for t2 < t < t1, t 6= 0.

Proof. From the above discussion, we have h(t) < 0 for t2 < t < t1. Since
A(t) = ut2h(t), it follows that A(t) < 0 for t2 < t < t1, t 6= 0.



Lemma 2.5. t1 >
v
ua.

Proof. We have

t1 −
v

u
a =

C +D

2u(a− 2)
− 2va(a− 2)

2u(a− 2)

=
1

2u(a− 2)
(a(3v − ua+ u− va) +D) .

If 3v−ua+u− va ≥ 0, then it is clear that t1− v
ua > 0, so we assume that

3v − ua+ u− va < 0. We compute

D2 − a2(3v − ua+ u− va)2 = a2(4v2a− 8v2 + 4uva− 12uv + 8uv/a)

= a2
(
v2(4a− 8) + uv(4a− 12 + 8/a)

)
> 0,

where we use the fact that 4a−12+8/a > 0 when a > 2. This implies that

(D − a(3v − ua+ u− va))(D + a(3v − ua+ u− va)) > 0.

Since the first factor is positive, the second factor is also positive, and the
conclusion follows.

A similar technique can be used to prove the following lemma.

Lemma 2.6. t2 < −a.

Proof. We have

t2 + a =
C −D

2u(a− 2)
+

2ua(a− 2)

2u(a− 2)

=
1

2u(a− 2)
(a(ua− v − 3u+ va)−D)

We have that

ua− v − 3u+ va = (u+ v)a− v − 3u

> 2(u+ v)− v − 3u

= v − u
≥ 0.

Also,

a2(ua− v − 3u+ va)2 −D2 = a2(8v2 − 4uva+ 12uv − 4v2a− 8uv/a)

= a2
(
v2(8− 4a)− uv(4a− 12 + 8/a)

)
< 0.



This implies that

(a(ua− v − 3u+ va)−D)(a(ua− v − 3u+ va) +D) < 0.

Since the second factor is positive, the first factor is negative, and the
conclusion follows.

We can now complete the proof of our main theorem.

Proof of Theorem 2.1. By Lemma 2.2, f(x1, . . . , xn) is maximized only if
there are at most two different values of the xi’s, which we denoted by X
and Y . If X 6= Y , then Lemmas 2.4, 2.5 and 2.6 proved that A(t) < 0 for
−a < t < v

ua, t 6= 0. Therefore, from Lemma 2.3, it follows that F (t) < 0
for −a < t < v

ua, t 6= 0. Thus, the maximum value of F (t) for −a < t < v
ua

is F (0) = 0 . This means the two values X and Y are the same, which
completes the proof.

3 Conclusion

The proof of our main theorem is rather technical. A simpler and more
illuminating proof would be very nice.

Another direction for future research would be to generalize our results
to other types of designs used for constructing KPS in sensor networks.
A very general class of designs, called partially balanced t-designs, were
introduced in [7] and were evaluated for their suitability in constructing
KPS. It turns out that a partially balanced 2-design (as defined in [7]) is
just a configuration. This was one motivation for studying the class of
designs considered in the current paper. A natural extension would be to
consider relaxations of partially balanced t-designs when t > 2.
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