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Abstract

We are interested in ordering the elements of a subset A of the
non-zero integers modulo n in such a way that all the partial sums
are distinct. We conjecture that this can always be done and we
prove various partial results about this problem.

1 Introduction

Suppose that A = {a1, . . . , ak} ⊆ Zn\{0} is a subset of the integers modulo
n. Let (a1, a2, . . . , ak) be an ordering of the elements in A. Define the

partial sums s1, . . . , sk by the formula sj =
∑j

i=1 ai (1 ≤ j ≤ k), where all
arithmetic is in Zn. We propose the following conjecture.

Conjecture 1. Suppose A = {a1, . . . , ak} ⊆ Zn \ {0}. Then there exists
an ordering of the elements of A such that the partial sums are all distinct,
i.e., 1 ≤ i < j ≤ k implies si 6= sj.

Example 1.1. Suppose we have A = {1, 2, 3, 4, 5, 6} ⊆ Z8. Consider the
ordering:

1 6 3 4 5 2.

Then the partial sums are 1 7 2 6 3 4, which are all distinct.

We call an ordering of a set A a sequencing if all of the partial sums
are distinct. Our interest in Conjecture 1 was motivated by a recent con-
struction due to Archdeacon (see [1]) for embedding complete graphs so the
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faces are 2-colorable and each color class is a k-cycle system. If Conjecture
1 is true, then given any k-subset A ⊆ Zn \ {0} there exists a cyclic k-cycle
system on the Cayley graph consisting of the edges in Kn whose lengths
are in A.

Alspach was interested in a similar decomposition problem, but with
paths of length k instead of k-cycles. The following slightly different con-
jecture was made several years ago by Alspach (see [2]):

Conjecture 2. (Alspach) Suppose A = {a1, . . . , ak} ⊆ Zn \ {0} has the
property that

∑
a∈A a 6= 0. Then there exists an ordering of the elements

of A such that the partial sums are all distinct and nonzero.

In the following proposition, we show that Conjecture 2 implies Conjec-
ture 1

Proposition 1.1. Conjecture 2 implies Conjecture 1.

Proof. Assume that Conjecture 2 is true. Let A = {a1, . . . , ak} ⊆ Zn \ {0}.
If
∑

a∈A a 6= 0, then by Conjecture 2 there is an ordering of the elements of
A such that the partial sums are all distinct, proving Conjecture 1 in this
case.

So assume that
∑

a∈A a = 0. It follows that
∑k−1

i=1 ai 6= 0. So by
Conjecture 2 there is an ordering (a′1, a

′
2, . . . , a

′
k−1) of {a1, . . . , ak−1} where

all of the partial sums are distinct and nonzero. Now reinsert ak at the end
of the ordering to get (a′1, a

′
2, . . . , a

′
k−1, ak). The only new partial sum is

sk = 0 =
∑

a∈A a and since all of the earlier partial sums are nonzero (and
distinct), we have that all the partial sums are now distinct. This proves
Conjecture 1. �

Both conjectures can be be restated in terms of runs. As before, we let
(a1, a2, . . . , ak) be an ordering of A = {a1, . . . , ak} ⊆ Zn \ {0}. Let i, j be
integers such that 1 ≤ i < j ≤ k. We define the run ri,j by the formula

ri,j =

j∑
h=i

ah.

For 1 ≤ i < j ≤ k, it is obvious that

si = sj ⇔ ri+1,j = 0. (1)

The following conjecture is easily seen to be equivalent to Conjecture 1.

Conjecture 3. Suppose A = {a1, . . . , ak} ⊆ Zn \ {0}. Then there exists
an ordering of the elements of A such that the runs ri,j are nonzero, for all
i, j with 2 ≤ i < j < n.



Note that we allow a run r1,j (which is just a partial sum) to equal 0
in Conjecture 3. Similarly, Conjecture 4 is easily seen to be equivalent to
Conjecture 2.

Conjecture 4. Suppose A = {a1, . . . , ak} ⊆ Zn \ {0} has the property that∑
a∈A 6= 0. Then there exists an ordering of the elements of A such that

the runs ri,j are nonzero, for all i, j with 1 ≤ i < j < n.

Conjectures 1 and 2 are also natural generalizations of sequenceable
and R-sequenceable groups. A group G is sequenceable if there exists an
ordering of all the group elements such that all the partial sums are distinct.
It is well-known that (Zn,+) is sequenceable if and only if n is even. More
generally, it is known that an abelian group is sequenceable if and only
if it has a unique element of order 2. When n is odd, (Zn,+) cannot
be sequenced because the sum of all the group elements is zero (the first
element in the sequencing must be 0, so the first and last sums both equal
zero). However, it has been shown that (Zn,+) is R-sequenceable when n is
odd (this allows the first and last sums to both equal zero). For references
to proofs of these results, see the survey by Ollis [5].

Conjecture 1 can be considered as a sequencing of an arbitrary subset of
the non-zero elements of the cyclic group (Zn,+). Since there are 2n−1− 1
nonempty subsets of Zn \ {0}, there are many problems to be solved for
each n. The lack of structure (in general) of these subsets is perhaps what
makes the problem seemingly difficult to solve.

The only published work on this problem is by Bode and Harborth [2].
They state without proof that Conjecture 2 is valid if k ≤ 5 or if n ≤ 16
(the latter was obtained by computer verification). They also prove that
Conjecture 2 is true if k = n− 1 or n− 2.

We would also like to note an interesting and related unpublished con-
jecture by Marco Buratti.

Conjecture 5. (Buratti) Given p a prime and a multiset S containing
p− 1 non-zero elements from Zp, there exists an arrangement of S so that
all of the partial sums are distinct in Zp.

Horak and Rosa [4] generalized Buratti’s conjecture to general cyclic
groups (an additional condition was added). Almost simultaneously, Dinitz
and Janiszewski [3] examined a special case of Buratti’s Conjecture. Some
followup work was done by Pasotti and Pelligrini [6, 7].

In the remainder of this paper, we describe the results we have ob-
tained on Conjecture 1 and some related problems. These results can be
summarized as follows:

• A computer verification of Conjecture 1 for n ≤ 25 (see Section 2).



• A proof of Conjecture 1 for k ≤ 6 (see Section 3).

• Some results on ordering random subsets of a given size k (see Section
4).

• Some results on ordering subsets of a k-subset A (see Section 5).

• Some results on the number of k-subsets having a given sum, when n
is prime (see Section 6).

2 Computer Verifications for Small n

We have checked that Conjecture 1 is true up to n = 25. The algorithm
is easy to describe. For each subset A ⊆ Zn \ {0}, we choose a random
permutation of the elements of A. If that ordering does not yield distinct
partial sums, then we choose another random permutation. We repeat this
process until we find an ordering of A that gives distinct partial sums.
When |A| is small with respect to n, we generally only need to choose a
very few random permutations before a solution is found. However, when
|A| is close to n, many random permutations usually must be tried. For
example, when n = 25, we needed fewer than 6 tries for nearly all subsets
A with |A| ≤ 7. We used fewer than 100 tries when |A| ≤ 13 and fewer
than 10,000 tries when |A| ≤ 18. However, when |A| ≥ 22, there are cases
where over 300,000 permutations were tried before a successful ordering was
found. In general between 10,000 and 75,000 permutations were checked
before finding a solution in these cases. This algorithm was programmed
in Mathematica and run on a laptop PC. It found all the orderings of the
subsets of Z24 \ {0} in roughly 3 days. The orderings of the subsets of
Z25 \ {0} took longer.

3 Proof of Conjecture 1 for k ≤ 6

Next we show that Conjecture 1 is always true if the subset A is small,
independently supporting results in [2].

Theorem 3.1. Conjecture 1 is true when k ≤ 5.

Proof. This is easy to show for k = 1, 2, 3.
Assume k = 4. Let A = {a1, a2, a3, a4}. Let p be the number of pairs

{x,−x} in A. So p = 0, 1 or 2. To sequence the set first choose three
elements (renaming if necessary) so that s1, s2 and s3 are distinct.

Assume p = 0. Clearly s4 6= s3 and since p = 0 we get that s4 6= s2. If
s4 6= s1(= a1) we are done, so assume s4 = s1. So a2 + a3 + a4 = 0. Now



consider the ordering (a′1, a
′
2, a
′
3, a
′
4), where a′1 = a2, a

′
2 = a1, a

′
3 = a3, and

a′4 = a4. Let s′j be the sum of the first j terms in this new sequence. Note
we only need to check that s′1 6= s′4, since p = 0. Now this fails only if
a1 + a3 + a4 = 0, but from above we have that a2 + a3 + a4 = 0, hence it
only fails if a1 = a2 which is not the case.

Assume p = 1. Let A = {x,−x, y, z}. Then the ordering (z, x, y,−x)
has partial sums z, z + x, z + x+ y, z + y and these are all distinct.

Assume p = 2. Let A = {x,−x, y,−y}. Here the ordering (x, y,−x,−y)
works.

Now assume that k = 5 with A = {a1, a2, a3, a4, a5}. Again let p be the
number of pairs {x,−x} in A and so as before p = 0, 1 or 2. Again order
A so that s1, s2 and s3 are distinct.

Assume p = 0 and that A has been ordered in the natural way. In this
case since there are no occurrences of a pair {x,−x}, we see that si 6= si+2

for i = 1, 2, 3. So the only conditions that can fail are the following three
possibilities: (1) s1 = s4, (2) s2 = s5 or (3) s1 = s5. It is straightforward
to show that if any one of these conditions hold, then the other two do not
hold. We look at each case individually.

1. (s1 = s4): In this case we get that a2 + a3 + a4 = 0. Now order A as
(a′1, a

′
2, a
′
3, a
′
4, a
′
5) = (a1, a2, a3, a5, a4). Then checking the conditions

we see that s′1 6= s′4 since this would imply that a2 + a3 + a5 = 0,
however since a2 + a3 + a4 = 0 this can not happen. Next we note
that s′1 6= s′5 since s′1 = s1 6= s5 = s′5. Similarly s′2 6= s′5.

2. (s2 = s5): Here we order A as (a1, a3, a2, a4, a5). The verifications
are similar to the previous case.

3. (s1 = s5): In this case we get that a2 + a3 + a4 + a5 = 0. Order A as
(a′1, a

′
2, a
′
3, a
′
4, a
′
5) = (a2, a1, a3, a4, a5). Again checking the conditions

we see that s′1 6= s′5 as a1+a3+a4+a5 6= 0 since a2+a3+a4+a5 = 0.
Next we get that s′2 6= s′5 since s′2 = s2 6= s5 = s′5. Finally if s′1 = s′4,
this implies that a1 + a3 + a4 = 0 which may happen. If this is the
case we reorder as follows: (a′′1 , a

′′
2 , a
′′
3 , a
′′
4 , a
′′
5) = (a3, a2, a1, a4, a5).

Looking at the three cases we see that since a1 + a3 + a4 = 0, then
s′′1 6= s′′4 . Next, s′′1 6= s′′5 since s1 = s5. Finally s′′2 6= s′′5 , since
a1 + a3 + a4 = 0. This completes the case of p = 0.

Assume that p = 1. Let A = {x,−x, y, z, w}, ordered as (z, x, y,−x,w).
The values of si for 1 ≤ i ≤ 5, are z, z + x, z + x+ y, z + y, and z + y + w,
respectively. The only way that two of these values can be equal would be
if x = y+w. Assume this to be the case. Now reorder A as (z,−x, y, x, w).
Here the values of si for 1 ≤ i ≤ 5, are z, z−x, z−x+y, z+y, and z+y+w,



respectively. The only way for two of these values to be equal would be if
−x = y + w. But since x = y + w this can not happen. Thus a suitable
ordering is always possible in this case.

Finally, assume that p = 2. Let A = {x,−x, y,−y, z} and now order A
in the following two ways: (x, y, z,−y,−x) and (−x, y, z,−y, x). The first
way fails only if x = z − y, while the second fails only if −x = z − y. Since
x and −x are distinct in this case, we have that one of these two orderings
will always work. This completes the proof. �

In the next theorem we prove Conjecture 1 when k = 6.

Theorem 3.2. Conjecture 1 is true when k = 6.

Proof. Let A = {a1, a2, a3, a4, a5, a6}, and let si be the partial sum of the
first i numbers in an ordering of A. Let p be the number of pairs {x,−x} in
this ordering so p = 0, 1, 2, or 3. First note that si 6= si+1 for any 1 ≤ i ≤ 5
since 0 6∈ A. Also note that if A is ordered such that for all i, ai 6= −ai+1,
then si 6= si+2 for any 1 ≤ i ≤ 4. Assuming this, we must only check the
cases s1 = s4, s1 = s5, s1 = s6, s2 = s5, s2 = s6, and s3 = s6.

Assume p = 0, and let A = {u, v, w, x, y, z}. Order A as (u, v, w, x, y, z),
renaming if necessary, so that s1, s2, s3, and s4 are distinct. In this case
since there are no occurrences of a pair {x,−x}, the only conditions that
can fail are the following six possibilities: (1) s1 = s5 and s3 = s6, (2)
s1 = s5 and s3 6= s6, (3) s1 6= s5 and s3 = s6, (4) s1 = s6, (5) s2 = s5,
or (6) s2 = s6. It is straightforward to show that in each of these cases
the other possibilities are mutually exclusive. We will look at each case
individually. For all cases, let s′i and s′′i denote the ith partial sum after
one (′) or two (′′) changes of ordering, denoted A′ and A′′ respectively.

1. (s1 = s5 and s3 = s6): In this case we have v+w+x+y = 0 = x+z+y.
Now consider the ordering A′ = (u, v, x, w, z, y). Here both s3 and
s5 have changed. Clearly, s′1 6= s′5 as s′1 = s1 = s5 6= s′5. Also,
s′2 6= s′5 since s′2 = s′5 would imply x + w + z = 0; however, since
x + z + y = 0 this means w = y, a contradiction. Finally, s′3 6= s′6
since s′3 6= s3 = s6 = s′6.

2. (s1 = s5 and s3 6= s6): In this case we have that v + w + x + y = 0.
Now consider the ordering A′ = (u, v, w, x, z, y). First note that only
s5 has changed, and so we only need to check conditions containing
s′5. Clearly, s′1 6= s′5 since s′1 = s1 = s5 6= s′5. We could however have
s′2 = s′5. If this is the case, then v+w+x+ y = 0 = w+x+ z. Then
order A as A′′ = (u,w, v, x, z, y). Here only s′2 has changed from
the previous ordering, so we need only check conditions containing
s′′2 . We see that s′′2 6= s′′5 as s′′2 6= s′2 = s′5 = s′′5 . We also see that



s′′2 6= s′′6 since if not, then we get v + x + z + y = 0; however, since
v + w + x+ y = 0 we would have w = z, a contradiction.

3. (s1 6= s5 and s3 = s6): In this case x + y + z = 0. Now arrange A
as A′ = (u, v, x, w, y, z). Here only s3 has changed, but s′3 6= s′6 as
s′3 6= s3 = s6 = s′6.

4. (s1 = s6): Here we have that v +w + x+ y + z = 0. Now order A as
A′ = (v, u, w, x, y, z). Note that only s1 has changed, so we only need
to check the conditions containing s′1, including s′1 = s′4. Clearly,
s′1 6= s′6 since s′1 6= s1 = s6 = s′6. However, it is possible for s′1 = s′4
or s′1 = s′5, but note that these cases are mutually exclusive.

(a) (s1 = s6 and s′1 = s′4): In this case we get v + w + x + y + z =
0 = u+w+x. Order A as A′′ = (v, u, w, y, x, z). Note that only
s′4 has changed from A′. Thus we only check s′′1 = s′′4 . But this
is impossible since s′′1 = s′1 = s′4 6= s′′4 .

(b) (s1 = s6 and s′1 = s′5): In this case we get v + w + x + y + z =
0 = u+ w + x+ y. Order A as A′′ = (v, u, w, y, z, x). Here only
s′4 and s′5 have changed from the previous arrangement. We see
that s′′1 6= s′′4 , since equality implies that u+w+y = 0 and hence
x = 0, a contradiction. Also, s′′1 6= s′′5 since if not, then we have
that u + w + y + z = 0; however, since u + w + x + y = 0, this
implies z = x, which is impossible. Finally, s′′2 6= s′′5 as equality
would imply that w+ y+ z = 0, but since v+w+ x+ y+ z = 0
we would have v = −x, which is a contradiction.

5. (s2 = s5): In this case we have w + x + y = 0. Now order A as
A′ = (u, v, w, x, z, y). Note that only s5 has changed so we only need
to check those cases involving s′5. Clearly s′2 6= s′5 as s′2 = s2 =
s5 6= s′5. However, it is possible for s′1 = s′5. In this case we get
w + x + y = 0 = v + w + x + z. Reorder A as A′′ = (u, v, w, z, y, x).
Here only s′4 and s′5 have changed from A′. We see s′′1 6= s′′4 as equality
would imply that v+w+z = 0 and since v+w+x+z = 0 this would
imply x = 0, which is impossible. Also, s′′1 6= s′′5 as s′′1 = s′1 = s′5 6= s′′5 .
Finally, s′′2 6= s′′5 as s′′2 = s2 = s5 6= s′′5 .

6. (s2 = s6): In this case w + x + y + z = 0. Order A as A′ =
(u,w, v, x, y, z). Here only s2 has changed and thus we need only check
the cases containing s′2. We see that s′2 6= s′6 as s′2 6= s2 = s6 = s′6. It
is possible for s′2 = s′5. In this case we have w+x+y+z = 0 = v+x+y.
Reorder A as A′′ = (u,w, v, x, z, y). Here only s′5 has changed from
A′. We see s′′1 6= s′′5 as equality would imply w + v + x+ z = 0; how-
ever, since w+ x+ y+ z = 0 this would mean v = y, a contradiction.



Clearly, s′′2 6= s′′5 as s′′2 = s′2 = s′5 6= s′5. This completes the case for
p = 0.

Next assume that p = 1. Let A = {x,−x, v, w, y, z} and order A as
(x, v,−x,w, y, z). Since x is not adjacent to −x, the only conditions that
can fail are the following nine possibilities: (1) s1 = s4 and s2 = s6 (2)
s1 = s4 and s3 = s6, (3) s1 = s4, s2 6= s6, and s3 6= s6, (4) s1 6= s4 and
s2 = s6, (5) s1 6= s4, s1 6= s5, and s3 = s6, (6) s1 = s5 and s3 = s6, (7)
s1 = s5 and s3 6= s6, (8) s1 = s6, or (9) s2 = s5. It is straightforward
to show that no other combinations are possible. We consider each case
individually and define s′i and s′′i as before.

1. (s1 = s4 and s2 = s6): In this case we have x = v + w = w + y + z.
Order A as A′ = (x,w, y, v,−x, z). Here s2, s3, and s4 have changed.
Clearly s′1 6= s′4 as s′1 = s1 = s4 6= s′4 and s′2 6= s′6 as s′2 6= s2 =
s6 = s′6. Also, s′2 6= s′5 since equality would imply that x = y+ v and
since x = v+w this implies that w = y, which is impossible. Finally,
s′3 6= s′6 since if s′3 = s′6, then x = v + z, and since x = v + w this
would mean w = z, a contradiction.

2. (s1 = s4 and s3 = s6): In this case x = v + w and w + y + z = 0.
Then order A as follows: A′ = (x, v, w, y,−x, z). Here only s3 and s4
have changed. Clearly s′1 6= s′4 since s′1 = s1 = s4 6= s′4 and similarly
s′3 6= s′6 as s′3 6= s3 = s6 = s′6.

3. (s1 = s4 and s2 6= s6 and s3 6= s6): In this case we get x = v + w.
Order A as A′ = (x, v, w, y,−x, z). Here only s3 and s4 have changed,
so we need only check cases containing s′3 and s′4. Clearly, s′1 6= s′4 as
s′1 = s1 = s4 6= s′4. However, it is possible for s′3 = s′6. In this case
we have x = v + w = y + z. Now order A as A′′ = (x,w, y, v,−x, z).
Here s′2 and s′3 have changed from the previous ordering. We see
s′′2 6= s′′5 as equality would imply x = y + v; however, since x = v +w
this would mean w = y, which is impossible. Also, if s′′2 = s′′6 , then
we would have x = y + v + z and since x = y + z this would imply
v = 0, a contradiction. Hence s′′2 6= s′′6 . Finally, s′′3 6= s′′6 since
s′′3 6= s′3 = s′6 = s′′6 .

4. (s1 6= s4 and s2 = s6): In this case we have that x = w+y+z. Order A
as A′ = (x,w, v,−x, y, z). Here only s2 and s3 have changed. Clearly,
s′2 6= s′6 since s′2 6= s2 = s6 = s′6. Also, s′3 6= s′6 as equality would imply
x = z+y; however, since x = w+y+z, this would mean w = 0, which
is impossible. It is possible however for s′2 = s′5. In this case we get
x = w+y+z = v+y. Reorder A as A′′ = (x,w, v,−x, z, y). Here only
s′5 has changed. We see s′′1 6= s′′5 since if s′′1 = s′′5 , then x = w + y + z



and since x = w + y + z we get that y = v, a contradiction. Finally,
s′′2 6= s′′5 since s′′2 = s′2 = s′5 6= s′′5 .

5. (s1 6= s4, s1 6= s5, and s3 = s6): In this case we get w + y + z = 0.
Order A as A′ = (x, v, w,−x, y, z). Here only s3 has changed. Clearly,
s′3 6= s′6 since s′3 6= s3 = s6 = s′6.

6. (s1 = s5 and s3 = s6): In this case we get x = v + w + y and
w + y + z = 0. We order A as A′ = (x, v, w,−x, z, y). Here only
s3 and s5 have changed. We see s′1 6= s′5 since s′1 = s1 = s5 6= s′5.
Similarly, s′3 6= s′6 as s′3 6= s3 = s6 = s′6. Also, s′2 6= s′5 as equality
would mean that x = w + z. But since w + y + z = 0, we have that
w + z = −y. Together these imply that x = −y, a contradiction.

7. (s1 = s5 and s3 6= s6): In this case x = v + w + y. Order A as
A′ = (x, v,−x,w, z, y). Here only s5 has changed. Clearly, s′1 6= s′5
since s′1 = s1 = s5 6= s′5. It is possible however for s′2 = s′5. In this case
we get x = v+w+y = w+z. Now order A as A′′ = (x, v, z,−x, y, w).
Here s′3, s

′
4, and s′5 have changed from A′. We see s′′3 6= s′′6 as equality

would imply x = y + w, but since x = w + z this would mean z = y,
which is a contradiction. Also, s′′1 6= s′′4 since if s′′1 = s′′4 , then x = v+z;
however, since x = w+z this would mean w = v, which is impossible.
Furthermore, s′′1 6= s′′5 as equality would imply x = v+z+y and since
x = v +w + y this would imply that w = z, a contradiction. Finally,
s′′2 6= s′′5 since s′′2 = s′2 = s′5 6= s′′5 .

8. (s1 = s6): In this case we get x = v + w + y + z. Then order A as
A′ = (v, x, w,−x, y, z). Here only s1 and s3 have changed. We see
s′1 6= s′4 since this would imply w = 0, which is impossible. Also,
s′1 6= s′5 as this means w = −y, a contradiction. Clearly, s′1 6= s′6 since
s′1 6= s1 = s6 = s′6. Finally, s′3 6= s′6 as equality would imply x = y+ z
and since x = v+w+y+z this would mean v = −w, a contradiction.

9. (s2 = s5): In this case x = w+ y. Order A as A′ = (x, v,−x,w, z, y).
Here only s5 has changed. Clearly, s′2 6= s′5 as s′2 = s2 = s5 6= s′5.
However, it is possible for s′1 = s′5. In this case we get x = w + y =
v + w + z. Now arrange A as A′′ = (v, x, w,−x, z, y). Here only s′1
and s′3 have changed. We see s′′1 6= s′′4 as equality would imply w = 0,
a contradiction. Clearly, s′′1 6= s′′5 since s′′1 6= s′1 = s′5 = s′′5 . Also, if
s′′1 = s′′6 , then w + z + y = 0, but since x = w + y this would mean
−x = z, which is impossible. Hence s′′1 6= s′′6 . Finally, s′′3 6= s′′6 as
equality would mean that x = z + y; however, since x = w + y this
would imply w = z, a contradiction. This completes the case p = 1.

Now assume p = 2. Let A = {x,−x, y,−y, w, z} and order A as A′ =
(x, y,−x,−y, w, z). Since neither x,−x nor y,−y are adjacent in A , we



need only check those partial sums at least three apart. Clearly, s1 6= s4
since that implies x = 0, and s1 6= s5 since that yields x = w. The only
conditions which could fail are the following four possibilities: (1) s1 = s6,
(2) s2 = s5, (3) s2 = s6, and (4) s3 = s6. It is straightforward to show that
if any one of these conditions hold, then the other three do not hold. We
look at each individual case.

1. (s1 = s6): In this case we have that x = w + z. We order A as A′ =
(w, x, y,−x, z,−y). Here every partial sum except s6 has changed.
Clearly, s′1 6= s′4 since this would mean y = 0, s′1 6= s′5 since this
would mean y = −z, s′1 6= s′6 since this would mean z = 0, and
s′2 6= s′6 since this would mean x = z. We also see s′2 6= s′5 as equality
would imply x = y + z and since x = w + z, this would mean y = w.
Finally, we see s′3 6= s′6 since if s′3 = s′6, then z = x + y and since
x = w + z this would imply y = −w, a contradiction.

2. (s2 = s5): Here w = x+ y. Then order A as A′ = (x, y,−x,−y, z, w).
Here only s5 has changed. We see s′1 6= s′5 as equality would mean
that x = z, a contradiction. Also, s′2 6= s′5 since s′2 = s2 = s5 6= s′5.

3. (s2 = s6): Here x = w + z − y. Order A as A′ = (x, z,−y, w, y,−x).
Here s2, s3, s4, and s5 have all changed. We see s′2 6= s′5 as this would
imply w = 0 and s′2 6= s′6 as this would imply x = w. Also, s′1 6= s′4 as
equality would imply z− y+w = 0; however, since x = w+ z− y this
would mean x = 0. Furthermore, s′1 6= s′5 as equality would imply
z = −w, a contradiction. It is however possible for s′3 = s′6. In this
case we get x = w+ z− y and x = w+ y, which implies z = 2y. Now
order A as A′′ = (x,w, y, z,−x,−y). Again, s′2, s

′
3, s
′
4, and s′5 have all

changed from the previous ordering. We see s′′2 6= s′′5 as equality would
imply x = y+z and since x = w+z−y this means w = 2y. But since
z = 2y this implies w = z. Also, s′′2 6= s′′6 since here equality would
imply x = z and s′′3 6= s′′6 since s′′3 6= s′3 = s′6 = s′′6 . Furthermore,
s′′1 6= s′′4 since if s′′1 = s′′4 , then this would imply that w + y + z = 0.
But since x = w + z − y we get that x = −2y; however, since z = 2y
this would mean x = −z. Finally, s′′1 6= s′′5 since equality would imply
x = w + y + z; however, since x = w + z − y this means y = −y, a
contradiction.

4. (s3 = s6): In this case we have y = w + z. Order A as A′ =
(w, x, y,−x, z,−y). Here everything but s6 has changed. Clearly,
s′1 6= s′4 as this would imply y = 0, s′1 6= s′5 since this would mean
y = −z, and s′1 6= s′6 as this implies z = 0. Also, s′2 6= s′6 as equality
would imply x = z. Furthermore, s′3 6= s′6 as equality means y = z−x
and since y = w+ z this would imply w = −x. It is possible however



for s′2 = s′5. In this case we get y = w + z and x = z + y. Reorder
A as A′′ = (x, y, w,−x, z,−y). Here s′1 and s′2 have changed from
the ordering A′. We see s′′1 6= s′′4 as equality would imply x = y + w
and since x = z + y this means z = w. Also, s′′1 6= s′′5 since equality
implies that x = y + w + z; however, since x = z + y this implies
w = 0, a contradiction. Furthermore, s′′1 6= s′′6 since equality would
imply x = w+z and since y = w+z we have that x = y, which is im-
possible. Clearly, s′′2 6= s′′5 since s′′2 6= s′2 = s′5 = s′′5 . Finally, s′′2 6= s′′6
since equality implies x + y = w + z; however, since y = w + z, this
would mean x = 0, which is a contradiction. This completes the case
for p = 2.

Finally, assume that p = 3. Let A = {x,−x, y,−y, z,−z} and order A
as A′ = (x, y, z,−x,−y,−z). Since no pair of additive inverses appears in
adjacent positions, we only need to check the partial sums that are least
three apart. Clearly, s1 6= s5 since this would imply x = z, s1 6= s6 as this
would imply x = 0, and s2 6= s6 since this would imply x = −y. The only
conditions that can fail are the following three possibilities: (1) s1 = s4,
(2) s2 = s5, or (3) s3 = s6. It is straightforward to show these possibilities
are mutually exclusive. We consider each case individually.

1. (s1 = s4): In this case we get x = y + z. Then reorder A as A′′ =
(x, y, z,−y,−x,−z). Here only s4 has changed and clearly s′1 6= s′4
since s′1 = s1 = s4 6= s′4.

2. (s2 = s5): In this case we have that z = x + y. Now order A as
A′′ = (x,−y, z, y,−x,−z). Here s2, s3, and s4 have changed. We see
s′1 6= s′4 since this would imply z = 0. Also, s′2 6= s′5 as s′2 6= s2 =
s5 = s′5 Furthermore, s′2 6= s′6 as this would imply x = y. Finally,
s′3 6= s′6 as equality implies that x − y + z = 0. But since z = x + y,
then x = z − y, which implies that z = y, a contradiction.

3. (s3 = s6): Here x+ y+ z = 0. Order A as A′ = (x, y,−z,−x, z,−y).
Here s3, s4, and s5 have changed. Clearly, s′3 6= s′6 as s′3 6= s3 = s6 =
s′6. Also, s′1 6= s′4 as equality would imply x = y − z; however, since
x + y + z = 0 this means y = −y. Furthermore, s′1 6= s′5 as equality
would imply that x = y and s′2 6= s′5 as equality here would imply
x = 0. This completes the proof. �

It does not appear promising to try to extend the proof to the case
k = 7.



4 Random Subsets

The next theorem is probabilistic in nature and shows that a randomly
chosen subset A of size k is orderable if k is not too large. First, we state
and prove a useful lemma.

Lemma 4.1. Let 1 ≤ ` ≤ n − 2 and let t ∈ Zn. For any set A ∈ Zn, let
sA be the sum of the elements of A in Zn. Then for a randomly chosen
`-subset of Zn \ {0}, the probability that sA = t is at most 2/n.

Proof. When ` = 1, this is obvious. Next assume that 2 ≤ ` ≤ n/2. Let
B ⊆ Zn \ {0} with |B| = `− 1. There are n− ` elements of Zn \ {0} that
extend B to a subset A of size `. At most one of these extensions will have
sA = t. The probability that a random extension has sum equal to t is thus
at most

1

n− `
≤ 1

n− n/2
=

2

n
,

as desired.
Now assume that n/2 < ` ≤ n − 2. Let r =

∑
a∈Zn

a (so r = 0 if
n is odd and r = n/2 if n is even). Again, let A be a set of size `, and
let B = Zn \ (A ∪ {0}). Then sA = t if and only if sB = r − t. Since
1 ≤ n− 1− ` ≤ n/2, the probability of this occurring is at most 2/n, from
the previous case. �

Theorem 4.2. Let A be a randomly chosen k-subset of Zn \{0}. Then the
probability that A cannot be ordered in such a way that all runs are nonzero
is at most k(k − 1)/n.

Proof. Consider the set S of all orderings of all k-subsets of Zn \{0}. There
are k!

(
n−1
k

)
orderings in this set. Define an ordering to be bad if at least

one run is zero modulo n.
The probability that a random run has a sum that is zero modulo n is at

most 2/n by Lemma 4.1. There are
(
k
2

)
runs to consider for each ordering.

Therefore, if p denotes the probability that a random ordering in S is bad,
then we have

p ≤
(
k

2

)
× 2

n
. (2)

The probability p is computed over all the orderings in S. Now consider
S to be partitioned into

(
n−1
k

)
sets SA, each of size k!, where each set SA

consists of the k! orderings of a fixed k-subset A ⊆ Zn \ {0}. Let pA denote
the probability that a randomly chosen ordering of the k-subset A is bad.
It is clear that

p =
1(

n−1
k

) ∑
A

pA. (3)



Define a k-subset A to be bad if every ordering in SA is bad. Let A denote
the set of bad k-subsets. It is obvious that∑

A

pA ≥ |A| (4)

since pA = 1 whenever A ∈ A. Combining (2), (3) and (4), it follows that

|A|(
n−1
k

) ≤ (k
2

)
× 2

n
.

However, the probability that a random k-subset is bad is easily seen to be
|A|/

(
n−1
k

)
, so we are done. �

As an example, if we take k ≈
√
n/2, then the probability that a ran-

domly chosen k-subset of Zn \ {0} can be ordered so that all the runs are
nonzero is at least 1/2.

5 Ordering Subsets of A

A further question concerns choosing a subset B of a given set A such that
B can be ordered in such a way that all of its partial sums are distinct.

Problem 1. Given A ⊆ Zn, find a subset B ⊆ A of maximum size that
can be ordered so all of its partial sums are distinct.

If it always holds that B = A, then Conjecture 1 is valid. We show
the weaker result that there always exists B ⊆ A satisfying the desired
properties, where |B| ≥ (k + 1)/2, via a greedy algorithm.

Theorem 5.1. Problem 1 always has a solution B where |B| ≥ (k + 1)/2.

Proof. Assume that the sequence (a1, a2, . . . , ar) has the property that for
1 ≤ i < j ≤ r, it holds that si 6= sj . Now there are r partial sums, so if
there are at least r + 1 elements from A not already used in the sequence,
it is possible to choose one, say x ∈ A such that sr + x 6= si for all i ≤ r.
This is possible if k ≥ 2r+ 1 or if r ≤ (k− 1)/2. In this case, the sequence
can be extended to a sequence of length r+ 1 having distinct partial sums.
�

Theorem 5.2. For any A ⊆ Zn \ {0} with |A| = 2t, there exist at least 2t

t-subsets B ⊆ A that can be ordered so their partial sums are distinct.



Proof. Similar to the proof of Theorem 5.1, given a sequence of length r
having distinct partial sums, there are at least 2t− 2r ways to extend it to
a sequence of length r + 1 having distinct partial sums. We get at least

2t× (2t− 2)× · · · × 2 = 2t t!

permissible orderings of t-subsets B ⊆ A. Clearly, any given t-subset B
occurs at most t! times in this list. Therefore, there are at least 2t different
t-subsets B ⊆ A that can be ordered so that the partial sums are distinct.
�

A similar (but slightly messier) result can be proven when |A| is odd.

6 Sums of Elements in k-subsets

In this section, we consider a different but related problem. In the next
theorem, we will show that if n is a prime, then among all the k-subsets
of Zn \ {0}, the sums are almost equally distributed. In particular, we can
compute the number of subsets of Zn \ {0} whose sum is 0. These results
can be viewed as more precise versions of Lemma 4.1 for the cases where n
is prime.

Let p be a prime with Fp the finite field of order p and F ∗p the multi-
plicative group of the field. Let Sk(α) denote the set of all k-subsets of Fp

whose sum is α and let Nk(α) = |Sk(α)|. Similarly let S∗k(α) denote the set
of all k-subsets of F ∗p whose sum is α and let N∗k (α) = |S∗k(α)|.

Lemma 6.1. N∗k (α) = N∗k (β) for any α, β ∈ F ∗p .

Proof. Let α ∈ F ∗p and let S ∈ S∗k(1). Then, if αS = {αs : s ∈ S}, we see
that αS ∈ S∗k(α). So S → αS is clearly a bijection from S∗k(1) to S∗k(α).
Hence, for every α ∈ F ∗p , we have that N∗k (α) = N∗k (1). The result follows.
�

So all the N∗k (α)s are equal when α 6= 0. We next show the same
conclusion holds for subsets of Fp (which may now include 0). The proof
is the same, except the bijection is additive instead of multiplicative. Here
we denote a+ S = {a+ s : s ∈ S} for a ∈ Fp.

Lemma 6.2. Nk(α) = Nk(β) for any α, β ∈ Fp.

Proof. Let α ∈ Fp and let S ∈ Sk(0). Since p is prime there exists a β ∈ Fp

such that kβ = α. Hence β + S ∈ Sk(kβ) = Sk(α). So S → β + S is
clearly a bijection from Sk(0) to Sk(α). Thus for every α ∈ Fp we have
that Nk(α) = Nk(0). The result follows. �



From Lemma 6.2, we have that Nk(α) = 1
p

(
p
k

)
for every α ∈ Fp. We are

now ready to prove our main result about the value of N∗k (0).

Lemma 6.3. Let α ∈ F ∗p . Then

N∗k (0) =

{
N∗k (α) + 1 if k is even
N∗k (α)− 1 if k is odd.

Proof. We prove this by induction on k. When k = 1, N∗1 (0) = 0, while
N∗1 (α) = 1, as desired. When k = 2, N∗2 (0) = p−1

2 since all elements in F ∗p
can be paired with their additive inverse to add to 0. ButN∗2 (2) = p−3

2 since
none of 0, 1, or 2 can be in a pair that adds to 2. Hence N∗2 (0) = N∗2 (α)+1
for all α ∈ F ∗p by Lemma 6.1 above.

The key observation is that for any α, N∗k (α) counts the number of k-
subsets summing to α that contain 0 as well as those that do not contain
0. But exactly N∗k−1(α) contain 0 and exactly N∗k (α) don’t contain 0. So
for any α, we have Nk(α) = N∗k−1(α) +N∗k (α).

Now assume that k is even and let α ∈ F ∗p . From Lemma 6.2 we have
Nk(0) = Nk(α) so

N∗k−1(0) +N∗k (0) = N∗k−1(α) +N∗k (α)

thus
N∗k (0) = (N∗k−1(α)−N∗k−1(0)) +N∗k (α)

and hence when k is even we have by induction that

N∗k (0) = 1 +N∗k (α)

since k − 1 is odd. The case when k is odd is similar. �

The following theorem is now immediate from Lemmas 6.1 and 6.3.

Theorem 6.4. When k is even, N∗k (0) = 1
p (
(
p−1
k

)
+ 1). When k is odd,

N∗k (0) = 1
p (
(
p−1
k

)
− 1).

Acknowledgement: The authors would like to thank Brian Alspach, Ian
Wanless, Daniel Horsley and Diane Donovan for useful discussions on this
topic.

Addendum: Sadly, Dan Archdeacon passed away in February 2015, shortly
after this paper was submitted for publication. We dedicate this paper to
his memory.



References

[1] Dan Archdeacon. Heffter arrays and biembedding graphs on surfaces.
Electron. J. Combin., 22(1) (2015) #P1.74.

[2] J.-P. Bode and H. Harborth. Directed paths of diagonals within poly-
topes. Discrete Mathematics 299 (2005), 3–10.

[3] J. H. Dinitz and S. R. Janiszewski. On Hamiltonian paths with pre-
scribed edge lengths in the complete graph. Bull. Inst. Combin. Appl.,
57 (2009), 42–52.

[4] P. Horak and A. Rosa. On a problem of Marco Buratti. Electron. J.
Combin., 16(1) (2009) #R20.

[5] M. A. Ollis. Sequenceable groups and related topics. Electron. J.
Combin. 20 (2013), #DS10v2.

[6] A. Pasotti and M. A. Pellegrini. A new result on the problem of
Buratti, Horak and Rosa. Discrete Math., 319 (2014) 1–14.

[7] A. Pasotti and M.A. Pellegrini, On the Buratti-Horak-Rosa Conjec-
ture about Hamiltonian paths in complete graphs Electron. J. Com-
bin., 21(2) (2014) #P2.30.


